A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews
Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes. The aim of this study was to develop and eval...
Gespeichert in:
| Veröffentlicht in: | Journal of medical Internet research Jg. 20; H. 1; S. e26 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Canada
Gunther Eysenbach MD MPH, Associate Professor
22.01.2018
JMIR Publications |
| Schlagworte: | |
| ISSN: | 1438-8871, 1439-4456, 1438-8871 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes.
The aim of this study was to develop and evaluate the usability and content quality of NoteAid, a Web-based natural language processing system that links medical terms in EHR notes to lay definitions, that is, definitions easily understood by lay people.
NoteAid incorporates two core components: CoDeMed, a lexical resource of lay definitions for medical terms, and MedLink, a computational unit that links medical terms to lay definitions. We developed innovative computational methods, including an adapted distant supervision algorithm to prioritize medical terms important for EHR comprehension to facilitate the effort of building CoDeMed. Ten physician domain experts evaluated the user interface and content quality of NoteAid. The evaluation protocol included a cognitive walkthrough session and a postsession questionnaire. Physician feedback sessions were audio-recorded. We used standard content analysis methods to analyze qualitative data from these sessions.
Physician feedback was mixed. Positive feedback on NoteAid included (1) Easy to use, (2) Good visual display, (3) Satisfactory system speed, and (4) Adequate lay definitions. Opportunities for improvement arising from evaluation sessions and feedback included (1) improving the display of definitions for partially matched terms, (2) including more medical terms in CoDeMed, (3) improving the handling of terms whose definitions vary depending on different contexts, and (4) standardizing the scope of definitions for medicines. On the basis of these results, we have improved NoteAid's user interface and a number of definitions, and added 4502 more definitions in CoDeMed.
Physician evaluation yielded useful feedback for content validation and refinement of this innovative tool that has the potential to improve patient EHR comprehension and experience using patient portals. Future ongoing work will develop algorithms to handle ambiguous medical terms and test and evaluate NoteAid with patients. |
|---|---|
| AbstractList | Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes.
The aim of this study was to develop and evaluate the usability and content quality of NoteAid, a Web-based natural language processing system that links medical terms in EHR notes to lay definitions, that is, definitions easily understood by lay people.
NoteAid incorporates two core components: CoDeMed, a lexical resource of lay definitions for medical terms, and MedLink, a computational unit that links medical terms to lay definitions. We developed innovative computational methods, including an adapted distant supervision algorithm to prioritize medical terms important for EHR comprehension to facilitate the effort of building CoDeMed. Ten physician domain experts evaluated the user interface and content quality of NoteAid. The evaluation protocol included a cognitive walkthrough session and a postsession questionnaire. Physician feedback sessions were audio-recorded. We used standard content analysis methods to analyze qualitative data from these sessions.
Physician feedback was mixed. Positive feedback on NoteAid included (1) Easy to use, (2) Good visual display, (3) Satisfactory system speed, and (4) Adequate lay definitions. Opportunities for improvement arising from evaluation sessions and feedback included (1) improving the display of definitions for partially matched terms, (2) including more medical terms in CoDeMed, (3) improving the handling of terms whose definitions vary depending on different contexts, and (4) standardizing the scope of definitions for medicines. On the basis of these results, we have improved NoteAid's user interface and a number of definitions, and added 4502 more definitions in CoDeMed.
