Optical Forces on an Oscillating Dipole Near VO2 Phase Transition

We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO2) film, which exhibits a metal-insulator transition around 340 K and low thermal hysteresis. This configuration emulates the interaction between an illuminated nanosphere and an interface and we employ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Universe (Basel) Ročník 7; číslo 6; s. 159
Hlavní autori: Szilard, Daniela, Abrantes, Patrícia P., Pinheiro, Felipe A., Rosa, Felipe S. S., Farina, Carlos, Kort-Kamp, Wilton J. M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 22.05.2021
MDPI
Predmet:
ISSN:2218-1997, 2218-1997
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO2) film, which exhibits a metal-insulator transition around 340 K and low thermal hysteresis. This configuration emulates the interaction between an illuminated nanosphere and an interface and we employ a classical description to capture its important aspects. We consider both electric and magnetic dipoles for two different configurations, namely with the dipole moments parallel and perpendicular to the VO2 film. By using Bruggeman theory to describe the effective optical response of the material, we show that the thermal hysteresis present in the VO2 transition clearly shows up in the behavior of optical forces. In the near-field regime, the force on both dipoles can change from attractive to repulsive just by heating (or cooling) the film for a selected frequency range. We also verified that the optical forces are comparable to the Casimir-Polder force in a similar system, revealing the possibility of modulating or even changing the sign of the resultant force on an illuminated nano-object due to the presence of a thermochromic material. We hope that this work contributes to set the grounds for alternative approaches to control light-matter interactions using phase-change materials.
AbstractList We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO2) film, which exhibits a metal-insulator transition around 340 K and low thermal hysteresis. This configuration emulates the interaction between an illuminated nanosphere and an interface and we employ a classical description to capture its important aspects. We consider both electric and magnetic dipoles for two different configurations, namely with the dipole moments parallel and perpendicular to the VO2 film. By using Bruggeman theory to describe the effective optical response of the material, we show that the thermal hysteresis present in the VO2 transition clearly shows up in the behavior of optical forces. In the near-field regime, the force on both dipoles can change from attractive to repulsive just by heating (or cooling) the film for a selected frequency range. We also verified that the optical forces are comparable to the Casimir-Polder force in a similar system, revealing the possibility of modulating or even changing the sign of the resultant force on an illuminated nano-object due to the presence of a thermochromic material. We hope that this work contributes to set the grounds for alternative approaches to control light-matter interactions using phase-change materials.
We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO 2 ) film, which exhibits a metal-insulator transition around 340 K and low thermal hysteresis. This configuration emulates the interaction between an illuminated nanosphere and an interface and we employ a classical description to capture its important aspects. We consider both electric and magnetic dipoles for two different configurations, namely with the dipole moments parallel and perpendicular to the VO 2 film. By using Bruggeman theory to describe the effective optical response of the material, we show that the thermal hysteresis present in the VO 2 transition clearly shows up in the behavior of optical forces. In the near-field regime, the force on both dipoles can change from attractive to repulsive just by heating (or cooling) the film for a selected frequency range. We also verified that the optical forces are comparable to the Casimir-Polder force in a similar system, revealing the possibility of modulating or even changing the sign of the resultant force on an illuminated nano-object due to the presence of a thermochromic material. We hope that this work contributes to set the grounds for alternative approaches to control light-matter interactions using phase-change materials.
Author Kort-Kamp, Wilton J. M.
Pinheiro, Felipe A.
Rosa, Felipe S. S.
Farina, Carlos
Szilard, Daniela
Abrantes, Patrícia P.
Author_xml – sequence: 1
  givenname: Daniela
  orcidid: 0000-0002-1709-7166
  surname: Szilard
  fullname: Szilard, Daniela
– sequence: 2
  givenname: Patrícia P.
  orcidid: 0000-0002-6854-2223
  surname: Abrantes
  fullname: Abrantes, Patrícia P.
– sequence: 3
  givenname: Felipe A.
  orcidid: 0000-0001-8712-0555
  surname: Pinheiro
  fullname: Pinheiro, Felipe A.
– sequence: 4
  givenname: Felipe S. S.
  orcidid: 0000-0001-6187-5992
  surname: Rosa
  fullname: Rosa, Felipe S. S.
– sequence: 5
  givenname: Carlos
  orcidid: 0000-0002-0402-3723
  surname: Farina
  fullname: Farina, Carlos
– sequence: 6
  givenname: Wilton J. M.
  orcidid: 0000-0002-0679-6690
  surname: Kort-Kamp
  fullname: Kort-Kamp, Wilton J. M.
