A meta‐analysis of perfusion parameters affecting weight gain in ex vivo perfusion

Background Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. Methods A meta‐analysis of literatur...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Artificial organs Ročník 49; číslo 1; s. 7 - 20
Hlavní autori: Marlar, Riley, Abbas, Fuad, Obeid, Rommy, Frisbie, Sean, Ghazoul, Adam, Rezaee, Ava, Sims, Jack, Rampazzo, Antonio, Bassiri Gharb, Bahar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.01.2025
John Wiley and Sons Inc
Predmet:
ISSN:0160-564X, 1525-1594, 1525-1594
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. Methods A meta‐analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta‐Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms “ex‐vivo,” “ex‐situ,” “machine,” and “perfusion.” Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. Results Overall, 44 articles were included. Red blood cell‐based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin‐based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). Conclusions Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes. Oxygen carriers, lower flow rates, and normothermic perfusate temperature appear to improve outcomes in ex vivo machine perfusion.
AbstractList Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes.BACKGROUNDEx vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes.A meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software.METHODSA meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software.Overall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001).RESULTSOverall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001).Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.CONCLUSIONSOxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.
Background Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. Methods A meta‐analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta‐Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms “ex‐vivo,” “ex‐situ,” “machine,” and “perfusion.” Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. Results Overall, 44 articles were included. Red blood cell‐based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin‐based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). Conclusions Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes. Oxygen carriers, lower flow rates, and normothermic perfusate temperature appear to improve outcomes in ex vivo machine perfusion.
Background Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. Methods A meta‐analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta‐Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms “ex‐vivo,” “ex‐situ,” “machine,” and “perfusion.” Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. Results Overall, 44 articles were included. Red blood cell‐based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin‐based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). Conclusions Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.
Oxygen carriers, lower flow rates, and normothermic perfusate temperature appear to improve outcomes in ex vivo machine perfusion.
Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. A meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. Overall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.
Author Abbas, Fuad
Marlar, Riley
Frisbie, Sean
Sims, Jack
Rampazzo, Antonio
Ghazoul, Adam
Bassiri Gharb, Bahar
Rezaee, Ava
Obeid, Rommy
AuthorAffiliation 1 Department of Plastic Surgery Cleveland Clinic Cleveland Ohio USA
AuthorAffiliation_xml – name: 1 Department of Plastic Surgery Cleveland Clinic Cleveland Ohio USA
Author_xml – sequence: 1
  givenname: Riley
  orcidid: 0009-0006-4269-214X
  surname: Marlar
  fullname: Marlar, Riley
  organization: Cleveland Clinic
– sequence: 2
  givenname: Fuad
  surname: Abbas
  fullname: Abbas, Fuad
  organization: Cleveland Clinic
– sequence: 3
  givenname: Rommy
  surname: Obeid
  fullname: Obeid, Rommy
  organization: Cleveland Clinic
– sequence: 4
  givenname: Sean
  surname: Frisbie
  fullname: Frisbie, Sean
  organization: Cleveland Clinic
– sequence: 5
  givenname: Adam
  surname: Ghazoul
  fullname: Ghazoul, Adam
  organization: Cleveland Clinic
– sequence: 6
  givenname: Ava
  surname: Rezaee
  fullname: Rezaee, Ava
  organization: Cleveland Clinic
– sequence: 7
  givenname: Jack
  surname: Sims
  fullname: Sims, Jack
  organization: Cleveland Clinic
– sequence: 8
  givenname: Antonio
  surname: Rampazzo
  fullname: Rampazzo, Antonio
  organization: Cleveland Clinic
– sequence: 9
  givenname: Bahar
  surname: Bassiri Gharb
  fullname: Bassiri Gharb, Bahar
  email: bassirb@ccf.org
  organization: Cleveland Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39157933$$D View this record in MEDLINE/PubMed
