Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands

Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi) and organic matter (Pₒ). Here we assessed whether transformations of these P pools could increase plant available pools all...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ecology (Durham) Ročník 103; číslo 3; s. 1 - 15
Hlavní autoři: Wang, Ruzhen, Yang, Junjie, Liu, Heyong, Sardans, Jordi, Zhang, Yunhai, Wang, Xiaobo, Wei, Cunzheng, Lü, Xiaotao, Dijkstra, Feike A., Jiang, Yong, Han, Xingguo, Peñuelas, Josep
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley and Sons, Inc 01.03.2022
John Wiley & Sons, Inc
Ecological Society of America
Témata:
ISSN:0012-9658, 1939-9170, 1939-9170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi) and organic matter (Pₒ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Pₒ. Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg−1, whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg−1 after the 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi. Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
AbstractList Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (P ) and organic matter (P ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile P (mainly Ca-bound recalcitrant P) to more available forms of P (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect P . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg , whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg after the 10-year N addition, associated with an increase in P mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile P and immobile P . Our results provide a new mechanistic understanding of the important role of soil P mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Phosphorus (P) limitation is expected to increase due to nitrogen (N)‐induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pᵢ) and organic matter (Pₒ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10‐year field N addition experiment and a 3700‐km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pᵢ (mainly Ca‐bound recalcitrant P) to more available forms of Pᵢ (including Al‐ and Fe‐bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Pₒ. Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg⁻¹, whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg⁻¹ after the 10‐year N addition, associated with an increase in Pᵢ mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pᵢ and immobile Pᵢ. Our results provide a new mechanistic understanding of the important role of soil Pᵢ mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi ) and organic matter (Po ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg-1 , whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg-1 after the 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi . Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi ) and organic matter (Po ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg-1 , whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg-1 after the 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi . Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Phosphorus (P) limitation is expected to increase due to nitrogen (N)‐induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi) and organic matter (Po). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10‐year field N addition experiment and a 3700‐km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca‐bound recalcitrant P) to more available forms of Pi (including Al‐ and Fe‐bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po. Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg−1, whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg−1 after the 10‐year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi. Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Phosphorus (P) limitation is expected to increase due to nitrogen (N)‐induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi) and organic matter (Po). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10‐year field N addition experiment and a 3700‐km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca‐bound recalcitrant P) to more available forms of Pi (including Al‐ and Fe‐bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po. Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg−1, whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg−1 after the 10‐year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi. Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Phosphorus (P) limitation is expected to increase due to nitrogen (N)‐induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (P i ) and organic matter (P o ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10‐year field N addition experiment and a 3700‐km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile P i (mainly Ca‐bound recalcitrant P) to more available forms of P i (including Al‐ and Fe‐bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect P o . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg −1 , whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg −1 after the 10‐year N addition, associated with an increase in P i mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile P i and immobile P i . Our results provide a new mechanistic understanding of the important role of soil P i mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi) and organic matter (Pₒ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Pₒ. Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg−1, whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg−1 after the 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi. Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.
Author Jiang, Yong
Wang, Ruzhen
Liu, Heyong
Zhang, Yunhai
Peñuelas, Josep
Wang, Xiaobo
Lü, Xiaotao
Han, Xingguo
Dijkstra, Feike A.
Sardans, Jordi
Wei, Cunzheng
Yang, Junjie
Author_xml – sequence: 1
  givenname: Ruzhen
  surname: Wang
  fullname: Wang, Ruzhen
– sequence: 2
  givenname: Junjie
  surname: Yang
  fullname: Yang, Junjie
– sequence: 3
  givenname: Heyong
  surname: Liu
  fullname: Liu, Heyong
– sequence: 4
  givenname: Jordi
  surname: Sardans
  fullname: Sardans, Jordi
– sequence: 5
  givenname: Yunhai
  surname: Zhang
  fullname: Zhang, Yunhai
– sequence: 6
  givenname: Xiaobo
  surname: Wang
  fullname: Wang, Xiaobo
– sequence: 7
  givenname: Cunzheng
  surname: Wei
  fullname: Wei, Cunzheng
– sequence: 8
  givenname: Xiaotao
  surname:
  fullname: Lü, Xiaotao
– sequence: 9
  givenname: Feike A.
  surname: Dijkstra
  fullname: Dijkstra, Feike A.