Physician evaluation yielded useful feedback for content validation and refinement of this innovative tool that has the potential to improve patient EHR comprehension and experience using patient portals. Future ongoing work will develop algorithms to handle ambiguous medical terms and test and evaluate NoteAid with patients. Background: Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes. Objective: The aim of this study was to develop and evaluate the usability and content quality of NoteAid, a Web-based natural language processing system that links medical terms in EHR notes to lay definitions, that is, definitions easily understood by lay people. Methods: NoteAid incorporates two core components: CoDeMed, a lexical resource of lay definitions for medical terms, and MedLink, a computational unit that links medical terms to lay definitions. We developed innovative computational methods, including an adapted distant supervision algorithm to prioritize medical terms important for EHR comprehension to facilitate the effort of building CoDeMed. Ten physician domain experts evaluated the user interface and content quality of NoteAid. The evaluation protocol included a cognitive walkthrough session and a postsession questionnaire. Physician feedback sessions were audio-recorded. We used standard content analysis methods to analyze qualitative data from these sessions. Results: Physician feedback was mixed. Positive feedback on NoteAid included (1) Easy to use, (2) Good visual display, (3) Satisfactory system speed, and (4) Adequate lay definitions. Opportunities for improvement arising from evaluation sessions and feedback included (1) improving the display of definitions for partially matched terms, (2) including more medical terms in CoDeMed, (3) improving the handling of terms whose definitions vary depending on different contexts, and (4) standardizing the scope of definitions for medicines. On the basis of these results, we have improved NoteAid’s user interface and a number of definitions, and added 4502 more definitions in CoDeMed. Conclusions: Physician evaluation yielded useful feedback for content validation and refinement of this innovative tool that has the potential to improve patient EHR comprehension and experience using patient portals. Future ongoing work will develop algorithms to handle ambiguous medical terms and test and evaluate NoteAid with patients. Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes.BACKGROUNDMany health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes can confuse patients, which may interfere with potential benefits of patient access to EHR notes.The aim of this study was to develop and evaluate the usability and content quality of NoteAid, a Web-based natural language processing system that links medical terms in EHR notes to lay definitions, that is, definitions easily understood by lay people.OBJECTIVEThe aim of this study was to develop and evaluate the usability and content quality of NoteAid, a Web-based natural language processing system that links medical terms in EHR notes to lay definitions, that is, definitions easily understood by lay people.NoteAid incorporates two core components: CoDeMed, a lexical resource of lay definitions for medical terms, and MedLink, a computational unit that links medical terms to lay definitions. We developed innovative computational methods, including an adapted distant supervision algorithm to prioritize medical terms important for EHR comprehension to facilitate the effort of building CoDeMed. Ten physician domain experts evaluated the user interface and content quality of NoteAid. The evaluation protocol included a cognitive walkthrough