BookMark eNp10d1qFDEUAOAgFbutXvgCMuCNXkx7ziaZyVzJUuoPFApiwbuQnTnZpswmazKzde_6CD6Cz-Kj-CRm3f6oYAiEQ75zOJxzwPZ88MTYc4QjzOfYhHiEQgl8xCYop7JE2Yg9NgGsoJSV-LzPDlK6AoBaQPWE7fMGZd1wPmEXs2JJg_l5881402-SS0WwxYqiHZMLvliZaDKgmApjLbWD84vimtzicigWxvkiX_r64_varcND2lP22Jo-0bPb95BdvD39dPK-PDt_9-Fkdla2AgSWzVwZ1SFYUKJrlUKJnbCylYpa7HJE07kVZDtureKC6qbCuTRWWA7AoeaH7M2u7mqcL6lryQ_R9HoV3dLEjQ7G6b9_vLvUi7DWiJWqp6ByhVe3FWL4MlIa9NKllvreeApj0hwaIeppjVv68h96FcaYp5YVSuDYgNqqF3-2dN_L3cgzeL0DbQwpRbL3BEFv16nzOvXvdWZ7vLPXrqfN_6GenX_cZfwC07SjHQ
Cites_doi 10.1111/tri.12468
10.3390/cells10040748
10.1111/aor.14442
10.1097/MOT.0000000000000961
10.1016/j.freeradbiomed.2003.11.030
10.1038/aps.2017.182
10.1097/TP.0000000000001661
10.1097/TP.0000000000001500
10.1111/aor.13678
10.1159/000499610
10.1177/1535370219834498
10.1038/nbt0798‐672
10.1097/00000658-197602000-00016
10.1097/MAT.0000000000001597
10.1097/TP.0000000000004045
10.1016/j.transproceed.2020.05.007
10.1016/S0003‐4975(03)00191‐7
10.1016/j.transproceed.2019.03.042
10.3724/zdxbyxb‐2022‐0402
10.1097/TA.0000000000003688
10.1016/j.healun.2016.01.494
10.1111/j.1525‐1594.2009.00743.x
10.1002/bjs.11921
10.1016/j.cjtee.2023.05.005
10.1111/tri.12319
10.1172/jci.insight.128833
10.1159/000445432
10.1016/j.transproceed.2010.02.073
10.3390/ijms242316693
10.1016/0022‐4804(85)90039‐3
10.1016/j.healun.2014.09.021
10.12659/AOT.893784
10.1016/j.jss.2020.11.069
10.1111/ajt.13843
10.1097/TP.0000000000004380
10.1097/TP.0000000000000756
10.1097/GOX.0000000000004123
10.12659/AOT.890797
10.3390/ijms21218156
10.1038/nm.2507
10.1186/s13019‐020‐01223‐x
10.3109/00365598009179578
10.3389/frtra.2023.1323387
10.1186/s13054‐014‐0644‐4
10.1111/ctr.12680
10.1016/j.jss.2016.08.068
10.1016/j.athoracsur.2008.09.049
10.5500/wjt.v10.i1.15
10.1016/j.jhsa.2015.11.003
10.3390/ijms232012656
10.1038/s41587‐019‐0374‐x
10.1111/aor.14085
10.1093/milmed/usz314
10.1016/j.ejcts.2008.03.043
10.1371/journal.pone.0266207
10.1016/j.ajpath.2020.10.001
10.1016/j.jtcvs.2017.02.072
10.1152/ajpgi.1983.245.6.G769
10.1152/ajprenal.1981.241.2.F139
10.21037/jtd‐2021‐23
10.1055/a‐1886‐5697
10.1093/milmed/usaa160
10.1016/S0022-5223(19)35161-X
10.1111/aor.14351
10.1016/j.jss.2021.09.005
10.1111/aor.12867
10.1002/lt.24972
10.1002/micr.30252
10.1111/aor.14066
10.1034/j.1399‐3089.2002.0o140.x
10.1097/TP.0000000000003221
10.1016/j.cryobiol.2015.07.006
10.1021/acs.cgd.1c00730
10.1186/2047‐1440‐1‐18
10.1097/TA.0000000000003395
10.1152/ajplung.00053.2020
10.1016/j.jss.2022.11.003
ContentType Journal Article
Copyright 2024 The Author(s). published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.
2024 The Author(s). Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.
2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.
– notice: 2024 The Author(s). Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.
– notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1111/aor.14841
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Determinants of Success in Ex Vivo Perfusion
EISSN 1525-1594
EndPage 20
ExternalDocumentID PMC11687208
39157933
10_1111_aor_14841
AOR14841
Genre reviewArticle
Meta-Analysis
Systematic Review
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23N
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HKTDT
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4041-9b8a8d10f084dc88151d4f5c58ec1d151e2bf4efd3ff834e7961b5af4f3003073
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293232500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0160-564X
1525-1594
IngestDate Tue Nov 04 02:04:42 EST 2025
Fri Sep 05 11:48:10 EDT 2025
Sat Nov 29 14:54:22 EST 2025
Sun Jul 13 01:33:43 EDT 2025
Sat Nov 29 07:35:07 EST 2025
Wed Jan 22 17:11:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords preservation
ex‐situ perfusion
ex‐vivo perfusion
machine perfusion
perfusion
ex vivo organ perfusion
weight gain
ex vivo
ex vivo machine perfusion
Language English
License Attribution
2024 The Author(s). Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4041-9b8a8d10f084dc88151d4f5c58ec1d151e2bf4efd3ff834e7961b5af4f3003073
Notes ObjectType-Article-1
ObjectType-Evidence Based Healthcare-3
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-4
content type line 23
ObjectType-Undefined-3
ORCID 0009-0006-4269-214X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faor.14841
PMID 39157933
PQID 3150319088
PQPubID 1026359
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11687208
proquest_miscellaneous_3094472718
proquest_journals_3150319088
pubmed_primary_39157933
crossref_primary_10_1111_aor_14841
wiley_primary_10_1111_aor_14841_AOR14841
PublicationCentury 2000
PublicationDate January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Geesthacht
– name: Hoboken
PublicationTitle Artificial organs
PublicationTitleAlternate Artif Organs
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 34
2023; 30
2017; 41
2019; 51
2009; 87
2021; 23
2023; 39
2015; 71
2004; 9
2022; 23
2022; 68
2008; 34
2016; 30
2020; 15
2023; 2
2023; 107
2020; 10
2017; 154
2011; 17
2022; 27