– sequence: 10
  givenname: Yong
  surname: Jiang
  fullname: Jiang, Yong
– sequence: 11
  givenname: Xingguo
  surname: Han
  fullname: Han, Xingguo
– sequence: 12
  givenname: Josep
  surname: Peñuelas
  fullname: Peñuelas, Josep
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34923633$$D View this record in MEDLINE/PubMed
BookMark eNqN0UuLFDEQAOAgK-7sKvgHlIAXLz3mNenOUYb1AYte9OApJOnq2YzpZEy6kfHXm6VnVxEFA6EuXxX1uEBnMUVA6Ckla0oIewXuuOaSygdoRRVXjaItOUMrQihrlNx05-iilD2pj4ruETrnQjEuOV-hrx_8lNMOIoaYvbsZIU7YzsMAueDDTSr157ng4Ec_mcmniO0Rj8n64H_4uMOjj5BNaGyaY49L8uH3NB_xLptSgol9eYweDiYUeHKKl-jzm6tP23fN9ce377evrxsniJCNdaJTqmeWtQx4B0p2XBoHauPaVhhqGbihM10vrBlUDwYGI2qgRHXSEM4v0cul7iGnbzOUSY--OAi1CUhz0UxKWtmGsf-glBHeSqkqffEH3ac5xzpIVVxwRZeCz09qtiP0-pD9aPJR3228gvUCXE6lZBi0Oy12ysYHTYm-PamuJ9W3J_3V4n3CXc2_0Gah332A4z-dvtp-Oflni9-XKeV7z1rK6jIp_wlj-bqW