session and a postsession questionnaire. Physician feedback sessions were audio-recorded. We used standard content analysis methods to analyze qualitative data from these sessions.METHODSNoteAid incorporates two core components: CoDeMed, a lexical resource of lay definitions for medical terms, and MedLink, a computational unit that links medical terms to lay definitions. We developed innovative computational methods, including an adapted distant supervision algorithm to prioritize medical terms important for EHR comprehension to facilitate the effort of building CoDeMed. Ten physician domain experts evaluated the user interface and content quality of NoteAid. The evaluation protocol included a cognitive walkthrough session and a postsession questionnaire. Physician feedback sessions were audio-recorded. We used standard content analysis methods to analyze qualitative data from these sessions.Physician feedback was mixed. Positive feedback on NoteAid included (1) Easy to use, (2) Good visual display, (3) Satisfactory system speed, and (4) Adequate lay definitions. Opportunities for improvement arising from evaluation sessions and feedback included (1) improving the display of definitions for partially matched terms, (2) including more medical terms in CoDeMed, (3) improving the handling of terms whose definitions vary depending on different contexts, and (4) standardizing the scope of definitions for medicines. On the basis of these results, we have improved NoteAid's user interface and a number of definitions, and added 4502 more definitions in CoDeMed.RESULTSPhysician feedback was mixed. Positive feedback on NoteAid included (1) Easy to use, (2) Good visual display, (3) Satisfactory system speed, and (4) Adequate lay definitions. Opportunities for improvement arising from evaluation sessions and feedback included (1) improving the display of definitions for partially matched terms, (2) including more medical terms in CoDeMed, (3) improving the handling of terms whose definitions vary depending on different contexts, and (4) standardizing the scope of definitions for medicines. On the basis of these results, we have improved NoteAid's user interface and a number of definitions, and added 4502 more definitions in CoDeMed.Physician evaluation yielded useful feedback for content validation and refinement of this innovative tool that has the potential to improve patient EHR comprehension and experience using patient portals. Future ongoing work will develop algorithms to handle ambiguous medical terms and test and evaluate NoteAid with patients.CONCLUSIONSPhysician evaluation yielded useful feedback for content validation and refinement of this innovative tool that has the potential to improve patient EHR comprehension and experience using patient portals. Future ongoing work will develop algorithms to handle ambiguous medical terms and test and evaluate NoteAid with patients. |
| Author | Polepalli Ramesh, Balaji Vimalananda, Varsha G Houston, Thomas K Zulman, Donna M Malkani, Samir Yu, Hong Chen, Jinying Druhl, Emily Brandt, Cynthia A |
| AuthorAffiliation | 8 School of Medicine Boston University Boston, MA United States 7 Veterans Affairs Palo Alto Health Care System Menlo Park, CA United States 1 Department of Quantitative Health Sciences University of Massachusetts Medical School Worcester, MA United States 3 Optum Boston, MA United States 5 Center for Medical Informatics Yale University New Haven, CT United States 6 Division of Primary Care and Population Health Stanford University School of Medicine Stanford, CA United States 9 Diabetes Center of Excellence University of Massachusetts Medical School Worcester, MA United States 2 Bedford Veterans Affairs Medical Center Center for Healthcare Organization and Implementation Research Bedford, MA United States 4 Veterans Affairs Connecticut Health Care System West Haven, CT United States |