2019; 244
2016; 35
1998; 16
2017; 208
2018; 39
2023; 24
2020; 52
2004; 36
2016; 41
2014; 19
2020; 44
2014; 18
2018; 38
2021; 191
2010; 8
2023; 51
2019; 4
2022; 270
1976; 183
2022; 92
2002; 9
2023; 18
2020; 185
2022; 93
2023; 283
1981; 241
2021; 108
2015; 99
2020; 104
2020; 38
2022; 46
2021; 260
1988; 96
2016; 16
2016; 57
2003; 76
2018; 24
2009; 33
2021; 13
2010; 42
1980; 14
2015; 28
2021; 10
1983; 245
2023; 47
2012; 1
2015; 20
2019; 46
2022; 10
2020; 21
2017; 101
2022; 106
1985; 38
2020; 319
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
Karcz M (e_1_2_10_32_1) 2010; 8
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Wilson CH (e_1_2_10_61_1) 2004; 9
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 87
  start-page: 255
  issue: 1
  year: 2009
  end-page: 260
  article-title: Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo
  publication-title: Ann Thorac Surg
– volume: 51
  start-page: 697
  issue: 6
  year: 2023
  end-page: 706
  article-title: Application of a novel artificial perfusate based on oxygen‐carrying nanoparticles in normothermic machine perfusion for porcine liver preservation after cardiac death
  publication-title: J Zhejiang Univ (Med Sci)
– volume: 30
  start-page: 114
  year: 2023
  end-page: 120
  article-title: Study on the preservation effects of the amputated forelimb by machine perfusion at physiological temperature
  publication-title: Chin J Traumatol
– volume: 20
  start-page: 461
  year: 2015
  end-page: 468
  article-title: Twelve‐hour hypothermic machine perfusion for donor heart preservation leads to improved ultrastructural characteristics compared to conventional cold storage
  publication-title: Ann Transplant
– volume: 42
  start-page: 1591
  issue: 5
  year: 2010
  end-page: 1594
  article-title: Importance of organ preservation solution composition in reducing myocardial edema during machine perfusion for heart transplantation
  publication-title: Transplant Proc
– volume: 8
  start-page: 55
  issue: 1
  year: 2010
  end-page: 60
  article-title: An ex‐vivo model for hypothermic pulsatile perfusion of porcine pancreata: hemodynamic and morphologic characteristics
  publication-title: Exp Clin Transplant
– volume: 270
  start-page: 151
  year: 2022
  end-page: 161
  article-title: Optimization of ex vivo machine perfusion and transplantation of vascularized composite allografts
  publication-title: J Surg Res
– volume: 24
  start-page: 233
  issue: 2
  year: 2018
  end-page: 245
  article-title: Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion
  publication-title: Liver Transpl
– volume: 191
  start-page: 52
  issue: 1
  year: 2021
  end-page: 65
  article-title: Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine
  publication-title: Am J Pathol
– volume: 33
  start-page: 565
  issue: 7
  year: 2009
  end-page: 570
  article-title: An in vivo autotransplant model of renal preservation: cold storage versus machine perfusion in the prevention of ischemia/reperfusion injury
  publication-title: Artif Organs
– volume: 68
  start-page: 461
  issue: 4
  year: 2022
  end-page: 470
  article-title: The use of hemoglobin‐based oxygen carriers in ex vivo machine perfusion of donor organs for transplantation
  publication-title: ASAIO J
– volume: 154
  start-page: 1811
  issue: 5
  year: 2017
  end-page: 1820
  article-title: Lungs donated after circulatory death and prolonged warm ischemia are transplanted successfully after enhanced ex vivo lung perfusion using adenosine A2B receptor antagonism
  publication-title: J Thorac Cardiovasc Surg
– volume: 47
  start-page: 290
  issue: 2
  year: 2023
  end-page: 301
  article-title: Weight gain is an early indicator of injury in ex vivo normothermic limb perfusion (EVNLP)
  publication-title: Artif Organs
– volume: 1
  issue: 1
  year: 2012
  article-title: The influence of perfusion solution on renal graft viability assessment
  publication-title: Transp Res
– volume: 24
  issue: 23
  year: 2023
  article-title: Donor heart preservation: current knowledge and the new era of machine perfusion
  publication-title: Int J Mol Sci
– volume: 71
  start-page: 244
  issue: 2
  year: 2015
  end-page: 255
  article-title: Machine perfusion enhances hepatocyte isolation yields from ischemic livers
  publication-title: Cryobiology
– volume: 108
  start-page: 574
  issue: 5
  year: 2021
  end-page: 582
  article-title: Randomized preclinical study of machine perfusion in vascularized composite allografts
  publication-title: Br J Surg
– volume: 10
  start-page: 15
  issue: 1
  year: 2020
  end-page: 28
  article-title: Machine perfusion in abdominal organ transplantation: current use in The Netherlands
  publication-title: World J Transplant
– volume: 44
  start-page: 846
  issue: 8
  year: 2020
  end-page: 855
  article-title: Extended ex vivo normothermic perfusion for preservation of vascularized composite allografts