CitedBy_id crossref_primary_10_1016_j_rhisph_2024_100907
crossref_primary_10_1016_j_jenvman_2024_121379
crossref_primary_10_1016_j_agee_2023_108700
crossref_primary_10_1016_j_agee_2025_109635
crossref_primary_10_1007_s42832_025_0326_y
crossref_primary_10_1016_j_scitotenv_2023_165916
crossref_primary_10_1111_1365_2745_14118
crossref_primary_10_1016_j_geoderma_2025_117483
crossref_primary_10_1007_s11104_024_06660_4
crossref_primary_10_3390_agronomy14092029
crossref_primary_10_1016_j_scitotenv_2023_163225
crossref_primary_10_1111_pce_14951
crossref_primary_10_1021_acs_est_5c05746
crossref_primary_10_1007_s11104_023_06083_7
crossref_primary_10_1016_j_jenvman_2025_126038
crossref_primary_10_1016_j_jia_2024_07_033
crossref_primary_10_1002_ecy_70071
crossref_primary_10_3389_fmicb_2023_1208971
crossref_primary_10_1016_j_soilbio_2024_109383
crossref_primary_10_1111_1365_2435_14178
crossref_primary_10_3390_w17020241
crossref_primary_10_3389_fsufs_2024_1343283
crossref_primary_10_1007_s00374_023_01782_w
crossref_primary_10_3390_agronomy15030666
crossref_primary_10_1029_2023GB008064
crossref_primary_10_1007_s11104_023_06354_3
crossref_primary_10_1007_s11104_025_07572_7
crossref_primary_10_1111_gcb_70156
crossref_primary_10_1016_j_jenvman_2024_122337
crossref_primary_10_1111_nph_19078
crossref_primary_10_1016_j_jes_2025_03_009
crossref_primary_10_1016_j_geoderma_2024_116885
crossref_primary_10_1016_j_jece_2025_117279
crossref_primary_10_1016_j_jwpe_2025_107219
crossref_primary_10_3390_land13122001
crossref_primary_10_1016_j_still_2025_106633
crossref_primary_10_1002_eap_2944
crossref_primary_10_1016_j_scitotenv_2024_178122
crossref_primary_10_1002_ecy_3616
crossref_primary_10_1016_j_fecs_2024_100221
crossref_primary_10_1029_2024JG008353
crossref_primary_10_1111_gcb_70440
crossref_primary_10_1007_s11104_023_06060_0
crossref_primary_10_1073_pnas_2419917122
crossref_primary_10_1016_j_catena_2022_106677
crossref_primary_10_1038_s42003_025_08681_w
crossref_primary_10_1007_s11368_023_03639_z
crossref_primary_10_1016_j_scitotenv_2022_157916
crossref_primary_10_1038_s41598_025_02522_w
crossref_primary_10_1002_ece3_10300
crossref_primary_10_1093_aob_mcad058
crossref_primary_10_1111_1365_2745_70121
crossref_primary_10_3389_fpls_2024_1400309
crossref_primary_10_1016_j_scitotenv_2024_175388
crossref_primary_10_3389_fpls_2025_1566140
crossref_primary_10_1016_j_foreco_2025_122912
crossref_primary_10_3390_plants14142153
crossref_primary_10_3389_fevo_2024_1361124
crossref_primary_10_1016_j_foreco_2022_120407
crossref_primary_10_3389_fpls_2022_947279
crossref_primary_10_1016_j_catena_2023_107393
crossref_primary_10_1016_j_scitotenv_2024_172904
crossref_primary_10_1016_j_scitotenv_2024_172107
crossref_primary_10_1111_1365_2745_70081
crossref_primary_10_1016_j_watres_2023_120580
crossref_primary_10_1186_s13717_025_00597_x
crossref_primary_10_1016_j_apsoil_2025_105896
crossref_primary_10_1016_j_apsoil_2022_104661
crossref_primary_10_1016_j_tim_2023_08_005
crossref_primary_10_1029_2024GB008415
crossref_primary_10_1016_j_apsoil_2024_105755
crossref_primary_10_3390_f15030416
crossref_primary_10_1007_s11104_024_07035_5
crossref_primary_10_3389_fevo_2022_1006468
crossref_primary_10_1007_s11104_023_06384_x
crossref_primary_10_1016_j_soilbio_2025_109976
crossref_primary_10_1111_sum_70027
crossref_primary_10_3390_plants14101429
crossref_primary_10_1016_j_catena_2022_106458
crossref_primary_10_1007_s11368_025_03993_0
crossref_primary_10_1016_j_ecolind_2024_112725
crossref_primary_10_1016_j_jenvman_2023_118807
Cites_doi 10.1007/s00442-011-2185-8
10.1111/gcb.13140
10.1016/j.geoderma.2012.05.014
10.1111/1365-2435.13606
10.1111/j.1461-0248.2011.01651.x
10.2136/sssaj2013.02.0072
10.1002/jpln.201400590
10.1038/s41561-019-0352-4
10.1038/s41598-017-01418-8
10.1038/ncomms3934
10.1126/science.1136674
10.1890/06-2057.1
10.1016/S0003-2670(00)88444-5
10.1111/j.1461-0248.2007.01113.x
10.1002/ecm.1262
10.1002/2015GB005331
10.1016/j.geoderma.2018.09.028
10.1111/gcb.14093
10.1111/j.1469-8137.2011.03967.x
10.1111/gcb.14981
10.1038/nature25789
10.1007/s11104-017-3362-2
10.1038/ngeo2413
10.1890/15-0917.1
10.1111/1365-2745.13180
10.5194/bg-13-3635-2016
10.1111/gcb.13125
10.1016/j.scitotenv.2020.137847
10.1111/j.1365-2389.1958.tb01903.x
10.1007/s11104-007-9516-x
10.1038/s41559-020-01323-w
10.1038/nplants.2015.50