BackLink https://www.osti.gov/biblio/1784422$$D View this record in Osti.gov
BookMark eNp1UctKBDEQDKLg8-w16Hk1ySSTmaOoq4K4HtRraDMdzTIma5IV_HujKyKCp35QVd3VvU3WQwxIyD5nR03Ts-Nl8G-YMmrWMq76NbIlBO8mvO_1-q98k-zlPGeMca1q2W2Rk9mieAsjncZkMdMYKAQ6y9aPIxQfnuiZX8QR6Q1Cog8zQW-fISO9SxCyLz6GXbLhYMy49x13yP30_O70cnI9u7g6PbmeWMmaMnFaC6UEKmVROCcsaCeGR4kOmYZmeASJqldauhYbZofBca6UaqQW2LWua3bI1Up3iDA3i-RfIL2bCN58NWJ6MpCqlxGNtVIKJodGtYO0uu0UctFqxjrdYyegah2stGIu3lSzBe2zjSGgLYbrrtJFBR2uQIsUX5eYi5nHZQrVoxFKyr7evWUVdbxC2RRzTuh-VuPMfP7G_PlNZag_jDofPk9ZEvjxX94HxLKVHg
CitedBy_id crossref_primary_10_3390_universe7080266
Cites_doi 10.1103/PhysRevB.80.125119
10.1103/PhysRevLett.58.2194
10.1021/acs.chemrev.7b00252
10.1364/OE.18.011428
10.1038/nature01935
10.1007/978-3-642-32466-6
10.1103/PhysRevA.82.010101
10.1038/ncomms9799
10.1103/PhysRevB.101.104107
10.1364/OE.26.013773
10.15393/j8.art.2013.3002
10.1126/science.1150124
10.1016/j.joule.2018.12.024
10.1021/acsphotonics.8b01026
10.1103/PhysRevLett.24.156
10.1038/nphoton.2008.211
10.1103/PhysRevA.75.062114
10.1119/1.1378015
10.1038/s41566-019-0486-3
10.1364/OL.37.004335
10.1038/nature07593
10.1021/acs.nanolett.0c01574
10.1063/1.1653919
10.1364/OL.25.001065
10.1126/science.aaw6747
10.1038/nphoton.2011.81
10.1038/nphoton.2011.80
10.1021/acsphotonics.7b01343
10.1103/PhysRevB.79.075107
10.1103/PhysRevA.8.14
10.1103/PhysRevB.70.161102
10.1021/acsphotonics.1c00222
10.1364/CLEO_QELS.2021.FTh2K.6
10.1038/ncomms9636
10.1103/PhysRevLett.108.234301
10.1364/OE.20.023598
10.1364/JOSAB.36.000C46
10.1007/s40436-017-0209-2
10.1088/0305-4470/35/10/311
10.1088/0953-4075/40/11/S01
10.1002/adma.202001994
10.1103/PhysRevLett.112.033902
10.1103/PhysRevA.71.042901
10.1103/RevModPhys.70.1039
10.1093/acprof:oso/9780198705093.001.0001
10.1017/CBO9780511813535
10.1088/1361-6528/aa9cb1
10.3390/atoms9010004
10.1002/adom.201900548
10.1063/1.4961406
10.1119/1.3488989
10.1002/andp.201900188
10.1103/PhysRevA.77.013811
10.1103/PhysRevLett.87.237401
10.1021/acs.nanolett.5b02989
10.1038/nphoton.2011.56
10.1103/RevModPhys.70.721
10.1364/OPTICA.5.000787
10.1103/PhysRevA.2.2395
10.1002/lpor.201300109
10.1364/OE.24.017321
10.1002/andp.19354160705
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OTOTI
DOA
DOI 10.3390/universe7060159
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2218-1997
ExternalDocumentID oai_doaj_org_article_cc44204d356d4c7685e126700879e82a
1784422
10_3390_universe7060159
GroupedDBID 5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
LK5
M7R
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OTOTI
ID FETCH-LOGICAL-c403t-f772552e55ce2ff2ca7f2db4efe07a3dba4e59574f6e30cddf115553472e86f83
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666168500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2218-1997
IngestDate Tue Oct 14 14:52:10 EDT 2025
Thu Dec 05 06:30:51 EST 2024
Mon Jun 30 07:28:58 EDT 2025
Sat Nov 29 07:12:24 EST 2025
Tue Nov 18 21:25:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-f772552e55ce2ff2ca7f2db4efe07a3dba4e59574f6e30cddf115553472e86f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
LA-UR-21-23943
89233218CNA000001; 310365/2018-0 9; 309622/2018-2; E26/203.300/2017; 20210327ER
USDOE Laboratory Directed Research and Development (LDRD) Program
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
ORCID 0000-0002-6854-2223
0000-0002-0679-6690
0000-0001-6187-5992
0000-0002-0402-3723
0000-0001-8712-0555
0000-0002-1709-7166
0000000204023723
0000000187120555
0000000161875992
0000000217097166
0000000268542223
0000000206796690
OpenAccessLink https://doaj.org/article/cc44204d356d4c7685e126700879e82a
PQID 2544939060
PQPubID 2059542
ParticipantIDs doaj_primary_oai_doaj_org_article_cc44204d356d4c7685e126700879e82a
osti_scitechconnect_1784422
proquest_journals_2544939060
crossref_primary_10_3390_universe7060159
crossref_citationtrail_10_3390_universe7060159
PublicationCentury 2000
PublicationDate 2021-05-22
PublicationDateYYYYMMDD 2021-05-22