  publication-title: Artif Organs
– volume: 21
  start-page: 8156
  issue: 21
  year: 2020
  article-title: In vitro/ex vivo models for the study of ischemia reperfusion injury during kidney perfusion
  publication-title: Int J Mol Sci
– volume: 208
  start-page: 219
  year: 2017
  end-page: 229
  article-title: An ex vivo comparison of adenosine and lidocaine solution and University of Wisconsin solution for hypothermic machine perfusion of porcine kidneys: potential for development
  publication-title: J Surg Res
– volume: 57
  start-page: 89
  issue: 1–2
  year: 2016
  end-page: 99
  article-title: Capsulotomy of Ischemically damaged donor kidneys: a pig study
  publication-title: Eur Surg Res
– volume: 38
  start-page: 189
  issue: 2
  year: 2020
  end-page: 198
  article-title: An integrated perfusion machine preserves injured human livers for 1 week
  publication-title: Nat Biotechnol
– volume: 93
  start-page: S102
  issue: 2S
  year: 2022
  end-page: S109
  article-title: Proof of concept study for a closed ex vivo limb perfusion system for 24‐hour subnormothermic preservation using acellular perfusate
  publication-title: J Trauma Acute Care Surg
– volume: 46
  start-page: 281
  issue: 2
  year: 2022
  end-page: 295
  article-title: Clinical assessment of liver metabolism during hypothermic oxygenated machine perfusion using microdialysis
  publication-title: Artif Organs
– volume: 96
  start-page: 930
  issue: 6
  year: 1988
  end-page: 938
  article-title: Oxygenated perfluorocarbon, recombinant human superoxide dismutase, and catalase ameliorate free radical induced myocardial injury during heart preservation and transplantation
  publication-title: J Thorac Cardiovasc Surg
– volume: 13
  start-page: 6602
  issue: 11
  year: 2021
  end-page: 6617
  article-title: Ex vivo lung perfusion
  publication-title: J Thorac Dis
– volume: 41
  start-page: E240
  issue: 11
  year: 2017
  end-page: E250
  article-title: Development and evaluation of heartbeat: a machine perfusion heart preservation system
  publication-title: Artif Organs
– volume: 17
  start-page: 1391
  issue: 11
  year: 2011
  end-page: 1401
  article-title: Ischemia and reperfusion—from mechanism to translation
  publication-title: Nat Med
– volume: 35
  start-page: S178
  issue: 4
  year: 2016
  article-title: Polymerized human serum albumin as an osmotic molecule to support ex‐vivo lung perfusion
  publication-title: J Heart Lung Transplant
– volume: 19
  start-page: 409
  year: 2014
  end-page: 416
  article-title: Preservation of donor hearts using hypothermic oxygenated perfusion
  publication-title: Ann Transplant
– volume: 18
  issue: 1
  year: 2023
  article-title: Development of a rat forelimb vascularized composite allograft (VCA) perfusion protocol
  publication-title: PLoS One
– volume: 183
  start-page: 179
  issue: 2
  year: 1976
  end-page: 184
  article-title: Aspiration pneumonia: experimental evaluation of albumin and steroid therapy
  publication-title: Ann Surg
– volume: 28
  start-page: 224
  issue: 2
  year: 2015
  end-page: 231
  article-title: Hypothermic continuous machine perfusion improves metabolic preservation and functional recovery in heart grafts
  publication-title: Transpl Int
– volume: 104
  start-page: e260
  issue: 9
  year: 2020
  end-page: e270
  article-title: Hypothermic ex situ perfusion of human limbs with acellular solution for 24 hours
  publication-title: Transplantation
– volume: 18
  start-page: 644
  issue: 6
  year: 2014
  article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study
  publication-title: Crit Care
– volume: 2
  year: 2023
  article-title: Review of machine perfusion studies in vascularized composite allotransplant preservation
  publication-title: Front Transplant
– volume: 39
  start-page: 350
  issue: 5
  year: 2023
  end-page: 360
  article-title: Exceeding the limits of static cold storage in limb transplantation using subnormothermic machine perfusion
  publication-title: J Reconstr Microsurg
– volume: 101
  start-page: 1084
  issue: 5
  year: 2017
  end-page: 1098
  article-title: Normothermic perfusion in the assessment and preservation of declined livers before transplantation: hyperoxia and vasoplegia‐important lessons from the first 12 cases
  publication-title: Transplantation
– volume: 4
  issue: 11
  year: 2019
  article-title: The ex vivo human lung: research value for translational science
  publication-title: JCI Insight
– volume: 260
  start-page: 190
  year: 2021
  end-page: 199
  article-title: Significance of lung weight in cellular ex vivo lung perfusion
  publication-title: J Surg Res
– volume: 39
  start-page: 845
  issue: 5
  year: 2018
  end-page: 857
  article-title: Organ preservation: from the past to the future
  publication-title: Acta Pharmacol Sin
– volume: 38
  start-page: 185
  issue: 2
  year: 2018
  end-page: 194