10.1016/S1002-0160(10)60018-5
10.2134/agronj1967.00021962005900030010x
10.1111/gcb.15218
10.1002/ecy.3616
10.1111/gcb.13147
10.2136/sssaj1972.03615995003600060020x
10.1111/gcb.14480
10.1016/j.jaridenv.2014.01.020
10.1038/nplants.2016.224
10.2307/1938144
10.1111/ejss.12026
10.1038/s41561-019-0530-4
10.1097/00010694-195408000-00008
10.1038/nclimate3088
10.1111/ele.13212
10.1007/s00442-006-0510-4
10.1002/ecy.3003
10.1007/s11104-005-1094-1
10.1038/ncomms5799
10.1007/s10533-015-0174-4
10.1126/science.aay5958
10.1029/2018GB005952
10.1111/ele.12939
10.1016/j.apgeochem.2009.09.020
10.1111/1365-2435.13701
10.1111/j.1365-2486.2009.01950.x
10.1111/gcb.12611
10.1007/s11104-009-0009-y
10.1111/j.1466-8238.2008.00425.x
10.1016/j.envpol.2019.113739
ContentType Journal Article
Copyright 2021 The Ecological Society of America
2021 The Ecological Society of America.
2022 Ecological Society of America
Copyright_xml – notice: 2021 The Ecological Society of America
– notice: 2021 The Ecological Society of America.
– notice: 2022 Ecological Society of America
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7T7
8FD
C1K
FR3
K9.
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1002/ecy.3616
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Entomology Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1939-9170
EndPage 15
ExternalDocumentID 34923633
10_1002_ecy_3616
ECY3616
27121091
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2016YFC0500707
– fundername: Spanish government grant
  funderid: PID2019‐110521GB‐I00
– fundername: National Natural Science Foundation of China
  funderid: 31430016; 31770525; 31870441
– fundername: European Research Council Synergy grant
  funderid: ERC‐SyG‐2013‐610028 IMBALANCE‐P
GroupedDBID ---
-~X
0R~
1OB
1OC
2AX
33P
4.4
5GY
85S
AAESR
AAHBH
AAHKG
AAHQN
AAIHA
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABBHK
ABCUV
ABDQB
ABEFU
ABGFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABTLG
ACAHQ
ACCZN
ACGFO
ACGFS
ACGOD
ACHIC
ACKOT
ACNCT
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADKYN
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFPM
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BENPR
BFHJK
BKOMP
BMXJE
BRXPI
CBGCD
CS3
CUYZI
D0L
DCZOG
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
F5P
HF~
HGLYW
IAO
IEA
IGH
IGS
IOF
IPO
IPSME
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
LATKE
LEEKS
LITHE
LOXES
LU7
LUTES
LYRES
MEWTI
MV1
MW2
N9A
NHB
NXSMM
O9-
OK1
P2P
P2W
PALCI
ROL
RSZ
RWL
RXW
SA0
SJN
SUPJJ
TAE
TN5
U5U
UHB
UKR
V62
WBKPD
WH7
WOHZO
WXSBR
XSW
YR2
YV5
YYM
YZZ
Z0I
ZCA
ZO4
ZZTAW
~02
~KM
.-4
0VX
29G
2KS
3V.
42X
53G
692
6TJ
7X2
7X7
7XC
88A
88E
88I
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
A.K
A6W
AAFWJ
AAHHS
AASGY
ABRJW
ABUWG
ABXSQ
ABYAD
ACCFJ
ACKIV
ACTWD
ACUBG
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AEUYN
AFKRA
AFQQW
AGNAY
AHXOZ
AIDAL
AILXY
AIWBW
AJBDE
AQVQM
AS~
ATCPS
AZQEC
BBNVY
BCR
BCU
BEC
BES
BHPHI
BKSAR
BLC
BPHCQ
BVXVI
C1A
CCPQU
D1J
DDYGU
DOOOF
DWQXO
E.L
EJD
FVMVE
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HGD
HMCUK
HQ2
HTVGU
HVGLF
IAG
IEP
ITC
JSODD
KQ8
LK8
M0K
M0L
M1P
M2O
M2P
M7P
MVM
OMK
PATMY
PCBAR
PQQKQ
PRG
PROAC
PSQYO
PYCSY
Q2X
QZG
R05
RJQFR
SAMSI
SJFOW
UBC
UKHRP
VOH
VQA
WHG
WYJ
XIH
Y6R
YXE
YYP
ZCG
AAYXX
ABAWQ
ABSQW
ABUFD
ACHJO
ADXHL
AFFHD
AGUYK
AIQQE
CITATION
LH4
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7T7
8FD
C1K
FR3
K9.
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4046-bc4899d2b272e38e96836ace95c774a1b2ecf8a8d4baf9deaefa4dea10986a033
IEDL.DBID DRFUL
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751823700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-9658
1939-9170
IngestDate Fri Sep 05 17:28:27 EDT 2025
Sun Nov 09 13:53:27 EST 2025
Mon Oct 06 18:11:20 EDT 2025
Thu Apr 03 06:56:36 EDT 2025
Sat Nov 29 03:24:23 EST 2025
Tue Nov 18 21:29:47 EST 2025
Wed Jan 22 16:25:59 EST 2025
Thu Jul 03 21:34:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords phosphorus mobilization
mineral-bound phosphorus
phosphorus limitation
precipitation gradient
nitrogen deposition
climosequence
Language English
License 2021 The Ecological Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4046-bc4899d2b272e38e96836ace95c774a1b2ecf8a8d4baf9deaefa4dea10986a033
Notes Funding information
Ruzhen Wang, Junjie Yang, and Heyong Liu contributed equally to this work.