| AuthorAffiliation_xml | – name: 2 Bedford Veterans Affairs Medical Center Center for Healthcare Organization and Implementation Research Bedford, MA United States – name: 8 School of Medicine Boston University Boston, MA United States – name: 1 Department of Quantitative Health Sciences University of Massachusetts Medical School Worcester, MA United States – name: 4 Veterans Affairs Connecticut Health Care System West Haven, CT United States – name: 3 Optum Boston, MA United States – name: 7 Veterans Affairs Palo Alto Health Care System Menlo Park, CA United States – name: 9 Diabetes Center of Excellence University of Massachusetts Medical School Worcester, MA United States – name: 5 Center for Medical Informatics Yale University New Haven, CT United States – name: 6 Division of Primary Care and Population Health Stanford University School of Medicine Stanford, CA United States |
| Author_xml | – sequence: 1 givenname: Jinying orcidid: 0000-0001-7259-4301 surname: Chen fullname: Chen, Jinying – sequence: 2 givenname: Emily orcidid: 0000-0003-3547-5359 surname: Druhl fullname: Druhl, Emily – sequence: 3 givenname: Balaji orcidid: 0000-0003-2885-9194 surname: Polepalli Ramesh fullname: Polepalli Ramesh, Balaji – sequence: 4 givenname: Thomas K orcidid: 0000-0002-2909-4018 surname: Houston fullname: Houston, Thomas K – sequence: 5 givenname: Cynthia A orcidid: 0000-0001-8179-1796 surname: Brandt fullname: Brandt, Cynthia A – sequence: 6 givenname: Donna M orcidid: 0000-0001-8904-2810 surname: Zulman fullname: Zulman, Donna M – sequence: 7 givenname: Varsha G orcidid: 0000-0003-0738-672X surname: Vimalananda fullname: Vimalananda, Varsha G – sequence: 8 givenname: Samir orcidid: 0000-0001-9076-4327 surname: Malkani fullname: Malkani, Samir – sequence: 9 givenname: Hong orcidid: 0000-0001-9263-5035 surname: Yu fullname: Yu, Hong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29358159$$D View this record in MEDLINE/PubMed |
| BookMark | eNplks1uEzEUhS1URH9gwQsgS2xgkdYez4xtFpWqtlCkUCpI15bHcydxmLGD7QnKy_CsOG2DSlnZks_97rnX5xDtOe8AodeUHBdU1ifLwYZjUdfyGTqgJRMTITjde3TfR4cxLgkpSCnpC7RfSFYJWskD9PsMX-s0Bt3jqXbzUc8B3wRvIEbr5vj7JiYY8GyhE55a9yPiL9Bak9UzCEPE1uHLHkwK3lmDr0D3aYG_gfGhxdc-QcTJZ_AGX0BnnU3Wu_hhR72ANfR-NYBL-Pau3c1iE62x2mXG2sKv-BI973Qf4dXDeYRuP17Ozq8m06-fPp-fTSemJCxNOlHrEmRTyErIUlCjRdWYttU1FW1dNJrxptOMECENLzQ3lHNZMWBtxeuGM3aETu-5q7EZoDXZUl6JWgU76LBRXlv174uzCzX3a1VxKXlBMuDdAyD4nyPEpAYbDfS9duDHqKiUpBSyuuv19ol06cfg8niqqGjBRV2WNKvePHb018ru67Lg5F5ggo8xQKeMTXq74WzQ9ooStQ2H2oZDbcORK94_qdhB_9f-AToJvYU |
| CitedBy_id | crossref_primary_10_1108_DTS_05_2022_0013 crossref_primary_10_2196_formative_8822 crossref_primary_10_1109_ACCESS_2020_2966694 crossref_primary_10_2196_14830 crossref_primary_10_2196_37438 crossref_primary_10_1542_hpeds_2023_007240 crossref_primary_10_1016_j_jbi_2022_104071 crossref_primary_10_1177_01655515231196391 crossref_primary_10_1016_j_imu_2022_100872 crossref_primary_10_1016_j_artmed_2022_102423 crossref_primary_10_1016_j_hlpt_2024_100932 crossref_primary_10_1093_sleep_zsaf035 crossref_primary_10_2196_26354 crossref_primary_10_2196_20797 crossref_primary_10_1186_s12911_023_02136_0 crossref_primary_10_1055_a_2067_5310 crossref_primary_10_1016_j_ijmedinf_2023_105006 crossref_primary_10_1186_s13073_019_0689_8 crossref_primary_10_1177_1609406919887021 crossref_primary_10_1007_s13721_019_0216_2 crossref_primary_10_2196_30537 crossref_primary_10_1007_s11606_020_06304_0 crossref_primary_10_2196_16670 crossref_primary_10_1016_j_ajt_2024_06_009 crossref_primary_10_1016_j_ijmedinf_2019_104058 crossref_primary_10_1186_s12911_018_0723_6 crossref_primary_10_1371_journal_pone_0282824 crossref_primary_10_2196_49704 |