  article-title: Developing a protocol for normothermic ex‐situ limb perfusion
  publication-title: Microsurgery
– volume: 101
  start-page: e68
  issue: 3
  year: 2017
  end-page: e74
  article-title: Ex situ perfusion of human limb allografts for 24 hours
  publication-title: Transplantation
– volume: 30
  start-page: 183
  issue: 3
  year: 2016
  end-page: 194
  article-title: Ex vivo lung perfusion
  publication-title: Clin Transpl
– volume: 51
  start-page: 2022
  issue: 6
  year: 2019
  end-page: 2028
  article-title: Continuous hemodialysis does not improve graft function during ex vivo lung perfusion over 24 hours
  publication-title: Transplant Proc
– volume: 76
  start-page: 244
  issue: 1
  year: 2003
  end-page: 252
  article-title: Transplantation of lungs from non–heart‐beating donors after functional assessment ex vivo
  publication-title: Ann Thorac Surg
– volume: 92
  start-page: 388
  issue: 2
  year: 2022
  end-page: 397
  article-title: Ex vivo normothermic preservation of amputated limbs with a hemoglobin‐based oxygen carrier perfusate
  publication-title: J Trauma Acute Care Surg
– volume: 16
  start-page: 672
  issue: 7
  year: 1998
  end-page: 676
  article-title: Rate of reaction with nitric oxide determines the hypertensive effect of cell‐free hemoglobin
  publication-title: Nat Biotechnol
– volume: 99
  start-page: 2095
  issue: 10
  year: 2015
  end-page: 2101
  article-title: Ex situ limb perfusion system to extend vascularized composite tissue allograft survival in swine
  publication-title: Transplantation
– volume: 15
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Temperature and flow rate limit the optimal ex‐vivo perfusion of the heart—an experimental study
  publication-title: J Cardiothorac Surg
– volume: 107
  start-page: 628
  issue: 3
  year: 2023
  end-page: 638
  article-title: Real‐time lung weight measurement during cellular ex vivo lung perfusion: an early predictor of transplant suitability
  publication-title: Transplantation
– volume: 185
  start-page: e2004
  issue: 11–12
  year: 2020
  end-page: e2012
  article-title: Comparison of acellular solutions for ex‐situ perfusion of amputated limbs
  publication-title: Mil Med
– volume: 241
  start-page: F139
  issue: 2
  year: 1981
  end-page: F150
  article-title: Effect of erythrocytes and globulin on renal functions of the isolated rat kidney
  publication-title: Am J Phys
– volume: 245
  start-page: G769
  issue: 6
  year: 1983
  end-page: G774
  article-title: Effects of hematocrit on oxygenation of the isolated perfused rat liver
  publication-title: Am J Phys
– volume: 23
  start-page: 5451
  year: 2021
  end-page: 5459
  article-title: Human versus bovine serum albumin: a subtle difference in hydrophobicity leads to Large differences in bulk and Interface behavior
  publication-title: Cryst Growth Des
– volume: 244
  start-page: 630
  issue: 8
  year: 2019
  end-page: 645
  article-title: Bioengineering approaches to organ preservation ex vivo
  publication-title: Exp Biol Med
– volume: 28
  start-page: 657
  issue: 6
  year: 2015
  end-page: 664
  article-title: Normothermic machine perfusion of the kidney: better conditioning and repair?
  publication-title: Transpl Int
– volume: 14
  start-page: 288
  issue: 3
  year: 1980
  end-page: 291
  article-title: The significance of pH variations in human albumin perfusion media during continuous hypothermic renal perfusion
  publication-title: Scand J Urol Nephrol
– volume: 10
  issue: 2
  year: 2022
  article-title: 24‐hour perfusion of porcine myocutaneous flaps mitigates reperfusion injury: a 7‐day follow‐up study
  publication-title: Plast Reconstr Surg Glob Open
– volume: 10
  start-page: 748
  issue: 4
  year: 2021
  article-title: Subnormothermic ex vivo lung perfusion temperature improves graft preservation in lung transplantation
  publication-title: Cells
– volume: 16
  start-page: 2932
  issue: 10
  year: 2016
  end-page: 2942
  article-title: Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines
  publication-title: Am J Transplant
– volume: 46
  start-page: 2493
  issue: 12
  year: 2022
  end-page: 2499
  article-title: A new ex‐situ machine perfusion device. A preliminary evaluation using a model of donors after circulatory death pig livers
  publication-title: Artif Organs
– volume: 34
  start-page: 318
  issue: 2
  year: 2008
  end-page: 325
  article-title: Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool
  publication-title: Eur J Cardiothorac Surg
– volume: 34
  start-page: 113
  issue: 1
  year: 2015
  end-page: 121
  article-title: A whole blood‐based perfusate provides superior preservation of myocardial function during ex vivo heart perfusion
  publication-title: J Heart Lung Transplant
– volume: 27
  start-page: 204
  issue: 3
  year: 2022
  end-page: 210
  article-title: Ex‐vivo lung perfusion therapies: do they add value to organ donation?