European Research Council Synergy grant, Grant/Award Number: ERC‐SyG‐2013‐610028 IMBALANCE‐P; National Key Research and Development Program of China, Grant/Award Number: 2016YFC0500707; National Natural Science Foundation of China, Grant/Award Numbers: 31430016, 31770525, 31870441; Spanish government grant, Grant/Award Number: PID2019‐110521GB‐I00
Handling Editor
Hugh Henry
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5571-1895
0000-0001-7518-5810
0000-0003-2478-0219
0000-0001-8654-6677
0000-0003-0613-3624
0000-0002-7215-0150
PMID 34923633
PQID 2634391522
PQPubID 34868
PageCount 15
ParticipantIDs proquest_miscellaneous_2661033522
proquest_miscellaneous_2612037669
proquest_journals_2634391522
pubmed_primary_34923633
crossref_citationtrail_10_1002_ecy_3616
crossref_primary_10_1002_ecy_3616
wiley_primary_10_1002_ecy_3616_ECY3616
jstor_primary_27121091
PublicationCentury 2000
PublicationDate 20220301
March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220301
  day: 1
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Brooklyn
PublicationTitle Ecology (Durham)
PublicationTitleAlternate Ecology
PublicationYear 2022
Publisher John Wiley and Sons, Inc
John Wiley & Sons, Inc
Ecological Society of America
Publisher_xml – name: John Wiley and Sons, Inc
– name: John Wiley & Sons, Inc
– name: Ecological Society of America
References 2017; 7
2010; 16
2013; 4
2017; 3
2017; 87
2019; 12
2013; 64
1995; 76
2016; 30
2020; 722
2008; 304
2020; 13
2020; 367
2011; 14
2012; 169
2014; 20
2021; 35
2010; 20
2014; 5
2005; 266
2019; 22
2015; 178
2019; 25
2020; 258
1958; 9
1967; 59
2009; 18
2009; 326
2015; 1
2009; 24
2021; 5
2012; 189
2019; 33
2018; 427
2016; 97
2020; 34
2016; 127
2020; 101
2006; 150
2019; 107
2007; 10
2008; 320
2018; 21
2015; 8
2016; 13
2018; 24
2016; 6
2018; 18
2013; 77
1954; 78
2021
2020
2018; 555
2012; 193
1962; 27
2020; 26
2008; 89
2015
2019; 337
2014
1972; 36
2014; 104
2016; 22
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
Wang X. (e_1_2_9_54_1) 2018; 18
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
(e_1_2_9_42_1) 2020
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 34
  start-page: 1690
  year: 2020
  end-page: 701
  article-title: Climate and Soil Micro‐Organisms Drive Soil Phosphorus Fractions in Coastal Dune Systems
  publication-title: Functional Ecology
– volume: 20
  start-page: 3520
  year: 2014
  end-page: 9
  article-title: Rapid Plant Species Loss at High Rates and at Low Frequency of N Addition in Temperate Steppe
  publication-title: Global Change Biology
– volume: 16
  start-page: 358
  year: 2010
  end-page: 72
  article-title: Tradeoffs and Thresholds in the Effects of Nitrogen Addition on Biodiversity and Ecosystem Functioning: Evidence from Inner Mongolia Grasslands
  publication-title: Global Change Biology
– volume: 10
  start-page: 1135
  year: 2007
  end-page: 42
  article-title: Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems
  publication-title: Ecology Letters
– volume: 24
  start-page: 2163
  year: 2009
  end-page: 74
  article-title: Soil pH Controls the Environmental Availability of Phosphorus: Experimental and Mechanistic Modelling Approaches
  publication-title: Applied Geochemistry
– volume: 3
  start-page: 16224
  year: 2017
  article-title: Phosphorus Resource Partitioning Shapes Phosphorus Acquisition and Plant Species Abundance in Grasslands
  publication-title: Nature Plants
– volume: 4
  start-page: 2934
  year: 2013
  article-title: Human‐Induced Nitrogen–Phosphorus Imbalances Alter Natural and Managed Ecosystems across the Globe
  publication-title: Nature Communications
– volume: 189
  start-page: 304
  year: 2012
  end-page: 11
  article-title: The pH Dependence of Phosphate Sorption and Desorption in Swedish Agricultural Soils
  publication-title: Geoderma
– year: 2021
– volume: 193
  start-page: 696
  year: 2012
  end-page: 704
  article-title: Nitrogen Inputs Accelerate Phosphorus Cycling Rates across a Wide Variety of Terrestrial Ecosystems
  publication-title: New Phytologist
– volume: 555
  start-page: 367
  year: 2018
  end-page: 70
  article-title: Pervasive Phosphorus Limitation of Tree Species but Not Communities in Tropical Forests
  publication-title: Nature
– volume: 89
  start-page: 371
  year: 2008
  end-page: 9
  article-title: Nitrogen Limitation of Net Primary Productivity in Terrestrail Ecosystems is Globally Distributed
  publication-title: Ecology
– volume: 77
  start-page: 2060
  year: 2013
  end-page: 70
  article-title: Phosphate Release Kinetics in Calcareous Grassland and Forest Soils in Response to H Addition
  publication-title: Soil Science Society of America Journal
– volume: 36
  start-page: 902
  year: 1972
  end-page: 4
  article-title: Determination of Total Phosphorus in Soils: A Rapid Perchloric Acid Digestion Procedure
  publication-title: Soil Science Society of America Journal
– year: 2014
– volume: 24
  start-page: 3344
  year: 2018
  end-page: 56
  article-title: Effects of Climate on Soil Phosphorus Cycle and Availability in Natural Terrestrial Ecosystems
  publication-title: Global Change Biology
– volume: 21
  start-page: 713
  year: 2018
  end-page: 23
  article-title: Partitioning of Soil Phosphorus among Arbuscular and Ectomycorrhizal Trees in Tropical and Subtropical Forests
  publication-title: Ecology Letters
– volume: 107
  start-page: 2346
  year: 2019
  end-page: 52
  article-title: Species Richness Mediates within‐Species Nutrient Resorption: Implications for the Biodiversity–Productivity Relationship
  publication-title: Journal of Ecology
– volume: 6
  start-page: 836
  year: 2016
  end-page: 43
  article-title: Key Ecological Responses to Nitrogen Are Altered by Climate Change
  publication-title: Nature Climate Change
– volume: 22
  start-page: 1628
  year: 2016
  end-page: 43
  article-title: Elevated Carbon Dioxide Increases Soil Nitrogen and Phosphorus Availability in a Phosphorus‐Limited Eucalyptus Woodland
  publication-title: Global Change Biology
– volume: 104
  start-page: 106
  year: 2014
  end-page: 15
  article-title: Impacts of Increased Nitrogen Deposition and Altered Precipitation Regimes on Soil Fertility and Functioning in Semiarid Mediterranean Shrublands
  publication-title: Journal of Arid Environment
– volume: 337
  start-page: 246
  year: 2019
  end-page: 55
  article-title: Responses of Soil Phosphorus Fractions after Nitrogen Addition in a Subtropical Forest Ecosystem: Insights from Decreased Fe and Al Oxides and Increased Plant Roots