| Cites_doi | 10.1145/169059.169166 10.2196/jmir.2356 10.1136/bmj.292.6520.596 10.1197/jamia.M1687 10.2196/medinform.8531 10.1136/jamia.2009.002733 10.1145/1735223.1735255 10.18653/v1/W15-2619 10.1177/001872089203400407 10.1097/MLR.0b013e31827808db 10.3758/BF03195514 10.1002/pon.673 10.1056/NEJMp0900665 10.1111/1475-6773.12134 10.1197/jamia.M1761 10.1001/jama.285.20.2612 10.7326/0003-4819-153-2-201007200-00008 10.2196/jmir.4847 10.1053/ajem.2000.18040 10.1111/imj.13062 10.1016/j.jbi.2012.07.012 10.1136/amiajnl-2014-002945 10.1111/j.1525-1497.2005.0178.x 10.2196/jmir.4255 10.2196/jmir.2507 10.1016/j.humpath.2014.07.008 10.2196/jmir.7579 10.1016/j.jbi.2011.08.020 10.1111/nhs.12048 10.1006/jbin.2001.1023 10.1177/1049732305276687 10.7326/0003-4819-157-7-201210020-00002 10.1186/1472-6947-8-45 10.1080/10810730.2010.499988 10.1016/j.jbi.2015.07.008 10.1136/amiajnl-2014-003144 10.1111/j.1365-2648.2007.04569.x 10.1136/amiajnl-2014-002723 10.1177/0194599812442783 10.1145/322017.322021 |
| ContentType | Journal Article |
| Copyright | Jinying Chen, Emily Druhl, Balaji Polepalli Ramesh, Thomas K Houston, Cynthia A Brandt, Donna M Zulman, Varsha G Vimalananda, Samir Malkani, Hong Yu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.01.2018. 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Jinying Chen, Emily Druhl, Balaji Polepalli Ramesh, Thomas K Houston, Cynthia A Brandt, Donna M Zulman, Varsha G Vimalananda, Samir Malkani, Hong Yu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.01.2018. 2018 |
| Copyright_xml | – notice: Jinying Chen, Emily Druhl, Balaji Polepalli Ramesh, Thomas K Houston, Cynthia A Brandt, Donna M Zulman, Varsha G Vimalananda, Samir Malkani, Hong Yu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.01.2018. – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Jinying Chen, Emily Druhl, Balaji Polepalli Ramesh, Thomas K Houston, Cynthia A Brandt, Donna M Zulman, Varsha G Vimalananda, Samir Malkani, Hong Yu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.01.2018. 2018 |
| DBID | AAYXX CITATION NPM 3V. 7QJ 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU CNYFK DWQXO E3H F2A FYUFA GHDGH K9. KB0 M0S M1O NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PRQQA 7X8 5PM |
| DOI | 10.2196/jmir.8669 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Applied Social Sciences Index & Abstracts (ASSIA) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Library Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Applied Social Sciences Index and Abstracts (ASSIA) ProQuest Central China ProQuest Central ProQuest Library Science ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Library & Information Science Collection ProQuest Central (New) Social Science Premium Collection ProQuest One Social Sciences ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Library & Information Science |
| EISSN | 1438-8871 |
| ExternalDocumentID | PMC5799720 29358159 10_2196_jmir_8669 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Pittsburgh Pennsylvania |
| GeographicLocations_xml | – name: United States--US – name: Pittsburgh Pennsylvania |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL120823 – fundername: HSRD VA grantid: I01 HX001457 – fundername: NCATS NIH HHS grantid: UL1 TR001863 |