  publication-title: Curr Opin Organ Transplant
– volume: 52
  start-page: 2941
  issue: 10
  year: 2020
  end-page: 2946
  article-title: A low‐cost perfusate alternative for ex vivo lung perfusion
  publication-title: Transplant Proc
– volume: 9
  start-page: 36
  issue: 1
  year: 2002
  end-page: 44
  article-title: HDAF transgenic pig livers are protected from hyperacute rejection during ex vivo perfusion with human blood
  publication-title: Xenotransplantation
– volume: 283
  start-page: 1145
  year: 2023
  end-page: 1153
  article-title: Continuous versus pulsatile flow in 24‐hour vascularized composite allograft machine perfusion in swine: a pilot study
  publication-title: J Surg Res
– volume: 46
  start-page: 151
  issue: 3
  year: 2019
  end-page: 172
  article-title: Organ preservation into the 2020s: the era of dynamic intervention
  publication-title: Transfus Med Hemother
– volume: 46
  start-page: 246
  issue: 2
  year: 2022
  end-page: 258
  article-title: Oxygenated machine perfusion at room temperature as an alternative for static cold storage in porcine donor hearts
  publication-title: Artif Organs
– volume: 36
  start-page: 685
  issue: 6
  year: 2004
  end-page: 697
  article-title: No scavenging and the hypertensive effect of hemoglobin‐based blood substitutes
  publication-title: Free Radic Biol Med
– volume: 319
  start-page: L218
  issue: 2
  year: 2020
  end-page: L227
  article-title: The ex vivo perfused human lung is resistant to injury by high‐dose bacteremia
  publication-title: Am J Physiol‐Lung Cell Mol Physiol
– volume: 41
  start-page: 3
  issue: 1
  year: 2016
  end-page: 12
  article-title: The effect of ex situ perfusion in a swine limb vascularized composite tissue allograft on survival up to 24 hours
  publication-title: J Hand Surg
– volume: 38
  start-page: 281
  issue: 3
  year: 1985
  end-page: 288
  article-title: Functional preservation of the mammalian kidney. VI. Viability assessment of rabbit kidneys perfused at 25 degrees C with dimethyl sulfoxide in RPS‐2
  publication-title: J Surg Res
– volume: 9
  start-page: 31
  issue: 2
  year: 2004
  end-page: 32
  article-title: Weight increase during machine perfusion may be an indicator of organ and in particular, vascular damage
  publication-title: Ann Transplant
– volume: 185
  start-page: 110
  issue: Suppl 1
  year: 2020
  end-page: 120
  article-title: Ex‐vivo Normothermic limb perfusion with a hemoglobin‐based oxygen carrier perfusate
  publication-title: Mil Med
– volume: 23
  issue: 20
  year: 2022
  article-title: Inflammation in pulmonary hypertension and edema induced by hypobaric hypoxia exposure
  publication-title: Int J Mol Sci
– volume: 106
  start-page: 1638
  issue: 8
  year: 2022
  end-page: 1646
  article-title: Ex vivo normothermic perfusion of human upper limbs
  publication-title: Transplantation
– ident: e_1_2_10_47_1
  doi: 10.1111/tri.12468
– ident: e_1_2_10_62_1
  doi: 10.3390/cells10040748
– ident: e_1_2_10_10_1
  doi: 10.1111/aor.14442
– ident: e_1_2_10_67_1
  doi: 10.1097/MOT.0000000000000961
– ident: e_1_2_10_69_1
  doi: 10.1016/j.freeradbiomed.2003.11.030
– ident: e_1_2_10_4_1
  doi: 10.1038/aps.2017.182
– ident: e_1_2_10_55_1
  doi: 10.1097/TP.0000000000001661
– ident: e_1_2_10_51_1
  doi: 10.1097/TP.0000000000001500
– ident: e_1_2_10_26_1
  doi: 10.1111/aor.13678
– ident: e_1_2_10_80_1
  doi: 10.1159/000499610
– ident: e_1_2_10_54_1
  doi: 10.1177/1535370219834498
– ident: e_1_2_10_68_1
  doi: 10.1038/nbt0798‐672
– ident: e_1_2_10_46_1
  doi: 10.1097/00000658-197602000-00016
– ident: e_1_2_10_70_1
  doi: 10.1097/MAT.0000000000001597
– ident: e_1_2_10_42_1
  doi: 10.1097/TP.0000000000004045
– ident: e_1_2_10_7_1
  doi: 10.1016/j.transproceed.2020.05.007
– ident: e_1_2_10_73_1
  doi: 10.1016/S0003‐4975(03)00191‐7
– ident: e_1_2_10_21_1
  doi: 10.1016/j.transproceed.2019.03.042
– ident: e_1_2_10_22_1
  doi: 10.3724/zdxbyxb‐2022‐0402
– ident: e_1_2_10_50_1
  doi: 10.1097/TA.0000000000003688
– ident: e_1_2_10_79_1
  doi: 10.1016/j.healun.2016.01.494