  publication-title: Geoderma
– volume: 27
  start-page: 31
  year: 1962
  end-page: 6
  article-title: A Modified Single Solution Method for the Determination of Phosphate in Natural Waters
  publication-title: Analytica Chimica Acta
– volume: 25
  start-page: 269
  year: 2019
  end-page: 76
  article-title: Effect of Interannual Precipitation Variability on Dryland Productivity: A Global Synthesis
  publication-title: Global Change Biology
– volume: 722
  year: 2020
  article-title: Effects of Plant Roots and Arbuscular Mycorrhizas on Soil Phosphorus Leaching
  publication-title: Science of the Total Environment
– volume: 320
  start-page: 889
  year: 2008
  end-page: 92
  article-title: Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions
  publication-title: Science
– volume: 35
  start-page: 277
  year: 2021
  end-page: 87
  article-title: Long‐Term Nitrogen Enrichment Does Not Increase Microbial Phosphorus Mobilization in a Northern Coniferous Forest
  publication-title: Functional Ecology
– volume: 1
  start-page: 15050
  year: 2015
  article-title: Diversity of Plant Nutrient‐Acquisition Strategies Increases during Long‐Term Ecosystem Development
  publication-title: Nature Plants
– volume: 127
  start-page: 141
  year: 2016
  end-page: 53
  article-title: A Threshold Reveals Decoupled Relationship of Sulfur with Carbon and Nitrogen in Soils across Arid and Semi‐Arid Grasslands in Northern China
  publication-title: Biogeochemistry
– volume: 30
  start-page: 1264
  year: 2016
  end-page: 75
  article-title: Phosphorus Transformations along a Large‐Scale Climosequence in Arid and Semiarid Grasslands of Northern China
  publication-title: Global Biogeochemical Cycles
– year: 2015
– volume: 5
  start-page: 4799
  year: 2014
  article-title: Aridity Threshold in Controlling Ecosystem Nitrogen Cycling in Arid and Semi‐Arid Grasslands
  publication-title: Nature Communications
– volume: 266
  start-page: 153
  year: 2005
  end-page: 63
  article-title: Short Term Effects of Radiata Pine and Selected Pasture Species on Soil Organic Phosphorus Mineralisation
  publication-title: Plant and Soil
– volume: 5
  start-page: 67
  year: 2021
  end-page: 73
  article-title: Phosphorus Fertilization is Eradicating the Niche of Northern Eurasia's Threatened Plant Species
  publication-title: Nature Ecology & Evolution
– volume: 18
  start-page: 312
  year: 2018
  end-page: 28
  article-title: Changes in Regional Grain Yield Responses to Chemical Fertilizer Use in China over the Last 20 years
  publication-title: Journal of Soil Science and Plant Nutrition
– volume: 26
  start-page: 5077
  year: 2020
  end-page: 86
  article-title: Long‐Term Nitrogen Loading Alleviates Phosphorus Limitation in Terrestrial Ecosystems
  publication-title: Global Change Biology
– volume: 258
  year: 2020
  article-title: Potential Transition in the Effects of Atmospheric Nitrogen Deposition in China
  publication-title: Environmental Pollution
– volume: 87
  start-page: 457
  year: 2017
  end-page: 69
  article-title: Exacerbated Nitrogen Limitation Ends Transient Stimulation of Grassland Productivity by Increased Precipitation
  publication-title: Ecological Monographs
– volume: 101
  year: 2020
  article-title: Interactions of Nitrogen and Phosphorus Cycling Promote P Acquisition and Explain Synergistic Plant‐Growth Responses
  publication-title: Ecology
– volume: 8
  start-page: 441
  year: 2015
  end-page: 4
  article-title: Future Productivity and Carbon Storage Limited by Terrestrial Nutrient Availability
  publication-title: Nature Geoscience
– volume: 12
  start-page: 424
  year: 2019
  end-page: 9
  article-title: Stabilization of Atmospheric Nitrogen Deposition in China over the Past Decade
  publication-title: Nature Geoscience
– volume: 26
  start-page: 1962
  year: 2020
  end-page: 85
  article-title: Anthropogenic Global Shifts in Biospheric N and P Concentrations and Ratios and their Impacts on Biodiversity, Ecosystem Productivity, Food Security, and Human Health
  publication-title: Global Change Biology
– volume: 97
  start-page: 65
  year: 2016
  end-page: 74
  article-title: A Novel Soil Manganese Mechanism Drives Plant Species Loss with Increased Nitrogen Deposition in a Temperate Steppe
  publication-title: Ecology
– volume: 367
  start-page: 787
  year: 2020
  end-page: 90
  article-title: Global Ecosystem Thresholds Driven by Aridity
  publication-title: Science
– volume: 64
  start-page: 249
  year: 2013
  end-page: 59
  article-title: Isolating the Influence of pH on the Amounts and Forms of Soil Organic Phosphorus
  publication-title: European Journal of Soil Science
– volume: 13
  start-page: 3635
  year: 2016
  end-page: 46
  article-title: Carbon and Nitrogen Contents in Particle–Size Fractions of Topsoil along a 3000 km Aridity Gradient in Grasslands of Northern China
  publication-title: Biogeosciences
– volume: 9
  start-page: 109
  year: 1958
  end-page: 19
  article-title: Soil Phosphorus Fractions in some Representative Soils
  publication-title: European Journal of Soil Science
– volume: 13
  start-page: 221
  year: 2020
  end-page: 6
  article-title: Global Patterns of Terrestrial Nitrogen and Phosphorus Limitation
  publication-title: Nature Geoscience
– volume: 326
  start-page: 311
  year: 2009
  article-title: Mineralisation of Carbon and Plant Uptake of Phosphorus from Microbially‐Derived Organic Matter in Response to 19 years Simulated Nitrogen Deposition
  publication-title: Plant and Soil
– volume: 59
  start-page: 240
  year: 1967
  end-page: 3
  article-title: Comparison of Conventional and Automated Procedures for Nitrogen, Phosphorus, and Potassium Analysis of Plant Material using a Single Digestion
  publication-title: Agronomy Journal
– volume: 169
  start-page: 221
  year: 2012
  end-page: 34
  article-title: Four Decades of Post‐Agricultural Forest Development Have Caused Major Redistributions of Soil Phosphorus Fractions
  publication-title: Oecologia
– volume: 14
  start-page: 852
  year: 2011
  end-page: 62
  article-title: Nutrient Co‐Limitation of Primary Producer Communities
  publication-title: Ecology Letters
– volume: 150
  start-page: 259
  year: 2006
  end-page: 71
  article-title: Bioavailability of Slowly Cycling Soil Phosphorus: Major Restructuring of Soil P Fractions over Four Decades in an Aggrading Forest
  publication-title: Oecologia