| GroupedDBID | --- .4I .DC 29L 2WC 36B 53G 5GY 5VS 77I 77K 7RV 7X7 8FI 8FJ AAFWJ AAKPC AAWTL AAYXX ABDBF ABIVO ABUWG ACGFO ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS ALSLI AOIJS BAWUL BCNDV BENPR CCPQU CITATION CNYFK CS3 DIK DU5 DWQXO E3Z EAP EBD EBS EJD ELW EMB EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO ICO IEA IHR INH ISN ITC KQ8 M1O M48 NAPCQ OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PPXIY PQQKQ PRQQA RNS RPM SJN SV3 TR2 UKHRP XSB ALIPV NPM 3V. 7QJ 7XB 8FK AZQEC E3H F2A K9. PJZUB PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c403t-f86a4e9b29589481ca85bcdda618d62ba37bfa30089c72a7c177953e3d576b733 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000422944600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1438-8871 1439-4456 |
| IngestDate | Tue Nov 04 01:58:01 EST 2025 Thu Sep 04 19:07:00 EDT 2025 Sun Nov 23 08:41:22 EST 2025 Wed Feb 19 02:34:45 EST 2025 Sat Nov 29 03:22:19 EST 2025 Tue Nov 18 21:24:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | usability testing computer software electronic health records natural language processing consumer health informatics |
| Language | English |
| License | Jinying Chen, Emily Druhl, Balaji Polepalli Ramesh, Thomas K Houston, Cynthia A Brandt, Donna M Zulman, Varsha G Vimalananda, Samir Malkani, Hong Yu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.01.2018. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-f86a4e9b29589481ca85bcdda618d62ba37bfa30089c72a7c177953e3d576b733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9263-5035 0000-0003-0738-672X 0000-0001-8904-2810 0000-0002-2909-4018 0000-0003-3547-5359 0000-0001-8179-1796 0000-0001-9076-4327 0000-0001-7259-4301 0000-0003-2885-9194 |
| OpenAccessLink | https://www.proquest.com/docview/2512786441?pq-origsite=%requestingapplication% |
| PMID | 29358159 |
| PQID | 2512786441 |
| PQPubID | 2033121 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5799720 proquest_miscellaneous_1990489573 proquest_journals_2512786441 pubmed_primary_29358159 crossref_citationtrail_10_2196_jmir_8669 crossref_primary_10_2196_jmir_8669 |
| PublicationCentury | 2000 |
| PublicationDate | 20180122 |
| PublicationDateYYYYMMDD | 2018-01-22 |
| PublicationDate_xml | – month: 1 year: 2018 text: 20180122 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | Canada |
| PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
| PublicationTitle | Journal of medical Internet research |
| PublicationTitleAlternate | J Med Internet Res |
| PublicationYear | 2018 |
| Publisher | Gunther Eysenbach MD MPH, Associate Professor JMIR Publications |
| Publisher_xml | – name: Gunther Eysenbach MD MPH, Associate Professor – name: JMIR Publications |
| References | ref12 ref15 Pyper, C (ref13) 2004; 54 ref53 ref11 Faulkner, L (ref43) 2003; 35 ref10 Macefield, R (ref40) 2009; 5 ref16 ref19 Baldry, M (ref18) 1986; 292 Kandula, S (ref31) 2010; 2010 Zeng-Treitler, Q (ref30) 2007 ref50 ref46 ref48 ref47 ref42 ref41 ref44 Berland, GK (ref26) 2001; 285 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Meystre, SM (ref51) 2008 ref5 Yu, H (ref45) 2007 ref35 ref34 ref37 ref36 ref33 Graber, MA (ref28) 1999; 48 ref2 Xu, H (ref52) 2007 ref1 ref39 ref38 Polepalli, RB (ref32) 2013; 192 ref24 ref23 ref25 Nazi, KM (ref54) 2008 ref20 ref22 Jones, RB (ref17) 1992; 50 ref21 Keselman, A (ref14) 2007 ref27 ref29 |
