Using DNA to test the utility of pellet-group counts as an index of deer counts

Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wildlife Society bulletin Jg. 37; H. 2; S. 444 - 450
Hauptverfasser: Brinkman, Todd J., Person, David K., Smith, Winston, Chapin III, F. Stuart, McCoy, Karin, Leonawicz, Matthew, Hundertmark, Kris J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Blackwell Publishing Ltd 01.06.2013
Wildlife Society
Wiley
Schlagworte:
ISSN:1938-5463, 2328-5540, 1938-5463, 2328-5540
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the relationship between pellet-group count and count of Sitka black-tailed deer (Odocoileus hemionus sitkensis) during a 3-year study (2006–2008) in 3 watersheds in southeast Alaska, USA. We surveyed 141,054 m2of transect, counted 10,569 pellet groups, and identified 737 unique deer. We used a multilevel mixed-effects generalized linear model to analyze expected deer count as a function of pellet-group count. Pellet-group count was a significant predictor of DNA-based index of deer count, but that relationship varied by transect, watershed, and year, indicating that extrapolation of a single linear relationship across space and time was not possible. More importantly, most of the variation in ourmodels was residual and unexplained. Assuming that our DNA-based results were amore accurate and precise metric of true deer count, we do not support the use of pellet-group count to index deer count in southeast Alaska unless confounding factors are accounted for at fine spatial (e.g., habitat patch) scales. Because of the difficulty in routinely evaluating the influence of confounding variables in remote and unmanaged landscapes, we suggest that wildlife programs in these environments consider alternatives, such as DNA-based methods, for monitoring trends in ungulate populations.
AbstractList Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the relationship between pellet-group count and count of Sitka black-tailed deer (Odocoileus hemionus sitkensis) during a 3-year study (2006–2008) in 3 watersheds in southeast Alaska, USA. We surveyed 141,054 m2of transect, counted 10,569 pellet groups, and identified 737 unique deer. We used a multilevel mixed-effects generalized linear model to analyze expected deer count as a function of pellet-group count. Pellet-group count was a significant predictor of DNA-based index of deer count, but that relationship varied by transect, watershed, and year, indicating that extrapolation of a single linear relationship across space and time was not possible. More importantly, most of the variation in ourmodels was residual and unexplained. Assuming that our DNA-based results were amore accurate and precise metric of true deer count, we do not support the use of pellet-group count to index deer count in southeast Alaska unless confounding factors are accounted for at fine spatial (e.g., habitat patch) scales. Because of the difficulty in routinely evaluating the influence of confounding variables in remote and unmanaged landscapes, we suggest that wildlife programs in these environments consider alternatives, such as DNA-based methods, for monitoring trends in ungulate populations.
Abstract Despite widespread use of fecal pellet‐group counts as an index of ungulate density, techniques used to convert pellet‐group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the relationship between pellet‐group count and count of Sitka black‐tailed deer (Odocoileus hemionus sitkensis) during a 3‐year study (2006–2008) in 3 watersheds in southeast Alaska, USA. We surveyed 141,054 m2 of transect, counted 10,569 pellet groups, and identified 737 unique deer. We used a multilevel mixed‐effects generalized linear model to analyze expected deer count as a function of pellet‐group count. Pellet‐group count was a significant predictor of DNA‐based index of deer count, but that relationship varied by transect, watershed, and year, indicating that extrapolation of a single linear relationship across space and time was not possible. More importantly, most of the variation in our models was residual and unexplained. Assuming that our DNA‐based results were a more accurate and precise metric of true deer count, we do not support the use of pellet‐group count to index deer count in southeast Alaska unless confounding factors are accounted for at fine spatial (e.g., habitat patch) scales. Because of the difficulty in routinely evaluating the influence of confounding variables in remote and unmanaged landscapes, we suggest that wildlife programs in these environments consider alternatives, such as DNA‐based methods, for monitoring trends in ungulate populations. © 2013 The Wildlife Society.
Despite widespread use of fecal pellet‐group counts as an index of ungulate density, techniques used to convert pellet‐group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the relationship between pellet‐group count and count of Sitka black‐tailed deer (Odocoileus hemionus sitkensis) during a 3‐year study (2006–2008) in 3 watersheds in southeast Alaska, USA. We surveyed 141,054 m2 of transect, counted 10,569 pellet groups, and identified 737 unique deer. We used a multilevel mixed‐effects generalized linear model to analyze expected deer count as a function of pellet‐group count. Pellet‐group count was a significant predictor of DNA‐based index of deer count, but that relationship varied by transect, watershed, and year, indicating that extrapolation of a single linear relationship across space and time was not possible. More importantly, most of the variation in our models was residual and unexplained. Assuming that our DNA‐based results were a more accurate and precise metric of true deer count, we do not support the use of pellet‐group count to index deer count in southeast Alaska unless confounding factors are accounted for at fine spatial (e.g., habitat patch) scales. Because of the difficulty in routinely evaluating the influence of confounding variables in remote and unmanaged landscapes, we suggest that wildlife programs in these environments consider alternatives, such as DNA‐based methods, for monitoring trends in ungulate populations. © 2013 The Wildlife Society.
Author Leonawicz, Matthew
Brinkman, Todd J.
Person, David K.
Smith, Winston
McCoy, Karin
Hundertmark, Kris J.