– volume: 427
  start-page: 5
  year: 2018
  end-page: 16
  article-title: Opportunities for Mobilizing Recalcitrant Phosphorus from Agricultural Soils: A Review
  publication-title: Plant and Soil
– volume: 22
  start-page: 563
  year: 2019
  end-page: 71
  article-title: Nitrogen Addition Does Not Reduce the Role of Spatial Asynchrony in Stabilising Grassland Communities
  publication-title: Ecology Letters
– volume: 33
  start-page: 810
  year: 2019
  end-page: 24
  article-title: Nitrogen Deposition Maintains a Positive Effect on Terrestrial Carbon Sequestration in the 21st Century despite Growing Phosphorus Limitation at Regional Scales
  publication-title: Global Biogeochemical Cycles
– year: 2020
– volume: 22
  start-page: 934
  year: 2016
  end-page: 43
  article-title: Aggravated Phosphorus Limitation on Biomass Production under Increasing Nitrogen Loading: A Meta‐Analysis
  publication-title: Global Change Biology
– volume: 7
  start-page: 1337
  year: 2017
  article-title: Global Patterns of Phosphatase Activity in Natural Soils
  publication-title: Scientific Reports
– volume: 18
  start-page: 11
  year: 2009
  end-page: 8
  article-title: Global‐Scale Patterns of Nutrient Resorption Associated with Latitude, Temperature and Precipitation
  publication-title: Global Ecology and Biogeography
– volume: 178
  start-page: 351
  year: 2015
  end-page: 64
  article-title: The Acquisition of Phosphate by Higher Plants: Effect of Carboxylate Release by the Roots. A Critical Review
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 78
  start-page: 141
  year: 1954
  end-page: 52
  article-title: Residual Phosphorus Availability in Long‐Time Rotations on Calcareous Soils
  publication-title: Soil Science
– volume: 304
  start-page: 21
  year: 2008
  end-page: 33
  article-title: Changes and Availability of P Fractions Following 65 years of P Application to a Calcareous Soil in a Mediterranean Climate
  publication-title: Plant and Soil
– volume: 20
  start-page: 304
  year: 2010
  end-page: 10
  article-title: Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21‐year Superphosphate Application
  publication-title: Pedosphere
– volume: 76
  start-page: 1407
  year: 1995
  end-page: 24
  article-title: Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii
  publication-title: Ecology
– volume: 22
  start-page: 1445
  year: 2016
  end-page: 55
  article-title: Nitrogen Enrichment Weakens Ecosystem Stability through Decreased Species Asynchrony and Population Stability in a Temperate Grassland
  publication-title: Global Change Biology
– ident: e_1_2_9_9_1
  doi: 10.1007/s00442-011-2185-8
– ident: e_1_2_9_65_1
  doi: 10.1111/gcb.13140
– ident: e_1_2_9_22_1
  doi: 10.1016/j.geoderma.2012.05.014
– ident: e_1_2_9_18_1
  doi: 10.1111/1365-2435.13606
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1461-0248.2011.01651.x
– ident: e_1_2_9_2_1
  doi: 10.2136/sssaj2013.02.0072
– ident: e_1_2_9_19_1
  doi: 10.1002/jpln.201400590
– ident: e_1_2_9_61_1
  doi: 10.1038/s41561-019-0352-4
– ident: e_1_2_9_34_1
  doi: 10.1038/s41598-017-01418-8
– ident: e_1_2_9_41_1
  doi: 10.1038/ncomms3934
– ident: e_1_2_9_17_1
  doi: 10.1126/science.1136674
– ident: e_1_2_9_29_1
  doi: 10.1890/06-2057.1
– ident: e_1_2_9_37_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1461-0248.2007.01113.x
– ident: e_1_2_9_43_1
  doi: 10.1002/ecm.1262
– ident: e_1_2_9_14_1
  doi: 10.1002/2015GB005331
– ident: e_1_2_9_13_1
  doi: 10.1016/j.geoderma.2018.09.028
– ident: e_1_2_9_25_1
  doi: 10.1111/gcb.14093
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1469-8137.2011.03967.x
– ident: e_1_2_9_40_1
  doi: 10.1111/gcb.14981
– ident: e_1_2_9_52_1
  doi: 10.1038/nature25789
– ident: e_1_2_9_36_1
  doi: 10.1007/s11104-017-3362-2
– ident: e_1_2_9_27_1
– volume-title: R: A Lnguage and Environment for Statistical Computing
  year: 2020
  ident: e_1_2_9_42_1
– ident: e_1_2_9_60_1
  doi: 10.1038/ngeo2413
– ident: e_1_2_9_49_1
  doi: 10.1890/15-0917.1
– ident: e_1_2_9_32_1
  doi: 10.1111/1365-2745.13180
– ident: e_1_2_9_56_1
  doi: 10.5194/bg-13-3635-2016
– ident: e_1_2_9_30_1
  doi: 10.1111/gcb.13125
– ident: e_1_2_9_50_1
  doi: 10.1016/j.scitotenv.2020.137847
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1365-2389.1958.tb01903.x
– ident: e_1_2_9_53_1
  doi: 10.1007/s11104-007-9516-x
– ident: e_1_2_9_59_1
  doi: 10.1038/s41559-020-01323-w
– ident: e_1_2_9_63_1
  doi: 10.1038/nplants.2015.50
– ident: e_1_2_9_55_1
  doi: 10.1016/S1002-0160(10)60018-5
– ident: e_1_2_9_48_1
  doi: 10.2134/agronj1967.00021962005900030010x
– ident: e_1_2_9_7_1
  doi: 10.1111/gcb.15218
– ident: e_1_2_9_58_1
  doi: 10.1002/ecy.3616
– ident: e_1_2_9_24_1
  doi: 10.1111/gcb.13147
– ident: e_1_2_9_47_1
  doi: 10.2136/sssaj1972.03615995003600060020x
– ident: e_1_2_9_20_1
  doi: 10.1111/gcb.14480
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jaridenv.2014.01.020
– ident: e_1_2_9_5_1
  doi: 10.1038/nplants.2016.224
– ident: e_1_2_9_8_1
  doi: 10.2307/1938144
– ident: e_1_2_9_51_1
  doi: 10.1111/ejss.12026
– ident: e_1_2_9_11_1
  doi: 10.1038/s41561-019-0530-4
– ident: e_1_2_9_39_1
  doi: 10.1097/00010694-195408000-00008
– ident: e_1_2_9_21_1
  doi: 10.1038/nclimate3088
– ident: e_1_2_9_64_1
  doi: 10.1111/ele.13212
– ident: e_1_2_9_44_1
  doi: 10.1007/s00442-006-0510-4
– ident: e_1_2_9_45_1
  doi: 10.1002/ecy.3003
– ident: e_1_2_9_46_1
  doi: 10.1007/s11104-005-1094-1
– volume: 18
  start-page: 312
  year: 2018
  ident: e_1_2_9_54_1
  article-title: Changes in Regional Grain Yield Responses to Chemical Fertilizer Use in China over the Last 20 years
  publication-title: Journal of Soil Science and Plant Nutrition
– ident: e_1_2_9_57_1
  doi: 10.1038/ncomms5799
– ident: e_1_2_9_33_1
  doi: 10.1007/s10533-015-0174-4
– ident: e_1_2_9_4_1
  doi: 10.1126/science.aay5958
– ident: e_1_2_9_15_1
  doi: 10.1029/2018GB005952
– ident: e_1_2_9_31_1
  doi: 10.1111/ele.12939
– ident: e_1_2_9_10_1
  doi: 10.1016/j.apgeochem.2009.09.020
– ident: e_1_2_9_16_1
  doi: 10.1111/1365-2435.13701
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365-2486.2009.01950.x
– ident: e_1_2_9_66_1
  doi: 10.1111/gcb.12611
– ident: e_1_2_9_26_1
– ident: e_1_2_9_28_1
  doi: 10.1007/s11104-009-0009-y
– ident: e_1_2_9_62_1
  doi: 10.1111/j.1466-8238.2008.00425.x
– ident: e_1_2_9_67_1
  doi: 10.1016/j.envpol.2019.113739
SSID ssj0000148
Score 2.6500995
Snippet Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized...