| References_xml | – ident: ref37 – ident: ref42 doi: 10.1145/169059.169166 – volume: 5 start-page: 34 issue: 1 year: 2009 ident: ref40 publication-title: J Usability Stud – ident: ref10 doi: 10.2196/jmir.2356 – volume: 292 start-page: 596 issue: 6520 year: 1986 ident: ref18 publication-title: Br Med J (Clin Res Ed) doi: 10.1136/bmj.292.6520.596 – ident: ref25 doi: 10.1197/jamia.M1687 – ident: ref33 doi: 10.2196/medinform.8531 – ident: ref39 doi: 10.1136/jamia.2009.002733 – ident: ref44 doi: 10.1145/1735223.1735255 – start-page: 821 year: 2007 ident: ref52 publication-title: AMIA Annu Symp Proc – ident: ref36 doi: 10.18653/v1/W15-2619 – volume: 54 start-page: 38 issue: 498 year: 2004 ident: ref13 publication-title: Br J Gen Pract – ident: ref41 doi: 10.1177/001872089203400407 – ident: ref9 doi: 10.1097/MLR.0b013e31827808db – volume: 192 start-page: 714 year: 2013 ident: ref32 publication-title: Stud Health Technol Inform – volume: 35 start-page: 379 issue: 3 year: 2003 ident: ref43 publication-title: Behav Res Methods Instrum Comput doi: 10.3758/BF03195514 – volume: 50 start-page: 143 issue: 2 year: 1992 ident: ref17 publication-title: Health Bull (Edinb) – ident: ref15 doi: 10.1002/pon.673 – ident: ref3 doi: 10.1056/NEJMp0900665 – ident: ref4 doi: 10.1111/1475-6773.12134 – ident: ref34 doi: 10.1197/jamia.M1761 – volume: 285 start-page: 2612 issue: 20 year: 2001 ident: ref26 publication-title: J Am Med Assoc doi: 10.1001/jama.285.20.2612 – ident: ref6 doi: 10.7326/0003-4819-153-2-201007200-00008 – ident: ref22 doi: 10.2196/jmir.4847 – ident: ref16 doi: 10.1053/ajem.2000.18040 – start-page: 846 year: 2007 ident: ref30 publication-title: AMIA Annu Symp Proc – ident: ref24 doi: 10.1111/imj.13062 – start-page: 399 year: 2007 ident: ref14 publication-title: AMIA Annu Symp Proc – ident: ref23 doi: 10.1016/j.jbi.2012.07.012 – ident: ref47 doi: 10.1136/amiajnl-2014-002945 – ident: ref1 doi: 10.1111/j.1525-1497.2005.0178.x – ident: ref5 doi: 10.2196/jmir.4255 – ident: ref21 doi: 10.2196/jmir.2507 – ident: ref12 doi: 10.1016/j.humpath.2014.07.008 – ident: ref27 doi: 10.2196/jmir.7579 – ident: ref35 doi: 10.1016/j.jbi.2011.08.020 – ident: ref50 doi: 10.1111/nhs.12048 – ident: ref53 doi: 10.1006/jbin.2001.1023 – ident: ref48 doi: 10.1177/1049732305276687 – ident: ref8 doi: 10.7326/0003-4819-157-7-201210020-00002 – ident: ref2 doi: 10.1186/1472-6947-8-45 – ident: ref19 – ident: ref20 doi: 10.1080/10810730.2010.499988 – ident: ref46 doi: 10.1016/j.jbi.2015.07.008 – start-page: 328 year: 2007 ident: ref45 publication-title: Pac Symp Biocomput – ident: ref11 doi: 10.1136/amiajnl-2014-003144 – volume: 48 start-page: 58 issue: 1 year: 1999 ident: ref28 publication-title: J Fam Pract – start-page: 1182 year: 2008 ident: ref54 publication-title: AMIA Annu Symp Proc – ident: ref49 doi: 10.1111/j.1365-2648.2007.04569.x – ident: ref7 doi: 10.1136/amiajnl-2014-002723 – ident: ref29 doi: 10.1177/0194599812442783 – volume: 2010 start-page: 366 year: 2010 ident: ref31 publication-title: AMIA Annu Symp Proc – start-page: 128 year: 2008 ident: ref51 publication-title: Yearb Med Inform – ident: ref38 doi: 10.1145/322017.322021 |
| SSID | ssj0020491 |
| Score | 2.4400637 |
| SecondaryResourceType | review_article |
| Snippet | Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in EHR notes... Background: Many health care systems now allow patients to access their electronic health record (EHR) notes online through patient portals. Medical jargon in... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e26 |
| SubjectTerms | Access Algorithms Ambiguity Blood pressure Candidates Comprehension Content analysis Drugs Electronic health records Evaluation Feedback Health Health care Health education Health literacy Health services Human-computer interaction Influenza Innovations Internet Jargon Lay people Medical language Medical records Medical terminology Natural language processing Original Paper Patient satisfaction Patients Personal health Physicians Practitioner patient relationship Relevance feedback Subject specialists Supervision Systems development Usability Validity Veterans Vocabularies & taxonomies Web portals |
