Precipitation versus temperature as phenology controls in drylands

Cycles of plant growth, termed phenology, are tightly linked to environmental controls. The length of time spent growing, bounded by the start and end of season, is an important determinant of the global carbon, water, and energy balance. Much focus has been given to global warming and consequences...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecology (Durham) Ročník 103; číslo 11; s. 1 - 13
Hlavní autori: Currier, Courtney M., Sala, Osvaldo E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley and Sons, Inc 01.11.2022
John Wiley & Sons, Inc
Ecological Society of America
Predmet:
ISSN:0012-9658, 1939-9170, 1939-9170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Cycles of plant growth, termed phenology, are tightly linked to environmental controls. The length of time spent growing, bounded by the start and end of season, is an important determinant of the global carbon, water, and energy balance. Much focus has been given to global warming and consequences for shifts in growing-season length in temperate regions. In conjunction with warming temperatures, altered precipitation regimes are another facet of climate change that have potentially larger consequences than temperature in dryland phenology globally. We experimentally manipulated incoming precipitation in a semiarid grassland for over a decade and recorded plant phenology at the daily scale for 7 years. We found precipitation to have a strong relationship with the timing of grass greenup and senescence but temperature had only a modest effect size on grass greenup. Pre-season drought strongly resulted in delayed grass greenup dates and shorter growing-season lengths. Spring and summer drought corresponded with earlier grass senescence, whereas higher precipitation accumulation over these seasons corresponded with delayed grass senescence. However, extremely wet conditions diluted this effect and caused a plateaued response. Deep-rooted woody shrubs showed few effects of variable precipitation or temperature on phenology and displayed consistent annual phenological timing compared with grasses. Whereas rising temperatures have already elicited phenological consequences and extended growing-season length for mid and high-latitude ecosystems, precipitation change will be the major driver of phenological change in drylands that cover 40% of the land surface with consequences for the global carbon, water, and energy balance.
Bibliografia:Funding information
National Science Foundation, Grant/Award Number: DEB 1754106; National Science Foundation for the Jornada Basin Long‐Term Ecological Research Program, Grant/Award Number: DEB 2025166
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0012-9658
1939-9170
1939-9170
DOI:10.1002/ecy.3793