Phosphorus (P) limitation is expected to increase due to nitrogen (N)‐induced terrestrial eutrophication, although most soils contain large P pools immobilized...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Anthropogenic factors
Aridity
Biogeochemical cycles
Buffers
climosequence
dry environmental conditions
Ecosystem
ecosystems
Eutrophication
Fractions
Grassland
Grasslands
Iron
Leaching
Minerals
mineral‐bound phosphorus
Nitrogen
Nitrogen - analysis
nitrogen content
nitrogen deposition
Nitrogen enrichment
Organic matter
pH effects
Phosphorus
phosphorus limitation
phosphorus mobilization
precipitation gradient
Soil
Soil chemistry
Soil pH
Soils
Title Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands
URI https://www.jstor.org/stable/27121091
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecy.3616
https://www.ncbi.nlm.nih.gov/pubmed/34923633
https://www.proquest.com/docview/2634391522
https://www.proquest.com/docview/2612037669
https://www.proquest.com/docview/2661033522
Volume 103
WOSCitedRecordID wos000751823700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1939-9170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000148
  issn: 0012-9658
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xDiRe-F8ojMlICJ7CGjt1nEc0WvEwVQgxVJ4i23FYpDaZkhapPPER-Ix8Eu6cNNukgZB4iBwpZ8t_7nxn5-53AC-1i5zUkQtsSFc3uXGBFpkMBI_VBPWhyzyA6eeTeD5Xi0XyofOqpFiYFh-iv3AjyfD7NQm4Ns3RBWios9s3QoZyD_Y5su1kAPvvPs5OTy6BR0XdPswDgjjZQc-O-dGu7hVl1PojXmdpXjVcveaZ3f2fPt-DO529yd62DHIfbrjyAdxqM1Bu8W1qu7fh9CLkDSt0Mt88hNW8WNcV8hlDVivsGREws6G8Kg07P6safOpNw5YUKuXXmZktW1XkdfsdFSNbFR7Z-tePn4ZyOLGmKpaXKxYl-1qjDe-jjh_B6Wz66fh90CVpCGyEZ-vA2AiPbBk3POZOKJdIJaS2LplYtCx1aLizudIqi4zOk8xpl-sIi3CcKKnHQgxhUFalewIMrU-lkXGkCl1kjdNcx1bLMDe5IjfYEbzerVZquxFRIo1l2mIv8xTnN6X5HcGLnvK8Re24hmboF7wn4DGBqSXhCA52HJB2At2kXAqKUUZrFdvuP6Mo0v8VXbpqQzQhH-OGLZO_0aC9SnFu2M7jlrv6DhBQpJACx_nKM9Efu55Oj79Q-fRfCZ_BbU5hG9537gAG63rjnsNN-21dNPUh7MULddiJz29RPSBE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKC4IL74WFAkZCcEq7sV3HESdUdlXEskKoReUU2Y5DI-0mVbKLtJz4CfxGfgkzzqOtVBASh8iRMrb8-MYeO55vCHmhnXBSCxfYEI9uMuMCzVMZcBapPVgPXeoJTD9Po9lMHR_HHzfI684XpuGH6A_cUDP8fI0KjgfSu2esoc6ud7gM5RWyJQBFAO-tt58mR9Nz7FGinYhZgBwnHffsiO12eS-sRs2FxMtMzYuWq196Jrf-q9K3yc3W4qRvGojcIRuuuEuuNTEo1_A2tu3bYHzm9AYZWq2v75HFLF9WJSCNAthye4IC1KwwskpNT0_KGp5qVdM5Okv5kaZmTRcl3rv9DksjXeSe2_rXj58GozjRuszn5zPmBf1agRXv_Y7vk6PJ-HD_IGjDNARWwO46MFbApi1lhkXMceViqbjU1sV7FmxLHRrmbKa0SoXRWZw67TItIAlHsZJ6xPmAbBZl4R4SCvan0gAdqUInrHGa6chqGWYmU3gRdkhedcOV2LZFGEpjnjTsyyyB_k2wf4fkeS952vB2XCIz8CPeC7AI6dTicEi2OwgkrUrXCZMcvZTBXoWy-8-gjPiHRReuXKFMyEYwZcv4bzJgsaKnG5TzoIFXXwGkiuSSQztfehT9serJeP8Lpo_-VfAZuX5w-GGaTN_N3j8mNxg6cfibdNtkc1mt3BNy1X5b5nX1tNWi37AuI0w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGB4gXvrsVBhgJwVNYY2eOI57Q1gpEVU2IofEU2c6FRWqTKmmRyhN_An8jfwl3-eg2aSAkHiJHytnyx53v7Nz9jrEXBgJQJgDP-XR1k1rwjEyUJ0WoD1AfQlIDmH6ehNOpPj2NjrfYmy4WpsGH2Fy4kWTU-zUJOCySdP8cNRTc-rVUvrrGtgPKIdNj20cfxyeTC-hRQbsRC48wTjrs2aHY7-pe0kaNQ-JVpuZly7VWPeM7_9Xpu-x2a3Hytw2L3GNbkN9nN5oclGt8G7n2rT86D3rDCq3UVw_YfJotywI5jSOzZe6MCLhdUWaVii_OigqfclXxGQVL1SvN7ZrPC_K7_Y6qkc-zGtv614-flrI48arIZhcrZjn_WqIVX8cdP2Qn49Gnw3dem6bBcwGerj3rAjy0JcKKUIDUECktlXEQHTi0LY1vBbhUG50E1qRRAgZSE2DhDyOtzFDKPuvlRQ67jKP9qQ2yjtI-BM6CESZ0RvmpTTU5wg7Yq265YteOiFJpzOIGfVnEOL8xze-APd9QLhrcjito-vWKbwhESHBqkT9gex0LxK1IV7FQkqKU0V7FtjefURjpD4vJoVgRjS-GuGWr6G80aLFSpBu2s9Ow16YDBBUplcRxvqy56I9dj0eHX6h89K-Ez9jN46NxPHk__fCY3RIUw1E70u2x3rJcwRN23X1bZlX5tBWi3wnWIsc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+enrichment+buffers+phosphorus+limitation+by+mobilizing+mineral%E2%80%90bound+soil+phosphorus+in+grasslands&rft.jtitle=Ecology+%28Durham%29&rft.au=Wang%2C+Pi&rft.au=Yang%2C+Junjie&rft.au=Liu%2C+Heyong&rft.au=Sardans%2C+Jordi&rft.date=2022-03-01&rft.issn=0012-9658&rft.volume=103&rft.issue=3+p.e3616-&rft_id=info:doi/10.1002%2Fecy.3616&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-9658&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-9658&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-9658&client=summon