| Title | A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29358159 https://www.proquest.com/docview/2512786441 https://www.proquest.com/docview/1990489573 https://pubmed.ncbi.nlm.nih.gov/PMC5799720 |
| Volume | 20 |
| WOSCitedRecordID | wos000422944600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1438-8871 databaseCode: DOA dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1438-8871 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database (ProQuest) customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1438-8871 databaseCode: M1O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1438-8871 databaseCode: 7RV dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1438-8871 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1438-8871 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYgLj_JaaFcDQohLaGInsc0FFdgKpG5YVQvaniLHTtQgSMomReLP8FvxJE7YAuLCxYfYcix5xvP-hpAnUmtp1VDlUWGoF9JCeCJjuecbg00y_djPuq4lRzxJxGolF87h1ri0yuFN7B5qU2v0ke-jHOYCpffLs68edo3C6KproXGZbAcouy098-OPo8Fltd-gRxOyfBnvf_pSrp-LGHObN2XQH4rl7_mRGwLn8Mb_HvUmue5UTTjoaeMWuZRXO2TPFSrAU3CVSHgz4Fh8h1ydu2D7bfLjABLVwXLAkfNqgqsrsPIOeqxzWJ6qFtCibcAFfWBpX_sGygpmY48d6MudoLd2IamthgttbTf-Dm_yoqz6zLEXw64buUzQZTXAYnDBQB_OaO6QD4ez5eu3nmvn4OnQZ61XiFiFucyojARixGglokwbo-JAmJhmivGsUMwqJVJzqrgOOJcRy5mxNlHGGbtLtqq6yu8T4NIUWZEb3zdW4yx8RXWoRWTNI8NUILMJeTZccKod1jm23PicWpsHaSFFWkiRFibk8bj0rAf4-Nui3eGmU8fjTfrrmifk0ThtuRNDLqrK6_MmDaywD4WMOJuQez1RjX-hHfZcZDfnF8htXIDI3xdnqvK0QwCPONY7-w_-fayH5JpV7zBX0aN0l2y16_N8j1zR39qyWU87VsFxxbtRTMn2q1myOJ52fgk7zoP39tvi3Xxx8hO74yuN |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqgqAXPsrXQgsDAsQlNHE-bCMhVNFWrbpd9bBIe0sdO1FTQVI2Kah_hp_Ab8QTO-kWELceOMfyrrJvZ97Yb94Q8lIoJQwNlR7lmnoRLbjHszD3fK1xSKaf-Fk3tWTMJhM-m4nDJfKz74VBWWUfE7tArWuFZ-QbmIcZx-z94fSrh1Oj8Ha1H6FhYbGfn383JVvzfm_L_L6vKN3Znn7c9dxUAU9Ffth6BU9klIuMipijVYmSPM6U1jIJuE5oJkOWFTI0uVEoRiVTAWMiDvNQG2qeMTwANSH_monjDCVkbHZR4Bm2HVj3IhMHko2TL-X8LU9QS72Y8_4gsr_rMRcS3M7t_-3V3CG3HJWGTYv9u2Qpr1bJumvEgNfgOq0QeeBC2Cq5ceDEBPfIj02YyM52BMbu1BZc34TJ52C93GF6LFvAir0Bd6kFU5PNGigr2B5mCIFt5wJbzcOkNgwe2tpsfA5beVFWVhn3rt91QasFnWoDDvsjJrDXNc198ulK3t4DslzVVf6IABO6yIpc-742jLrwJVWR4rEp_3QoA5GNyJseUKlyXu44UuRzamo6xF6K2EsReyPyYlh6ag1M_rZorUdW6mJYk17AakSeD49N9MErJVnl9VmTBobMRFzELByRhxbEw6fQzlsvNpuzS_AeFqCz-eUnVXncOZzHDPu5_cf__lrPyM3d6cE4He9N9p-QFUNlUZfpUbpGltv5Wb5OrqtvbdnMn3Z_UyBHVw3-X33jgKw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwELWqFlW8cCm3hRYGBIiXsIlzsYOEUGF3RdUlWqFF6lvq2ImaqiRlswX1Z_gQvo5x7IQtIN76wHMsJ3KOZ87YZ2YIeRpLGSMNFQ7lijoBLbjDMz93XKV0k0w3crO2a8mUJQk_OIhna-RHlwujZZWdTWwNtaqlPiMfaj_MuPbew8LKImajyZvTL47uIKVvWrt2GgYi-_n5Nwzfmtd7I_zXzyidjOfv3ju2w4AjA9dfOgWPRJDHGY1DrsuWSMHDTColIo-riGbCZ1khfPSTsWRUMOkxFod-7iuk6RnTh6Fo_jcYkgzcXRtvx8nsYx_uIff2TC0jtArR8PhzuXjJI62sXvWAf9Da39WZK-5ucv1_Xqgb5Jol2bBrdsVNspZXW2THpmjAc7A5WBqTYI3bFtn8YGUGt8j3XUhEW5AEpvY8F2xGBXp6MFXeYX4klqBj-QbsdRfM0c81UFYw7rsLgUn0AhPnQ1Ijt4dljROfwygvyspo5l51s66ouKDVc8CsO3wCc5HT3CafLmX17pD1qq7yewRYrIqsyJXrKuTahSuoDCQPMTBUvvDibEBedOBKpa3yrpuNnKQY7WkcphqHqcbhgDzph56a0iZ_G7TdoSy11q1Jf0FsQB73j9Eu6csmUeX1WZN6SHMCHofMH5C7BtD9W2hbdS_EydkFqPcDdM3zi0-q8qitfR4ynent3v_3Zz0im4j5dLqX7D8gV5HjasGmQ-k2WV8uzvIdckV-XZbN4qHds0AOLxv9PwEg_4rN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Natural+Language+Processing+System+That+Links+Medical+Terms+in+Electronic+Health+Record+Notes+to+Lay+Definitions%3A+System+Development+Using+Physician+Reviews&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Chen%2C+Jinying&rft.au=Druhl%2C+Emily&rft.au=Polepalli+Ramesh%2C+Balaji&rft.au=Houston%2C+Thomas+K&rft.date=2018-01-22&rft.eissn=1438-8871&rft.volume=20&rft.issue=1&rft.spage=e26&rft_id=info:doi/10.2196%2Fjmir.8669&rft_id=info%3Apmid%2F29358159&rft.externalDocID=29358159 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon |