Optimal velocity prediction for fuel economy improvement of connected vehicles
With the advancement of vehicle-to-vehicle and vehicle-to-infrastructure technologies, more and more real-time information regarding traffic and transportation system will be available to vehicles. This paper presents the development of a novel algorithm that uses available velocity bounds and power...
Uloženo v:
| Vydáno v: | IET intelligent transport systems Ročník 12; číslo 10; s. 1329 - 1335 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
The Institution of Engineering and Technology
01.12.2018
Institution of Engineering and Technology (IET) |
| Témata: | |
| ISSN: | 1751-956X, 1751-9578 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With the advancement of vehicle-to-vehicle and vehicle-to-infrastructure technologies, more and more real-time information regarding traffic and transportation system will be available to vehicles. This paper presents the development of a novel algorithm that uses available velocity bounds and powertrain information to generate an optimal velocity trajectory over a prediction horizon. When utilised by a vehicle, this optimal velocity trajectory reduces fuel consumption. The objective of this optimisation problem is to reduce dynamic losses, required tractive force, and completing trip distance with a given travel time. Sequential quadratic programming method is employed for this nonlinearly constrained optimisation problem. When applied to a GM Volt-2, the generated velocity trajectory saves fuel compared to a real-world drive cycle. The simulation results confirm the fuel consumption reduction with the rule-based mode selection and the energy management strategy of a GM Volt 2 model in Autonomie. |
|---|---|
| Bibliografie: | AR0000788 USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
| ISSN: | 1751-956X 1751-9578 |
| DOI: | 10.1049/iet-its.2018.5110 |