– ident: e_1_2_10_33_1
  doi: 10.1111/j.1525‐1594.2009.00743.x
– ident: e_1_2_10_18_1
  doi: 10.1002/bjs.11921
– ident: e_1_2_10_23_1
  doi: 10.1016/j.cjtee.2023.05.005
– ident: e_1_2_10_64_1
  doi: 10.1111/tri.12319
– ident: e_1_2_10_13_1
  doi: 10.1172/jci.insight.128833
– ident: e_1_2_10_48_1
  doi: 10.1159/000445432
– ident: e_1_2_10_24_1
  doi: 10.1016/j.transproceed.2010.02.073
– ident: e_1_2_10_66_1
  doi: 10.3390/ijms242316693
– ident: e_1_2_10_30_1
  doi: 10.1016/0022‐4804(85)90039‐3
– ident: e_1_2_10_6_1
  doi: 10.1016/j.healun.2014.09.021
– ident: e_1_2_10_36_1
  doi: 10.12659/AOT.893784
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jss.2020.11.069
– ident: e_1_2_10_14_1
  doi: 10.1111/ajt.13843
– ident: e_1_2_10_59_1
  doi: 10.1097/TP.0000000000004380
– ident: e_1_2_10_39_1
  doi: 10.1097/TP.0000000000000756
– ident: e_1_2_10_20_1
  doi: 10.1097/GOX.0000000000004123
– ident: e_1_2_10_37_1
  doi: 10.12659/AOT.890797
– ident: e_1_2_10_74_1
  doi: 10.3390/ijms21218156
– ident: e_1_2_10_2_1
  doi: 10.1038/nm.2507
– ident: e_1_2_10_75_1
  doi: 10.1186/s13019‐020‐01223‐x
– ident: e_1_2_10_38_1
  doi: 10.3109/00365598009179578
– ident: e_1_2_10_65_1
  doi: 10.3389/frtra.2023.1323387
– ident: e_1_2_10_76_1
  doi: 10.1186/s13054‐014‐0644‐4
– ident: e_1_2_10_58_1
  doi: 10.1111/ctr.12680
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jss.2016.08.068
– ident: e_1_2_10_60_1
  doi: 10.1016/j.athoracsur.2008.09.049
– ident: e_1_2_10_63_1
  doi: 10.5500/wjt.v10.i1.15
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jhsa.2015.11.003
– ident: e_1_2_10_71_1
  doi: 10.3390/ijms232012656
– ident: e_1_2_10_25_1
  doi: 10.1038/s41587‐019‐0374‐x
– ident: e_1_2_10_49_1
  doi: 10.1111/aor.14085
– ident: e_1_2_10_17_1
  doi: 10.1093/milmed/usz314
– ident: e_1_2_10_56_1
  doi: 10.1016/j.ejcts.2008.03.043
– ident: e_1_2_10_9_1
  doi: 10.1371/journal.pone.0266207
– ident: e_1_2_10_12_1
  doi: 10.1016/j.ajpath.2020.10.001
– ident: e_1_2_10_77_1
  doi: 10.1016/j.jtcvs.2017.02.072
– ident: e_1_2_10_72_1
  doi: 10.1152/ajpgi.1983.245.6.G769
– volume: 8
  start-page: 55
  issue: 1
  year: 2010
  ident: e_1_2_10_32_1
  article-title: An ex‐vivo model for hypothermic pulsatile perfusion of porcine pancreata: hemodynamic and morphologic characteristics
  publication-title: Exp Clin Transplant
– ident: e_1_2_10_44_1
  doi: 10.1152/ajprenal.1981.241.2.F139
– ident: e_1_2_10_57_1
  doi: 10.21037/jtd‐2021‐23
– ident: e_1_2_10_3_1
  doi: 10.1055/a‐1886‐5697
– ident: e_1_2_10_29_1
  doi: 10.1093/milmed/usaa160
– ident: e_1_2_10_19_1
  doi: 10.1016/S0022-5223(19)35161-X
– ident: e_1_2_10_27_1
  doi: 10.1111/aor.14351
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jss.2021.09.005
– ident: e_1_2_10_34_1
  doi: 10.1111/aor.12867
– ident: e_1_2_10_53_1
  doi: 10.1002/lt.24972
– ident: e_1_2_10_5_1
  doi: 10.1002/micr.30252
– ident: e_1_2_10_41_1
  doi: 10.1111/aor.14066
– ident: e_1_2_10_35_1
  doi: 10.1034/j.1399‐3089.2002.0o140.x
– ident: e_1_2_10_8_1
  doi: 10.1097/TP.0000000000003221
– ident: e_1_2_10_31_1
  doi: 10.1016/j.cryobiol.2015.07.006
– ident: e_1_2_10_78_1
  doi: 10.1021/acs.cgd.1c00730
– ident: e_1_2_10_52_1
  doi: 10.1186/2047‐1440‐1‐18
– ident: e_1_2_10_16_1
  doi: 10.1097/TA.0000000000003395
– ident: e_1_2_10_43_1
  doi: 10.1152/ajplung.00053.2020
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jss.2022.11.003
– volume: 9
  start-page: 31
  issue: 2
  year: 2004
  ident: e_1_2_10_61_1
  article-title: Weight increase during machine perfusion may be an indicator of organ and in particular, vascular damage
  publication-title: Ann Transplant
SSID ssj0007406
Score 2.4068727
SecondaryResourceType review_article
Snippet Background Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize...
Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there...
Background Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize...
Oxygen carriers, lower flow rates, and normothermic perfusate temperature appear to improve outcomes in ex vivo machine perfusion.