Chapin III, F. Stuart
Author_xml – sequence: 1
  givenname: Todd J.
  surname: Brinkman
  fullname: Brinkman, Todd J.
  email: tjbrinkman@alaska.edu
  organization: Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, Fairbanks, USA
– sequence: 2
  givenname: David K.
  surname: Person
  fullname: Person, David K.
  organization: Division of Wildlife Conservation, Alaska Department of Fish and Game, AK 99901, Ketchikan, USA
– sequence: 3
  givenname: Winston
  surname: Smith
  fullname: Smith, Winston
  organization: United States Forest Service, Pacific Northwest Research Station, Forestry and Range Sciences Laboratory, OR 97850, La Grande, USA
– sequence: 4
  givenname: F. Stuart
  surname: Chapin III
  fullname: Chapin III, F. Stuart
  organization: Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, Fairbanks, USA
– sequence: 5
  givenname: Karin
  surname: McCoy
  fullname: McCoy, Karin
  organization: Division of Wildlife Conservation, Alaska Department of Fish and Game, AK 99811, Douglas, USA
– sequence: 6
  givenname: Matthew
  surname: Leonawicz
  fullname: Leonawicz, Matthew
  organization: Scenarios Network for Alaska Planning, University of Alaska Fairbanks, AK 99775, Fairbanks, USA
– sequence: 7
  givenname: Kris J.
  surname: Hundertmark
  fullname: Hundertmark, Kris J.
  organization: Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, Fairbanks, USA
BookMark eNp1kF1rFDEUhoNUsK3iX8idFzLryccmk8t2bWuhtIqW9S5kksyaNU6WJEu7_96pU7ZFFAIn5Dzn4eQ9QgdDGjxCbwnMCAD9cFe6GZXwAh0SxdpmzgU7eHZ_hY5KWQOAACIP0c1tCcMKf7w-wTXh6kvF9YfH2xpiqDucerzxMfrarHLabrBN26EWbMYz4DA4f_-AOO_zY-s1etmbWPybx3qMbs_Pvi0-NVc3F5eLk6vGcuDQcMM967hRogXoQFnOWgpAOks8WOsNkbRjjFjCqJu3gjviFOuoVLKHXip2jC4nr0tmrTc5_DJ5p5MJ-s9Dyittcg02et22498NEwDScqdE1wN3UrXKSCpk60bXu8llcyol-37vI6AfMtVjpnrMdCSbv0gbqqkhDTWbEP_Bv5_4uxD97n9avfx6OtGziV6XmvKeHmddSTZ02xgpEKKZ1FRzzp_WCaX6-_2AyT-1kEzO9fL6Qi_P59-_fD5daMF-A0CEpg8
CitedBy_id crossref_primary_10_3389_fevo_2020_513304
crossref_primary_10_1093_jofore_fvac002
crossref_primary_10_1002_jwmg_21507
crossref_primary_10_1016_j_mambio_2014_05_007
crossref_primary_10_1016_j_foreco_2020_118541
Cites_doi 10.1046/j.0305-1838.2003.00026.x
10.2193/2005-695
10.32800/abc.2004.27.0217
10.1111/j.1469-7998.1985.tb04910.x
10.1007/s10651-007-0030-3
10.1111/j.1541-0420.2008.01165.x
10.2307/3809641
10.1016/j.ecolind.2010.04.006
10.1093/genetics/160.1.357
10.1111/j.1365-2028.1988.tb00962.x
10.2307/3798941
10.2193/0022-541X(2005)069<0322:WHSBSB>2.0.CO;2
10.2193/2008-007
10.1093/forestscience/26.3.448
10.1002/jwmg.22
10.1111/j.1365-2664.2008.01512.x
10.1644/1545-1542(2000)081<1035:AETOUC>2.0.CO;2
10.1111/j.1469-1795.2009.00238.x
10.1016/0006-3207(93)90135-N
10.1111/j.1365-2907.1984.tb00341.x
10.2307/1940131
10.2193/0022-541X(2006)70[1403:RFAMOB]2.0.CO;2
10.2307/3808966
10.2307/3796010
10.2307/3801624
10.1007/s12686-010-9176-7
10.1111/j.0021-8901.2004.00964.x
10.2193/0022-541X(2005)069<0396:EPSFDC>2.0.CO;2
10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2
ContentType Journal Article
Copyright 2013 The Wildlife Society
Copyright © The Wildlife Society, 2013
Copyright_xml – notice: 2013 The Wildlife Society
– notice: Copyright © The Wildlife Society, 2013
DBID BSCLL
AAYXX
CITATION
DOA
DOI 10.1002/wsb.270
DatabaseName Istex
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Agriculture
Ecology
EISSN 1938-5463
2328-5540
EndPage 450
ExternalDocumentID oai_doaj_org_article_88938a36007c4d96bf04d7989a72678d
10_1002_wsb_270
WSB270
wildsocibull2011.37.2.444
ark_67375_WNG_WF5XQPBC_6
Genre article
GroupedDBID -JH
-~X
05W
0R~
123
1OC
29R
2AX
31~
4.4
42X
7X2
8-1
88I
8CJ
8FE
8FH
8FW
8G5
AAESR
AAHKG
AANHP
AAPSS
AAXRX
AAZKR
ABBHK
ABCUV
ABJNI
ABPLY
ABPPZ
ABTLG
ABUWG
ABXSQ
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOD
ACHIC
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADMGS
ADNMO
ADOZA
ADXAS
AEGXH
AENEX
AEPYG
AEUPB
AEUYN
AFAZZ
AFBPY
AFFHD
AFFIJ
AFGKR
AFKRA
AFNWH
AFRAH
AGQPQ
AGUYK
AHXOZ
AIDBO
AIURR
AKPMI
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AQVQM
ASPBG
ATCPS
AUFTA
AVUZU
AVWKF
AZFZN
AZQEC
AZVAB
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKOMP
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
CAG
CBGCD
CCPQU
COF
CS3
D0L
D1J
DC7
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GTFYD
GUQSH
H13
HCIFZ
HGD
HTVGU
HVGLF
HZ~
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0K
M2O
M2P
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NEJ
NHB
O66
O9-
P2W
PADUT
PCBAR
PHGZM
PHGZT
PQ0
PQGLB
PQQKQ
PROAC
R05
RBO
ROL
RXW
SA0
SUPJJ
TAE
UKR
UQL
VJK
WBKPD
WH7
WIH
WIK
WLO
WOHZO
WOIKV
WPGGZ
WXSBR
XOL
YV5
ZY4
ZZTAW
~KM
24P
33P
AAHBH
AAMMB
ADKYN
ADZMN
AEFGJ
AGXDD
AIDQK
AIDYY
DCZOG
EDH
M~E
3V.
88A
A00
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
DOOOF
JSODD
M0L
P4E
WYJ
AAYXX
ACCMX
BANNL
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c4040-4a4e3b4a96800b09c4382001bc1e0ccea172b331c132d5864d1d93b2797f0f793
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000209334800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1938-5463
2328-5540
IngestDate Fri Oct 03 12:45:22 EDT 2025
Sat Nov 29 07:04:59 EST 2025
Tue Nov 18 21:39:43 EST 2025
Wed Jan 22 16:21:43 EST 2025
Thu Jul 03 21:12:52 EDT 2025
Tue Nov 11 03:31:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4040-4a4e3b4a96800b09c4382001bc1e0ccea172b331c132d5864d1d93b2797f0f793
Notes ArticleID:WSB270
istex:D81DF4EA449BB49E018B5C450501EC17CC1DFF05
ark:/67375/WNG-WF5XQPBC-6
OpenAccessLink https://doaj.org/article/88938a36007c4d96bf04d7989a72678d
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_88938a36007c4d96bf04d7989a72678d
crossref_primary_10_1002_wsb_270
crossref_citationtrail_10_1002_wsb_270
wiley_primary_10_1002_wsb_270_WSB270
jstor_primary_wildsocibull2011_37_2_444
istex_primary_ark_67375_WNG_WF5XQPBC_6
PublicationCentury 2000
PublicationDate June 2013
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: June 2013
PublicationDecade 2010
PublicationTitle Wildlife Society bulletin
PublicationTitleAlternate Wildl. Soc. Bull
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wildlife Society
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wildlife Society
– name: Wiley
References Neff, D. J. 1968. The pellet-group count technique for big game trend, census, and distribution: a review. Journal of Wildlife Management 32:597-614.
Jenkins, K. J., and B. F. J. Manly. 2008. A double-observer method for reducing bias in faecal pellet surveys of forest ungulates. Journal of Applied Ecology 45:1339-1348.
Koster, S. H., and J. A. Hart. 1988. Methods of estimating ungulate populations in tropical forests. African Journal of Ecology 26:117-126.
Campbell, D., G. M. Swanson, and J. Sales. 2004. Comparing the precision and cost-effectiveness of faecal pellet group count methods. Journal of Applied Ecology 41:1185-1196.
Schoen, J. W., and M. D. Kirchhoff. 1990. Seasonal habitat use by Sitka black-tailed deer on Admiralty Island, Alaska. Journal of Wildlife Management 54:371-378.
Alaska Climate Research Center. 2009. International Arctic Research Center. University of Alaska Fairbanks, Fairbanks, Alaska: <http://climate.gi.alaska.edu/Climate/Location/TimeSeries/index.html>. Accessed 1 Jun 2010.
Fuller, T. K. 1991. Do pellet counts index white-tailed deer numbers and population change? Journal of Wildlife Management 55:393-396.
Wallmo, O. C., and J. W. Schoen. 1980. Responses of deer to secondary forest succession in southeast Alaska. Forest Science 26:448-462.
Brinkman, T.J., D.K. Person, F.S. Chapin, III, W. Smith, K. Hundertmark, 2011. Estimating abundance of Sitka black-tailed deer using DNA from fecal pellets. Journal of Wildlife Management 75:232-242.
Harestad, A. S., and F. L. Bunnell. 1987. Persistence of black-tailed deer fecal pellets in coastal habitats. Journal of Wildlife Management 51:33-37.
Mitchell, B., J. J. Rowe, P. R. Ratcliffe, and M. Hinge. 1985. Defecation frequency in roe deer (Capreolus capreolus) in relation to the accumulation rates of faecal deposits. Journal of Zoology 207:1-7.
Hanley, T. A. 1993. Balancing economic development, biological conservation, and human culture: the Sitka black-tailed Odocoileus hemionus sitkensis deer as an ecological indicator. Biological Conservation 66:61-67.
Ratcliffe, P. R. 1987. Red deer population changes and the independent assessment of population size. Symposia of the Zoological Society of London 58:153-165.
Slade, N. A., and S. M. Blair. 2000. An empirical test of using counts of individuals captured as indices of population size. Journal of Mammalogy 81:1035-1045.
Doerr, J. G., E. J. Degayner, and G. Ith. 2005. Winter habitat selection by Sitka black-tailed deer. Journal of Wildlife Management 69:322-331.
Miller, C. R., P. Joyce, and L. P. Waits. 2002. Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357-366.
Lukacs, P. M., and K. P. Burnham. 2005. Estimating population size from DNA-based closed capture-recapture data incorporating genotyping error. Journal of Wildlife Management 69:396-403.
White, G. C. 2008. Close population estimation models and their extensions in program MARK. Environmental and Ecological Statistics 15:89-99.
Belant, J. L., T. W. Seamans, and D. Paetkau. 2007. Genetic tagging free-ranging white-tailed deer using hair snares. Ohio Journal of Science 107(4):50-56.
Kirchhoff, M. D. 1990. Evaluation of methods for assessing deer population trends in Southeast Alaska. Alaska Department of Fish and Game, Federal Aid in Wildlife Restoration Research Final Report, study no. IIB-2.9, Juneau, USA.
Farmer, C. J., D. K. Person, and R. T. Bowyer. 2006. Risk factors and mortality of black-tailed deer in a managed forest landscape. Journal of Wildlife Management 70:1403-1415.
Gebremedhin, B., G. F. Ficetola, S. Naderi, H. R. Rezaei, C. Maudet, D. Rioux, G. Luikart, Ø. Flagstad, W. Thuiller, and P. Taberlet. 2009. Combining genetic and ecological data to assess the conservation status of the endangered Ethopian walia ibex. Animal Conservation 12:89-100.
Kirchhoff M. D., and K. W. Pitcher. 1988. Deer pellet-group surveys in southeast Alaska 1981-1987. Alaska Department of Fish and Game, Project W-22-6, Job 2.9, Objective 1, Juneau, USA.
Smart, J. C. R., A. I. Ward, and P. C. L. White. 2004. Monitoring woodland deer populations in the UK: an imprecise science. Mammal Review 34:99-114.
Forsyth, D. M., R. J. Barker, G. Morris, and M. P. Scroggie. 2007. Modeling the relationship between fecal pellet indices and deer density. Journal of Wildlife Management 71:964-970.
Brinkman, T. J., D. K. Person, M. K. Schwartz, K. L. Pilgrim, K. E. Colson, and K. Hundertmark. 2010. Individual identification of Sitka black-tailed deer using DNA from fecal pellets. Conservation Genetics Resources 2:115-118. DOI: 10.1007/s10592-008-9747-2
Waits, L. P., and D. Paetkau. 2005. Noninvasive genetic sampling of wildlife. Journal of Wildlife Management 69:1419-1433.
Acevedo, P., J. Ferreres, R. Jaroso, M. Duran, M. A. Escudero, J. Marco, and C. Gortazar. 2010. Estimating roe deer abundance from pellet group counts in Spain: an assessment of methods suitable for Mediterranean woodlands. Ecological Indicators 10:1226-1230.
Kendall, K. C., J. B. Stetz, D. A. Roon, L. P. Waits, J. B. Boulanger, and D. Paetkau. 2008. Grizzly bear density in Glacier National Park, Montana. Journal of Wildlife Management 72:1693-1705.
Staines, B. W., and P. R. Ratcliffe. 1987. Estimating the abundance of red deer (Cervus elaphus L.) and roe deer (Capreolus capreolus L.) and their current status in Great Britain. Symposia of the Zoological Society of London 58:131-152.
R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: <http://www.R-project.org>. Accessed 1 Jun 2011.
Bennett, L. J., P. F. English, and R. McCain. 1940. A study of deer populations by use of pellet-group counts. Journal of Wildlife Management 4:398-403.
Putman, R. J. 1984. Facts from faeces. Mammal Review 14:79-97.
Wright, J. A., R. J. Barker, M. R. Schofield, A. C. Frantz, A. E. Byrom, and D. M. Gleeson. 2009. Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65:833-840.
Alaback, P. B. 1982. Dynamics of understory biomass in Sitka spruce-western hemlock forests of southeast Alaska. Ecology 63:1932-1948.
Efford, M. G., D. K. Dawson, and C. S. Robbins. 2004. Density: software for analyzing capture-recapture data from passive detector arrays. Animal Biodiversity and Conservation 27:217-228.
2006; 70
1987; 58
2010; 10
2004; 41
1980; 26
1990; 54
2007; 107
1987; 51
2009; 65
2004; 27
1991; 55
1993; 66
2009
2011; 75
2008; 15
2007; 71
1971
1985; 207
2008; 72
2005; 69
2009; 12
1940; 4
2002; 160
1990
1984; 14
1982; 63
1988; 26
2004; 34
2008; 45
2000; 81
2010; 2
1968; 32
1988
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Staines B. W. (e_1_2_8_36_1) 1987; 58
e_1_2_8_27_1
Kirchhoff M. D. (e_1_2_8_22_1) 1990
e_1_2_8_3_1
e_1_2_8_2_1
Alaska Climate Research Center (e_1_2_8_4_1) 2009
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Belant J. L. (e_1_2_8_5_1) 2007; 107
e_1_2_8_21_1
Kirchhoff M. D. (e_1_2_8_23_1) 1988
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Bethune S. (e_1_2_8_7_1) 2009
R Development Core Team (e_1_2_8_30_1) 2009
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Ratcliffe P. R. (e_1_2_8_31_1) 1987; 58
References_xml – reference: Slade, N. A., and S. M. Blair. 2000. An empirical test of using counts of individuals captured as indices of population size. Journal of Mammalogy 81:1035-1045.
– reference: Campbell, D., G. M. Swanson, and J. Sales. 2004. Comparing the precision and cost-effectiveness of faecal pellet group count methods. Journal of Applied Ecology 41:1185-1196.
– reference: Staines, B. W., and P. R. Ratcliffe. 1987. Estimating the abundance of red deer (Cervus elaphus L.) and roe deer (Capreolus capreolus L.) and their current status in Great Britain. Symposia of the Zoological Society of London 58:131-152.
– reference: Alaback, P. B. 1982. Dynamics of understory biomass in Sitka spruce-western hemlock forests of southeast Alaska. Ecology 63:1932-1948.
– reference: Lukacs, P. M., and K. P. Burnham. 2005. Estimating population size from DNA-based closed capture-recapture data incorporating genotyping error. Journal of Wildlife Management 69:396-403.
– reference: Neff, D. J. 1968. The pellet-group count technique for big game trend, census, and distribution: a review. Journal of Wildlife Management 32:597-614.
– reference: White, G. C. 2008. Close population estimation models and their extensions in program MARK. Environmental and Ecological Statistics 15:89-99.
– reference: Ratcliffe, P. R. 1987. Red deer population changes and the independent assessment of population size. Symposia of the Zoological Society of London 58:153-165.
– reference: Forsyth, D. M., R. J. Barker, G. Morris, and M. P. Scroggie. 2007. Modeling the relationship between fecal pellet indices and deer density. Journal of Wildlife Management 71:964-970.
– reference: Koster, S. H., and J. A. Hart. 1988. Methods of estimating ungulate populations in tropical forests. African Journal of Ecology 26:117-126.
– reference: Kirchhoff, M. D. 1990. Evaluation of methods for assessing deer population trends in Southeast Alaska. Alaska Department of Fish and Game, Federal Aid in Wildlife Restoration Research Final Report, study no. IIB-2.9, Juneau, USA.
– reference: Farmer, C. J., D. K. Person, and R. T. Bowyer. 2006. Risk factors and mortality of black-tailed deer in a managed forest landscape. Journal of Wildlife Management 70:1403-1415.
– reference: Wright, J. A., R. J. Barker, M. R. Schofield, A. C. Frantz, A. E. Byrom, and D. M. Gleeson. 2009. Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65:833-840.
– reference: Kirchhoff M. D., and K. W. Pitcher. 1988. Deer pellet-group surveys in southeast Alaska 1981-1987. Alaska Department of Fish and Game, Project W-22-6, Job 2.9, Objective 1, Juneau, USA.
– reference: R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: <http://www.R-project.org>. Accessed 1 Jun 2011.
– reference: Hanley, T. A. 1993. Balancing economic development, biological conservation, and human culture: the Sitka black-tailed Odocoileus hemionus sitkensis deer as an ecological indicator. Biological Conservation 66:61-67.
– reference: Miller, C. R., P. Joyce, and L. P. Waits. 2002. Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357-366.
– reference: Wallmo, O. C., and J. W. Schoen. 1980. Responses of deer to secondary forest succession in southeast Alaska. Forest Science 26:448-462.
– reference: Brinkman, T.J., D.K. Person, F.S. Chapin, III, W. Smith, K. Hundertmark, 2011. Estimating abundance of Sitka black-tailed deer using DNA from fecal pellets. Journal of Wildlife Management 75:232-242.
– reference: Doerr, J. G., E. J. Degayner, and G. Ith. 2005. Winter habitat selection by Sitka black-tailed deer. Journal of Wildlife Management 69:322-331.
– reference: Jenkins, K. J., and B. F. J. Manly. 2008. A double-observer method for reducing bias in faecal pellet surveys of forest ungulates. Journal of Applied Ecology 45:1339-1348.
– reference: Gebremedhin, B., G. F. Ficetola, S. Naderi, H. R. Rezaei, C. Maudet, D. Rioux, G. Luikart, Ø. Flagstad, W. Thuiller, and P. Taberlet. 2009. Combining genetic and ecological data to assess the conservation status of the endangered Ethopian walia ibex. Animal Conservation 12:89-100.
– reference: Belant, J. L., T. W. Seamans, and D. Paetkau. 2007. Genetic tagging free-ranging white-tailed deer using hair snares. Ohio Journal of Science 107(4):50-56.
– reference: Brinkman, T. J., D. K. Person, M. K. Schwartz, K. L. Pilgrim, K. E. Colson, and K. Hundertmark. 2010. Individual identification of Sitka black-tailed deer using DNA from fecal pellets. Conservation Genetics Resources 2:115-118. DOI: 10.1007/s10592-008-9747-2
– reference: Putman, R. J. 1984. Facts from faeces. Mammal Review 14:79-97.
– reference: Efford, M. G., D. K. Dawson, and C. S. Robbins. 2004. Density: software for analyzing capture-recapture data from passive detector arrays. Animal Biodiversity and Conservation 27:217-228.
– reference: Harestad, A. S., and F. L. Bunnell. 1987. Persistence of black-tailed deer fecal pellets in coastal habitats. Journal of Wildlife Management 51:33-37.
– reference: Alaska Climate Research Center. 2009. International Arctic Research Center. University of Alaska Fairbanks, Fairbanks, Alaska: <http://climate.gi.alaska.edu/Climate/Location/TimeSeries/index.html>. Accessed 1 Jun 2010.
– reference: Mitchell, B., J. J. Rowe, P. R. Ratcliffe, and M. Hinge. 1985. Defecation frequency in roe deer (Capreolus capreolus) in relation to the accumulation rates of faecal deposits. Journal of Zoology 207:1-7.
– reference: Bennett, L. J., P. F. English, and R. McCain. 1940. A study of deer populations by use of pellet-group counts. Journal of Wildlife Management 4:398-403.
– reference: Schoen, J. W., and M. D. Kirchhoff. 1990. Seasonal habitat use by Sitka black-tailed deer on Admiralty Island, Alaska. Journal of Wildlife Management 54:371-378.
– reference: Fuller, T. K. 1991. Do pellet counts index white-tailed deer numbers and population change? Journal of Wildlife Management 55:393-396.
– reference: Smart, J. C. R., A. I. Ward, and P. C. L. White. 2004. Monitoring woodland deer populations in the UK: an imprecise science. Mammal Review 34:99-114.
– reference: Waits, L. P., and D. Paetkau. 2005. Noninvasive genetic sampling of wildlife. Journal of Wildlife Management 69:1419-1433.
– reference: Kendall, K. C., J. B. Stetz, D. A. Roon, L. P. Waits, J. B. Boulanger, and D. Paetkau. 2008. Grizzly bear density in Glacier National Park, Montana. Journal of Wildlife Management 72:1693-1705.
– reference: Acevedo, P., J. Ferreres, R. Jaroso, M. Duran, M. A. Escudero, J. Marco, and C. Gortazar. 2010. Estimating roe deer abundance from pellet group counts in Spain: an assessment of methods suitable for Mediterranean woodlands. Ecological Indicators 10:1226-1230.
– volume: 41
  start-page: 1185
  year: 2004
  end-page: 1196
  article-title: Comparing the precision and cost‐effectiveness of faecal pellet group count methods
  publication-title: Journal of Applied Ecology
– volume: 54
  start-page: 371
  year: 1990
  end-page: 378
  article-title: Seasonal habitat use by Sitka black‐tailed deer on Admiralty Island, Alaska
  publication-title: Journal of Wildlife Management
– year: 2009
– volume: 81
  start-page: 1035
  year: 2000
  end-page: 1045
  article-title: An empirical test of using counts of individuals captured as indices of population size
  publication-title: Journal of Mammalogy
– volume: 65
  start-page: 833
  year: 2009
  end-page: 840
  article-title: Incorporating genotype uncertainty into mark–recapture‐type models for estimating abundance using DNA samples
  publication-title: Biometrics
– start-page: 32
  year: 2009
  end-page: 43
– volume: 55
  start-page: 393
  year: 1991
  end-page: 396
  article-title: Do pellet counts index white‐tailed deer numbers and population change
  publication-title: Journal of Wildlife Management
– volume: 26
  start-page: 448
  year: 1980
  end-page: 462
  article-title: Responses of deer to secondary forest succession in southeast Alaska
  publication-title: Forest Science
– volume: 107
  start-page: 50
  issue: 4
  year: 2007
  end-page: 56
  article-title: Genetic tagging free‐ranging white‐tailed deer using hair snares
  publication-title: Ohio Journal of Science
– volume: 66
  start-page: 61
  year: 1993
  end-page: 67
  article-title: Balancing economic development, biological conservation, and human culture: the Sitka black‐tailed deer as an ecological indicator
  publication-title: Biological Conservation
– volume: 15
  start-page: 89
  year: 2008
  end-page: 99
  article-title: Close population estimation models and their extensions in program MARK
  publication-title: Environmental and Ecological Statistics
– year: 1971
– volume: 69
  start-page: 1419
  year: 2005
  end-page: 1433
  article-title: Noninvasive genetic sampling of wildlife
  publication-title: Journal of Wildlife Management
– volume: 4
  start-page: 398
  year: 1940
  end-page: 403
  article-title: A study of deer populations by use of pellet‐group counts
  publication-title: Journal of Wildlife Management
– year: 1990
– volume: 2
  start-page: 115
  year: 2010
  end-page: 118
  article-title: Individual identification of Sitka black‐tailed deer using DNA from fecal pellets
  publication-title: Conservation Genetics Resources
– volume: 69
  start-page: 396
  year: 2005
  end-page: 403
  article-title: Estimating population size from DNA‐based closed capture–recapture data incorporating genotyping error
  publication-title: Journal of Wildlife Management
– volume: 45
  start-page: 1339
  year: 2008
  end-page: 1348
  article-title: A double‐observer method for reducing bias in faecal pellet surveys of forest ungulates
  publication-title: Journal of Applied Ecology
– volume: 34
  start-page: 99
  year: 2004
  end-page: 114
  article-title: Monitoring woodland deer populations in the UK: an imprecise science
  publication-title: Mammal Review
– volume: 70
  start-page: 1403
  year: 2006
  end-page: 1415
  article-title: Risk factors and mortality of black‐tailed deer in a managed forest landscape
  publication-title: Journal of Wildlife Management
– volume: 58
  start-page: 153
  year: 1987
  end-page: 165
  article-title: Red deer population changes and the independent assessment of population size
  publication-title: Symposia of the Zoological Society of London
– volume: 160
  start-page: 357
  year: 2002
  end-page: 366
  article-title: Assessing allelic dropout and genotype reliability using maximum likelihood
  publication-title: Genetics
– year: 1988
– volume: 32
  start-page: 597
  year: 1968
  end-page: 614
  article-title: The pellet‐group count technique for big game trend, census, and distribution: a review
  publication-title: Journal of Wildlife Management
– volume: 12
  start-page: 89
  year: 2009
  end-page: 100
  article-title: Combining genetic and ecological data to assess the conservation status of the endangered ibex
  publication-title: Animal Conservation
– volume: 63
  start-page: 1932
  year: 1982
  end-page: 1948
  article-title: Dynamics of understory biomass in Sitka spruce–western hemlock forests of southeast Alaska
  publication-title: Ecology
– volume: 69
  start-page: 322
  year: 2005
  end-page: 331
  article-title: Winter habitat selection by Sitka black‐tailed deer
  publication-title: Journal of Wildlife Management
– volume: 27
  start-page: 217
  year: 2004
  end-page: 228
  article-title: Density: software for analyzing capture–recapture data from passive detector arrays
  publication-title: Animal Biodiversity and Conservation
– volume: 72
  start-page: 1693
  year: 2008
  end-page: 1705
  article-title: Grizzly bear density in Glacier National Park, Montana
  publication-title: Journal of Wildlife Management
– volume: 14
  start-page: 79
  year: 1984
  end-page: 97
  article-title: Facts from faeces
  publication-title: Mammal Review
– volume: 26
  start-page: 117
  year: 1988
  end-page: 126
  article-title: Methods of estimating ungulate populations in tropical forests
  publication-title: African Journal of Ecology
– volume: 207
  start-page: 1
  year: 1985
  end-page: 7
  article-title: Defecation frequency in roe deer ( ) in relation to the accumulation rates of faecal deposits
  publication-title: Journal of Zoology
– volume: 10
  start-page: 1226
  year: 2010
  end-page: 1230
  article-title: Estimating roe deer abundance from pellet group counts in Spain: an assessment of methods suitable for Mediterranean woodlands
  publication-title: Ecological Indicators
– volume: 75
  start-page: 232
  year: 2011
  end-page: 242
  article-title: Estimating abundance of Sitka black‐tailed deer using DNA from fecal pellets
  publication-title: Journal of Wildlife Management
– volume: 58
  start-page: 131
  year: 1987
  end-page: 152
  article-title: Estimating the abundance of red deer ( .) and roe deer ( .) and their current status in Great Britain
  publication-title: Symposia of the Zoological Society of London
– volume: 71
  start-page: 964
  year: 2007
  end-page: 970
  article-title: Modeling the relationship between fecal pellet indices and deer density
  publication-title: Journal of Wildlife Management
– volume: 51
  start-page: 33
  year: 1987
  end-page: 37
  article-title: Persistence of black‐tailed deer fecal pellets in coastal habitats
  publication-title: Journal of Wildlife Management
– ident: e_1_2_8_35_1
  doi: 10.1046/j.0305-1838.2003.00026.x
– ident: e_1_2_8_15_1
  doi: 10.2193/2005-695
– ident: e_1_2_8_13_1
  doi: 10.32800/abc.2004.27.0217
– volume: 58
  start-page: 131
  year: 1987
  ident: e_1_2_8_36_1
  article-title: Estimating the abundance of red deer (Cervus elaphus L.) and roe deer (Capreolus capreolus L.) and their current status in Great Britain
  publication-title: Symposia of the Zoological Society of London
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1469-7998.1985.tb04910.x
– ident: e_1_2_8_39_1
  doi: 10.1007/s10651-007-0030-3
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1541-0420.2008.01165.x
– ident: e_1_2_8_33_1
  doi: 10.2307/3809641
– volume-title: International Arctic Research Center
  year: 2009
  ident: e_1_2_8_4_1
– volume-title: Evaluation of methods for assessing deer population trends in Southeast Alaska
  year: 1990
  ident: e_1_2_8_22_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ecolind.2010.04.006
– ident: e_1_2_8_26_1
  doi: 10.1093/genetics/160.1.357
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1365-2028.1988.tb00962.x
– ident: e_1_2_8_28_1
  doi: 10.2307/3798941
– ident: e_1_2_8_12_1
  doi: 10.2193/0022-541X(2005)069<0322:WHSBSB>2.0.CO;2
– ident: e_1_2_8_21_1
  doi: 10.2193/2008-007
– volume: 107
  start-page: 50
  issue: 4
  year: 2007
  ident: e_1_2_8_5_1
  article-title: Genetic tagging free‐ranging white‐tailed deer using hair snares
  publication-title: Ohio Journal of Science
– ident: e_1_2_8_38_1
  doi: 10.1093/forestscience/26.3.448
– ident: e_1_2_8_9_1
  doi: 10.1002/jwmg.22
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1365-2664.2008.01512.x
– ident: e_1_2_8_34_1
  doi: 10.1644/1545-1542(2000)081<1035:AETOUC>2.0.CO;2
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1469-1795.2009.00238.x
– ident: e_1_2_8_18_1
  doi: 10.1016/0006-3207(93)90135-N
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1365-2907.1984.tb00341.x
– volume: 58
  start-page: 153
  year: 1987
  ident: e_1_2_8_31_1
  article-title: Red deer population changes and the independent assessment of population size
  publication-title: Symposia of the Zoological Society of London
– start-page: 32
  volume-title: Deer management report of survey and inventory activities 1 July 2006‐30 June 2008
  year: 2009
  ident: e_1_2_8_7_1
– ident: e_1_2_8_3_1
  doi: 10.2307/1940131
– ident: e_1_2_8_8_1
– ident: e_1_2_8_14_1
  doi: 10.2193/0022-541X(2006)70[1403:RFAMOB]2.0.CO;2
– ident: e_1_2_8_16_1
  doi: 10.2307/3808966
– ident: e_1_2_8_6_1
  doi: 10.2307/3796010
– ident: e_1_2_8_19_1
  doi: 10.2307/3801624
– volume-title: Deer pellet‐group surveys in southeast Alaska 1981–1987
  year: 1988
  ident: e_1_2_8_23_1
– volume-title: R: a language and environment for statistical computing
  year: 2009
  ident: e_1_2_8_30_1
– ident: e_1_2_8_10_1
  doi: 10.1007/s12686-010-9176-7
– ident: e_1_2_8_11_1
  doi: 10.1111/j.0021-8901.2004.00964.x
– ident: e_1_2_8_25_1
  doi: 10.2193/0022-541X(2005)069<0396:EPSFDC>2.0.CO;2
– ident: e_1_2_8_37_1
  doi: 10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2
SSID ssj0006017
ssj0001418912
Score 2.0564866
Snippet Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely...
Despite widespread use of fecal pellet‐group counts as an index of ungulate density, techniques used to convert pellet‐group numbers to ungulate numbers rarely...
Abstract Despite widespread use of fecal pellet‐group counts as an index of ungulate density, techniques used to convert pellet‐group numbers to ungulate...
SourceID doaj
crossref
wiley
jstor
istex
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 444
SubjectTerms Alaska
Censuses
Deer
DNA
fecal pellets
Forest habitats
Habitat conservation
Habitat selection
Odocoileus hemionus sitkensis
pellet-group counts
Sitka black-tailed deer
Statistical variance
Tools and Technology
Ungulates
Watersheds
Wildlife management
Wildlife population estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqxKEcELQgthTkw6o9hU0cJ46Pu9BtD9UKBGj3ZvkvCFFlUTYgjn0EnpEnYcYJq60Q4lIpUqR4FDkztuebePwNIX3umIOwII1yzHDlVuvIZEUalXHODPKzOB_Y9X-LyaSYzeTpSqkvzAlr6YFbxQ0KcKiFTpFG3XInc1PG3AlZSC0YLLQOV19APSvBVPi7wpNCJqw9JYssowNYMY4YliRecT-BpR9QKSr04SUh8V-UGtzMeItsdviQDtt-bZMPvvpENoZXdceR4T-Ts7DNT08mQ9rMKUDFhgKKozCCEFLTeUlxR8U3T38fw5kNGupBLKiGq6KBHhGFnPd117RDLsc_Lo5_RV1lhMhyTAHkmvvUcC1zwHsmlha38-CrjU18bK3XAEtMmiYWYk2XFTl3iZOpYUKKMi5hSu6StWpe-T1CSwfTxLjECObAN-UyENabUmYxs86IHvn2ojBlO9pwrF7xR7WEx0yBZhVotkfoUvC2Zcp4LTJCjS-bkdo6PACDq87g6j2DQ4eCvZZv0fUNZqeJTE0nP9V0nM3OTkfHKu-R78GgS0Ewq8MhbyC4R9yjUqGY4pz3SD-Y_K1-q-n5CG5f_kf398lH1lbUiOLkK1lr6jt_QNbtfXO9qA_DKH4G8zL0Qg
  priority: 102
  providerName: Directory of Open Access Journals
Title Using DNA to test the utility of pellet-group counts as an index of deer counts
URI https://api.istex.fr/ark:/67375/WNG-WF5XQPBC-6/fulltext.pdf
https://www.jstor.org/stable/wildsocibull2011.37.2.444
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwsb.270
https://doaj.org/article/88938a36007c4d96bf04d7989a72678d
Volume 37
WOSCitedRecordID wos000209334800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1938-5463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001418912
  issn: 1938-5463
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1938-5463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006017
  issn: 1938-5463
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQFiR64FFAXR6VDxWcQhPHiePjbrsLh7JqgWpXXCy_UqGuNlU2RXBB_IT-xv4SZpw0UCEkJKQocZJxZNkez2d78g0hu9wxB9OCNMrRw5VbrSOTFWlUxjkzyM_ifGDXPxSzWbFYyKPfQn21_BD9ghtqRhivUcG1We_9Ig2FIeA1EzBb34Bzmg3IxsH76clhPwzDTEO0W8pFhJzv7R-zmHmvy3rDFAXGfkCoWLlfr50TbyLWYHKm9_-jsA_IvQ5n0lHbMR6SW361RTZHp3XHteG3yJ1JYKz-BqlPVUg9IsfBhYAezEa0qSjA0IYCQqTQOxGu06qkuFvjm6sfl-F_EBpiTayphmNFA_UiCjnv6-7VY3IynXzcfxt1URciy9G9kGvuU8O1zAFLmlha3CoEY2Zs4mNrvQbIY9I0sTCPdVmRc5c4mRompCjjEtT9CRmsqpXfJrR0oILGJUYwB3Yvl4EM35Qyi5l1RgzJy-sGULajJMfIGEvVkikzBfWmoN6GhPaC5y0Lx58iY2zB_jXSZocHVX2qOi1UBaCzQqdYDMudzE0ZcydkIbVgYLUdFCi0f_8VXZ-h55vI1Hz2Rs2n2eL4aLyv8iF5FTpILwiN71CdzMVyiZhKpUIxxTkfkt3QMf5WbjX_MIbL038Te0busjYeRxQnz8mgqS_8C3Lbfmk-r-udsKCw0ykC3L37PvkJ6QkKMw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQCwIOPAqoW14-VHAKTRwnjo-7bZcilqiFVrvqxYofqVCrTZWGCm78BH4jv4QZxw2qEBISUqRY8Tiy7BnPZ3v8mZBNbpmFaUEa5Rjhyk1VRTor0qiOc6aRn8U6z64_E2VZLBZyP0RV4lmYnh9iWHBDy_DjNRo4Lkhv_WYNhTHgDRMwXV_loESg3as7H6dHs2EchqmG6PeUiwhJ3_sjs1h4KxS95os8ZT9AVGzdr1fRidchq_c50_v_U9sH5F5AmnTcq8ZDcsMt18jd8Ukb2DbcGrm16zmrv0HquPGpR-TABxHQnXJMu4YCEO0oYEQK-omAnTY1xf0a1_38_sOfCKH-tokLWsGzpJ58EYWsc23IekyOpruH23tRuHchMhwDDHnFXap5JXNAkzqWBjcLwZ1pk7jYGFcB6NFpmhiYydqsyLlNrEw1E1LUcQ0G_4SsLJulWye0tmCE2iZaMAueL5eeDl_XMouZsVqMyKurHlAmkJLj3RhnqqdTZgraTUG7jQgdBM97Ho4_RSbYhUM2Emf7D017ooIdqgLwWVGlWA3Drcx1HXMrZCErwcBvW6iQV4DhL1V7irFvIlPz8q2aT7PFwf5kW-Uj8tpryCAIvW_RoDT0O6IqlQrFFOd8RDa9Zvyt3mr-aQKvjX8Te0lu7x1-mKnZu_L9U3KH9bdzRHHyjKx07Rf3nNw0l93ni_ZFsIdfSfML_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQFhA98ChFXZ4-VHAKTRwnjo-73QYQq2gLVLviYsWPVIjVpkpTBDd-Ar-RX8KMkwZVCAkJKVKieBxZ9oznczz-hpB9bpmFZUEcpBjhyk1ZBjrJ4qAKU6aRn8U6z64_F0WRrVZy0UdV4lmYjh9i-OGGluHnazRwd2arg9-soTAHvGQClutbHFPIjMjW7F1-Mh_mYVhqiG5POQuQ9L07MouVD_qqV3yRp-wHiIq9-_UyOvEqZPU-J7_zP629S273SJNOOtW4R665zQ7Znpw2PduG2yE3jjxn9Td4-lj7p_vk2AcR0FkxoW1NAYi2FDAiBf1EwE7riuJ-jWt_fv_hT4RQn23inJZwbagnX0Qh61zTF-2Sk_zow-HroM-7EBiOAYa85C7WvJQpoEkdSoObheDOtIlcaIwrAfToOI4MrGRtkqXcRlbGmgkpqrACg39ARpt64_YIrSwYobaRFsyC50ulp8PXlUxCZqwWY_L8cgSU6UnJMTfGWnV0ykxBvynotzGhg-BZx8Pxp8gUh3AoRuJs_6JuTlVvhyoDfJaVMTbDcCtTXYXcCpnJUjDw2xYa5BVg-ErZfMbYN5GoZfFKLfNkdbyYHqp0TF54DRkEYfQtGpS-WK8RValYKKY452Oy7zXjb-1Wy_dTuD38N7Fn5OZilqv5m-LtI3KLdck5gjB6TEZtc-GekOvmS_vpvHnam8MvwyALeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+DNA+to+test+the+utility+of+pellet%E2%80%90group+counts+as+an+index+of+deer+counts&rft.jtitle=Wildlife+Society+bulletin&rft.au=Brinkman%2C+Todd+J.&rft.au=Person%2C+David+K.&rft.au=Smith%2C+Winston&rft.au=Chapin%2C+F.+Stuart&rft.date=2013-06-01&rft.issn=1938-5463&rft.eissn=1938-5463&rft.volume=37&rft.issue=2&rft.spage=444&rft.epage=450&rft_id=info:doi/10.1002%2Fwsb.270&rft.externalDBID=10.1002%252Fwsb.270&rft.externalDocID=WSB270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5463&client=summon