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7
SubjectTerms Cold flow
Colloids
Erythrocytes
ex vivo
ex vivo machine perfusion
ex vivo organ perfusion
ex‐situ perfusion
ex‐vivo perfusion
Flow velocity
Hemoglobin
Humans
Ischemia
Low flow
machine perfusion
Meta-analysis
Organ Preservation - methods
Organ Preservation Solutions
Oxygen
Parameters
Perfusion
Perfusion - methods
preservation
Systematic Review
Weight
Weight Gain
Title A meta‐analysis of perfusion parameters affecting weight gain in ex vivo perfusion
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faor.14841
https://www.ncbi.nlm.nih.gov/pubmed/39157933
https://www.proquest.com/docview/3150319088
https://www.proquest.com/docview/3094472718
https://pubmed.ncbi.nlm.nih.gov/PMC11687208
Volume 49
WOSCitedRecordID wos001293232500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1525-1594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007406
  issn: 0160-564X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NitswEB5CUpZetn_bbto0qKWHvRgsW7YU9hTahh7SNIQGcjOyLG1zWDvkb_e4j7CP0Gfpo-yTdCQ7bkIoFArG2GhkC43mR6PRJ4APXFjIAi09HujQY5Iyu0jIvDTWfobq0FDlQFyHfDQSs1lv3IDL3V6YEh-iDrhZyXD62gq4TFd7Qi6LJYq5sJvWW5SG3A7pgI1rNcyZO1jTIqh5UcxmFayQTeOpqx4aoyMP8zhRct-BdRZo8OS_2v4UTivHk_TLkfIMGjp_Didfq6X1FzDtk2u9lg9397LCKSGFIQu9NBsbUCMWI_za5s6siHQ5IGjzyI0LrJIrOc8JXvr218_tfFv8qXYG08Hn7x-_eNWZC55iPqNeLxVSZNQ3vmCZEgIdgoyZSEVCK5rhmw5Sw7TJQmNEyDTvxTSNpGEmLPXFS2jmRa7PgXDKtBSxklwoptIs5X4vMyFH_qfSRFEb3u86P1mU0BrJbkqCHZS4DmpDZ8eWpJKuVRKiF4uqAxVkG97VxSgXdrFD5rrYIA3OWxk6ZxRpXpVcrP9iQfFRL4VtEAf8rQks5vZhST7_4bC3KY0FD3z86IVj8N9bnvS_TdzD638nfQOPA3u-sAvxdKC5Xm70W3iktuv5atl14xvvfCa60Po0GUyHvwF3vALJ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6hBUEvlJ9StuXHIA69RIo3TuyVuKzarkAsC0KstLfIcWzYAwnaPzj2EfoIfRYehSdh7GRTVqhSJaQcEnkcW54fj8fjzwBHXFjIAi093tCBxyRldpOQeUmk_RTNoaHKgbh2eLcr-v3m5QIcz87CFPgQVcDNaoaz11bBbUD6lZbLfIh6Luyp9UWGYhTWYPHHVbvXqSwxZ-5uTQui5oUR65fIQjaTp6o8Px-9cTLf5kq-9mHdJNT--L7ur8Fq6XySViEt67Cgsw1YPi-31zeh1yJ3eiyff_2WJVYJyQ2510MzsUE1YnHC72z-zIhIlweC8x55cMFVciMHGcFHPz79mQ6m-d9qn6DX_nn9_cQr713wFPMZ9ZqJkCKlvvEFS5UQ6BSkzIQqFFrRFL90IzFMmzQwRgRM82ZEk1AaZoLCZmxBLcszvQ2EU6aliJTkQjGVpAn3m6kJOMpAIk0Y1uFwNvrxfQGvEc-WJThAsRugOuzM-BKXGjaKA_Rk0XygkazDQVWMumE3PGSm8wnS4NqVoYNGkeZzwcaqFQuMj7YpqIOYY3BFYHG350uywa3D36Y0Erzh40-_OQ7_u-dx6-LKvXz5f9J9WDm5Pu_EndPu2Vf40LD3DbuQzw7UxsOJ3oUlNR0PRsO9UtxfAD5KBb4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VBVVc-KcsFHARBy6R4s0k9kq9rIBVEWW7QlTaW-T4p91Dk9X-tUcegUfgWfooPAljJ5t2VSEhIeWQyJPE8ng-j8fjzwDvhPSUBVZFomuTCBVHv0iIUZHZ2BAcOq4DieuRGA7leNwbbcHBei9MzQ_RBty8ZQS89gZup8bdsHJVzcjOpd-1fgdTwljP64yjFocFhpM1PYValGY4bniFfB5P--rmaHTLxbydKXnTgw1D0ODB_1X-IdxvXE_Wr_vKI9iy5WPY-dosrj-Bkz47twv1-8dP1TCVsMqxqZ25pQ-pMc8Sfu6zZ-ZMhSwQGvXYRQitslM1KRld9vLq12qyqq5fewong0_fPxxGzakLkcYYedQrpJKGxy6WaLSU5BIYdKlOpdXc0JPtFg6tM4lzMkErehkvUuXQJTViPIPtsirtc2CCo1Uy00pIjbowhYh7xiWCekChXJp24O269fNpTa6Rrycl1EB5aKAO7K31kjf2Nc8T8mMJPAgiO7DfFpNl-OUOVdpqSTI0c0VyzzjJ7NZqbP_iafEJmZIOyA0FtwKedXuzpJycBfZtzjMpujF99H3Q8N9rnvePv4WbF_8u-gZ2Rh8H-dHn4ZeXcK_rDxsO8Z492F7MlvYV3NWrxWQ-ex36-h8onAOn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meta%E2%80%90analysis+of+perfusion+parameters+affecting+weight+gain+in+ex%C2%A0vivo+perfusion&rft.jtitle=Artificial+organs&rft.au=Marlar%2C+Riley&rft.au=Abbas%2C+Fuad&rft.au=Obeid%2C+Rommy&rft.au=Frisbie%2C+Sean&rft.date=2025-01-01&rft.issn=0160-564X&rft.eissn=1525-1594&rft.volume=49&rft.issue=1&rft.spage=7&rft.epage=20&rft_id=info:doi/10.1111%2Faor.14841&rft.externalDBID=10.1111%252Faor.14841&rft.externalDocID=AOR14841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-564X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-564X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-564X&client=summon