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-22
  day: 22
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
– name: United States
PublicationTitle Universe (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – sequence: 0
  name: MDPI
– name: MDPI AG
References Torricelli (ref_16) 2010; 82
Chaumet (ref_59) 2000; 25
Galkina (ref_44) 2009; 80
Wang (ref_34) 2012; 37
Kruger (ref_33) 2012; 20
Pergament (ref_26) 2013; 1
ref_56
Chang (ref_15) 2007; 75
Komar (ref_22) 2018; 5
Shcherbakov (ref_25) 2015; 15
Jiang (ref_35) 2017; 118
Bruggeman (ref_52) 1935; 416
Wang (ref_49) 2014; 5
Vakil (ref_6) 2014; 112
Szilard (ref_42) 2019; 36
ref_60
Bagnato (ref_12) 1987; 58
Chang (ref_38) 2018; 6
Shalin (ref_10) 2014; 8
Ashkin (ref_2) 1971; 19
Howes (ref_21) 2018; 5
ref_20
Farina (ref_62) 2002; 70
Juan (ref_8) 2011; 5
Qazilbash (ref_54) 2007; 318
Dholakia (ref_5) 2011; 5
Cueff (ref_27) 2015; 6
Qazilbash (ref_55) 2009; 79
Peterseim (ref_57) 2016; 120
Kumar (ref_32) 2018; 26
Zayats (ref_18) 2016; 5
Brixner (ref_7) 2007; 40
Howes (ref_39) 2020; 20
Caride (ref_17) 2005; 71
Chantada (ref_50) 2010; 18
Yang (ref_9) 2009; 457
Christodoulides (ref_14) 2008; 2
Cavalleri (ref_29) 2004; 70
Li (ref_23) 2019; 364
Feinberg (ref_63) 1970; 2
Ashkin (ref_1) 1970; 24
Xin (ref_11) 2020; 32
Jostmeier (ref_31) 2016; 24
Gordon (ref_58) 1973; 8
Jeong (ref_19) 2020; 8
Ranno (ref_41) 2012; 108
Kramadhati (ref_51) 2018; 5
Ge (ref_43) 2020; 101
Farina (ref_61) 2011; 79
Phillips (ref_13) 1998; 70
Cavalleri (ref_28) 2001; 87
Grier (ref_3) 2003; 424
Liu (ref_36) 2017; 29
Berto (ref_24) 2019; 13
Padgett (ref_4) 2011; 5
ref_47
ref_46
Ke (ref_37) 2019; 3
Pirozhenko (ref_45) 2008; 77
Engheta (ref_48) 2015; 6
Kepic (ref_40) 2021; 8
Wan (ref_30) 2019; 531
Farina (ref_64) 2002; 35
Imada (ref_53) 1998; 70
References_xml – volume: 80
  start-page: 125119
  year: 2009
  ident: ref_44
  article-title: Drastic change of the Casimir force at the metal-insulator transition
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.125119
– volume: 58
  start-page: 2194
  year: 1987
  ident: ref_12
  article-title: Continuous Stopping and Trapping of Neutral Atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2194
– volume: 118
  start-page: 3054
  year: 2017
  ident: ref_35
  article-title: Active plasmonics: Principles, structures, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00252
– volume: 18
  start-page: 11428
  year: 2010
  ident: ref_50
  article-title: Optical forces on small magnetodielectric particles
  publication-title: Opt. Express
  doi: 10.1364/OE.18.011428
– volume: 424
  start-page: 810
  year: 2003
  ident: ref_3
  article-title: A revolution in optical manipulation
  publication-title: Nature
  doi: 10.1038/nature01935
– ident: ref_60
  doi: 10.1007/978-3-642-32466-6
– volume: 82
  start-page: 010101
  year: 2010
  ident: ref_16
  article-title: Switching Casimir forces with phase-change materials
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.010101
– volume: 6
  start-page: 8799
  year: 2015
  ident: ref_48
  article-title: Lateral forces on circularly polarizable particles near a surface
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9799
– volume: 101
  start-page: 104107
  year: 2020
  ident: ref_43
  article-title: Tunable casimir equilibria with phase change materials: From quantum trapping to its release
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.104107
– volume: 26
  start-page: 13773
  year: 2018
  ident: ref_32
  article-title: Photoinduced surface plasmon switching at VO2/Au interface
  publication-title: Opt. Express
  doi: 10.1364/OE.26.013773
– volume: 1
  start-page: 24
  year: 2013
  ident: ref_26
  article-title: Oxide electronics and vanadium dioxide perspective: A review
  publication-title: J. Select. Top. Nano Electron. Comput.
  doi: 10.15393/j8.art.2013.3002
– volume: 318
  start-page: 1750
  year: 2007
  ident: ref_54
  article-title: Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging
  publication-title: Science
  doi: 10.1126/science.1150124
– volume: 3
  start-page: 858
  year: 2019
  ident: ref_37
  article-title: Adaptive thermochromic windows from active plasmonic elastomers
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.024
– volume: 5
  start-page: 4554
  year: 2018
  ident: ref_51
  article-title: Passive radiative “thermostat” enabled by phase-change photonic nanostructures
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b01026
– volume: 24
  start-page: 156
  year: 1970
  ident: ref_1
  article-title: Acceleration and Trapping of Particles by Radiation Pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.24.156
– volume: 2
  start-page: 652
  year: 2008
  ident: ref_14
  article-title: Optical trapping: Riding along an Airy beam
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.211
– volume: 75
  start-page: 062114
  year: 2007
  ident: ref_15
  article-title: Experimental approaches to the difference in the Casimir force due to modifications in the optical properties of the boundary surface
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.062114
– volume: 5
  start-page: 1
  year: 2014
  ident: ref_49
  article-title: Lateral optical force on chiral particles near a surface
  publication-title: Nat. Commun.
– volume: 70
  start-page: 421
  year: 2002
  ident: ref_62
  article-title: A simple model for the nonretarded dispersive force between an electrically polarizable atom and a magnetically polarizable one
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1378015
– volume: 13
  start-page: 649
  year: 2019
  ident: ref_24
  article-title: Tunable and free-form planar optics
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0486-3
– volume: 37
  start-page: 4335
  year: 2012
  ident: ref_34
  article-title: Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.004335
– volume: 457
  start-page: 71
  year: 2009
  ident: ref_9
  article-title: Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides
  publication-title: Nature
  doi: 10.1038/nature07593
– volume: 20
  start-page: 4638
  year: 2020
  ident: ref_39
  article-title: Optical Limiting Based on Huygens’ Metasurfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01574
– volume: 19
  start-page: 283
  year: 1971
  ident: ref_2
  article-title: Optical Levitation by Radiation Pressure
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.1653919
– volume: 25
  start-page: 1065
  year: 2000
  ident: ref_59
  article-title: Time-averaged total force on a dipolar sphere in an electromagnetic field
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.001065
– volume: 364
  start-page: 1087
  year: 2019
  ident: ref_23
  article-title: Phase-only transmissive spatial light modulator based on tunable dielectric metasurface
  publication-title: Science
  doi: 10.1126/science.aaw6747
– volume: 5
  start-page: 343
  year: 2011
  ident: ref_4
  article-title: Tweezers with a twist
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.81
– volume: 5
  start-page: 335
  year: 2011
  ident: ref_5
  article-title: Shaping the future of manipulation
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.80
– volume: 5
  start-page: 1742
  year: 2018
  ident: ref_22
  article-title: Dynamic beam switching by liquid crystal tunable dielectric metasurfaces
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01343
– volume: 79
  start-page: 075107
  year: 2009
  ident: ref_55
  article-title: Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.075107
– volume: 8
  start-page: 14
  year: 1973
  ident: ref_58
  article-title: Radiation forces and momenta in dielectric media
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.8.14
– volume: 70
  start-page: 161102
  year: 2004
  ident: ref_29
  article-title: Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.161102
– volume: 8
  start-page: 1048
  year: 2021
  ident: ref_40
  article-title: Optically Tunable Mie Resonance VO2 Nanoantennas for Metasurfaces in the Visible
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.1c00222
– ident: ref_20
  doi: 10.1364/CLEO_QELS.2021.FTh2K.6
– volume: 6
  start-page: 8636
  year: 2015
  ident: ref_27
  article-title: Dynamic control of light emission faster than the lifetime limit using VO2 phase-change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9636
– volume: 108
  start-page: 234301
  year: 2012
  ident: ref_41
  article-title: Tuning near field radiative heat flux through surface excitations with a metal insulator transition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.234301
– volume: 20
  start-page: 23598
  year: 2012
  ident: ref_33
  article-title: Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches
  publication-title: Opt. Express
  doi: 10.1364/OE.20.023598
– volume: 36
  start-page: C46
  year: 2019
  ident: ref_42
  article-title: Hysteresis in the spontaneous emission induced by VO2 phase change
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.36.000C46
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_38
  article-title: Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-017-0209-2
– volume: 35
  start-page: 2477
  year: 2002
  ident: ref_64
  article-title: On the force between an electrically polarizable atom and a magnetically polarizable one
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/35/10/311
– volume: 40
  start-page: S249
  year: 2007
  ident: ref_7
  article-title: Nanoscale force manipulation in the vicinity of a metal nanostructure
  publication-title: J. Phys. B At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/40/11/S01
– volume: 32
  start-page: 2001994
  year: 2020
  ident: ref_11
  article-title: Optical forces: From fundamental to biological applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001994
– volume: 112
  start-page: 033902
  year: 2014
  ident: ref_6
  article-title: Electric Levitation Using ε-Near-Zero Metamaterials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.033902
– volume: 71
  start-page: 042901
  year: 2005
  ident: ref_17
  article-title: Dependences of the van der Waals atom-wall interaction on atomic and material properties
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.042901
– volume: 70
  start-page: 1039
  year: 1998
  ident: ref_53
  article-title: Metal-insulator transitions
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.70.1039
– ident: ref_56
  doi: 10.1093/acprof:oso/9780198705093.001.0001
– ident: ref_47
  doi: 10.1017/CBO9780511813535
– volume: 5
  start-page: e16022-e16022
  year: 2016
  ident: ref_18
  article-title: Repulsion of polarised particles from anisotropic materials with a near-zero permittivity component
  publication-title: Light Sci. Appl.
– volume: 29
  start-page: 024002
  year: 2017
  ident: ref_36
  article-title: Metamaterials based on the phase transition of VO2
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa9cb1
– ident: ref_46
  doi: 10.3390/atoms9010004
– volume: 8
  start-page: 1900548
  year: 2020
  ident: ref_19
  article-title: Dynamic Terahertz Plasmonics Enabled by Phase-Change Materials
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900548
– volume: 120
  start-page: 075102
  year: 2016
  ident: ref_57
  article-title: Optical properties of VO2 films at the phase transition: Influence of substrate and electronic correlations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4961406
– volume: 79
  start-page: 111
  year: 2011
  ident: ref_61
  article-title: On the exact electric and magnetic fields of an electric dipole
  publication-title: Am. J. Phys.
  doi: 10.1119/1.3488989
– volume: 531
  start-page: 1900188
  year: 2019
  ident: ref_30
  article-title: On the optical properties of thin-film vanadium dioxide from the visible to the far infrared
  publication-title: Ann. Der Phys.
  doi: 10.1002/andp.201900188
– volume: 77
  start-page: 013811
  year: 2008
  ident: ref_45
  article-title: Influence of slab thickness on the Casimir force
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.013811
– volume: 87
  start-page: 237401
  year: 2001
  ident: ref_28
  article-title: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.237401
– volume: 15
  start-page: 6985
  year: 2015
  ident: ref_25
  article-title: Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02989
– volume: 5
  start-page: 349
  year: 2011
  ident: ref_8
  article-title: Plasmon nano-optical tweezers
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.56
– volume: 70
  start-page: 721
  year: 1998
  ident: ref_13
  article-title: Nobel Lecture: Laser cooling and trapping of neutral atoms
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.70.721
– volume: 5
  start-page: 787
  year: 2018
  ident: ref_21
  article-title: Dynamic transmission control based on all-dielectric Huygens metasurfaces
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000787
– volume: 2
  start-page: 2395
  year: 1970
  ident: ref_63
  article-title: General theory of the van der Waals interaction: A model-independent approach
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.2.2395
– volume: 8
  start-page: 131
  year: 2014
  ident: ref_10
  article-title: Nano-opto-mechanical effects in plasmonic waveguides
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201300109
– volume: 24
  start-page: 17321
  year: 2016
  ident: ref_31
  article-title: Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites
  publication-title: Opt. Express
  doi: 10.1364/OE.24.017321
– volume: 416
  start-page: 636
  year: 1935
  ident: ref_52
  article-title: The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19354160705
SSID ssj0001759978
Score 2.1520844
Snippet We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO2) film, which exhibits a metal-insulator transition around...
We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO 2 ) film, which exhibits a metal-insulator transition around...
SourceID doaj
osti
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 159
SubjectTerms Electromagnetism
insulator-metal phase transition
Material Science
MATERIALS SCIENCE
Motion pictures
optical forces
Optical properties
Phase transitions
phase-change materials
Polders
Radiation
Vanadium
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFqReeCOWFuQDBy6miR9xckItdMUB7a4QVL1ZiR-l0ipZdrf9_cx4vS0CwYVTpMSWIo_n6c_fALxp6HokBuY8yqrhGN963pWd4RjqU1-cSot0en722Uyn9fl5M88Ft3WGVe5sYjLUfnBUIz8iKq0GE_SqeL_8walrFJ2u5hYad2GPmMrUCPZOTqfzL7dVFqMbzJO2nD4Spx9dbfEOgVhjSmIo_cUdJdZ-fAyoXX_Y5uRwJg__91cfwYMcarLj7d54DHdC_wTuJ8inWz-F49ky1bHZZFihsWBDz9qezdAlLggf11-wj5fLYRHYFJWBnc0Em39Hl8eSd0tAr2fwbXL69cMnnhsqcKcKueERQ2mtRdDaBRGjcK2JwncqxFCYVvquVUE32qhYBVk47yPGi1pLZUSoq1jL5zDqhz68ANb6WBW1K0SshZIq1I2WtKa6w5TL-HIM73bral1mG6emFwuLWQcJwv4miDG8vZmw3BJt_H3oCQnqZhgxZKcXw-rCZoWzziklCuWlrrxymFTpUAq6k1SbJtSiHcMBidniqhJbriNYkdvY0tQ4T4zhcCdam5V6bW_l-vLfnw9gXxD0pdBciEMYbVZX4RXcc9eby_Xqdd6jPwE93e7u
  priority: 102
  providerName: ProQuest
Title Optical Forces on an Oscillating Dipole Near VO2 Phase Transition
URI https://www.proquest.com/docview/2544939060
https://www.osti.gov/biblio/1784422
https://doaj.org/article/cc44204d356d4c7685e126700879e82a
Volume 7
WOSCitedRecordID wos000666168500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2218-1997
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001759978
  issn: 2218-1997
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2218-1997
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001759978
  issn: 2218-1997
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2218-1997
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001759978
  issn: 2218-1997
  databaseCode: PCBAR
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2218-1997
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001759978
  issn: 2218-1997
  databaseCode: BENPR
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2218-1997
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001759978
  issn: 2218-1997
  databaseCode: PIMPY
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hAhIXxFMsLZUPHLiEJn7EzrGFXYFEdyMEVTlZiR-l0ipZ7W459rd3xkmrFQhx4ZJIli1Z39iZb5zxNwBvK7oeicQ8i6KsMuS3PmuLVmdI9akuTql4-nt-9kXP5-b8vKp3Sn1RTtggDzwAd-SclDyXXqjSS4fkWIWC090So6tgeKJGyHp2gql0uqJVhfHRoOUjMK4_uhryHAKpxRSkTLrjhpJaP7563FV_fJOTo5k9gccjQ2THw8yewr3QPYOHKVPTbZ7D8WKVjp_ZrF_jHmd9x5qOLdCTLSmtrbtgHy9X_TKwOa5hdrbgrP6Jnoolp5Tys17A99n024dP2VgHIXMyF9ssIgNWigelXOAxctfoyH0rQwy5boRvGxlUpbSMZRC58z4izVNKSM2DKaMRL2Gv67vwCljjY5kbl_NouBQymEoJgkS1GClpX0zg_S0s1o0i4VSrYmkxWCAc7W84TuDd3YDVoI_x964nhPNdNxK2Tg1objua2_7L3BPYJytZRJVEbh1lA7mtLbTBcXwCB7fGs-Ne3FgSYatwPmX--n_MYB8eccpryVXG-QHsbddX4Q08cL-2l5v1Idw_mc7rr4dpOeLz9HqKbfXn0_rHDdCZ4qc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFkQvvBHbB_gAiEto4tixc-hh27Jq1WV3hUrVm0n8KJVWybK7BfGn-I3MZLMtAsGtB06REieKPeN52J-_AXiZ0_FIDMyjkGZ5hPGti8qkVBGG-lQXJ5O82T0_7avBQJ-d5aMV-LE8C0OwyqVNbAy1qy2tke8QlVaOCXoWtwjKY__9G-Zns92jAxTmK8577072D6O2hEBkRZzOo4DBo5TcS2k9D4HbQgXuSuGDj1WRurIQXuZSiZD5NLbOBYyQpEyF4l5nQaf43deTLxFVqaLd3LZkxy1Y01kucV6tjfb3uh-uV3WUzDEvW3AIpfi7O5cLfIUnlpqEGFF_cX9NlQC81Dib__AFjYPr3f_fhuYB3GtDadZd6P5DWPHVI7jTQFrt7DF0h5NmnZ716ikaQ1ZXrKjYEF3-mPB_1Tk7uJjUY88G2Bt2OuRs9BldOmu8dwNkewIfb6RLT2G1qiv_DFjhQhZrG_OguUiF1yhtkqEsMaVULunA26UcjW3Z1Kmox9hgVkWCN78JvgNvrl6YLIhE_t50jxTjqhkxgDc36um5aQ2KsVYIHguXyswJi0mj9AmnM1da5V7zogObpFYGR5XYgC3BpuzcJErje7wDW0tVMq3RmplrPdr49-MXcPfw5H3f9I8Gx5uwzgnmE8uI8y1YnU8v_Tbctl_nF7Pp83Z-MPh006r4E0WdTVo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qLSAu7KhDC_gAEpcwiZcsB4QKw4hRy0wOUJWTSby0lUbJMDMF8df4dbyXpUUguPXAKVJiR5b9vc3-_B7A04yuR6JjHngRZwH6tzYoozIJ0NWnujix4s3p-eFBMp2mR0dZvgE_-rswRKvsdWKjqG1taI98SKm0MgzQ43DoO1pEPhq_WnwJqIIUnbT25TRaiOy7798wfFu9nIxwrZ9xPn774c27oKswEBgZinXg0bdUijuljOPec1MknttSOu_CpBC2LKRTmUqkj50IjbUeHSilhEy4S2OfCvzvFdhCl1yijG3lk_f5p4sdnkRlGKO1-YQEDn141nItHGWsiSg76i-msKkYgI8aJfsPu9AYu_Gt_3mabsPNzsVme61M3IENV92Faw3V1azuwd5s0ezfs3G9RCXJ6ooVFZuhKzAnXmB1zEani3ru2BSHzg5nnOUnaOpZY9Ubgtt9-Hgp438Am1VduW1ghfVxmJqQ-5RLIV2aKUHrqUoMNRMbDeBFv6badFnWqdjHXGO0RSDQv4FgAM_POyzaBCN_b_qaQHLejDKDNy_q5bHuFI02RkoeSitUbKXBYFK5iNNdrDTJXMqLAewQxDTOKmUJNkSnMmsdJSn24wPY7WGlO2W20heYevjvz0_gOoJNH0ym-ztwgxP7J1QB57uwuV6euUdw1Xxdn66WjztRYfD5smH3E_nXVmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Forces+on+an+Oscillating+Dipole+Near+VO2+Phase+Transition&rft.jtitle=Universe+%28Basel%29&rft.au=Szilard%2C+Daniela&rft.au=Abrantes%2C+Patr%C3%ADcia+P.&rft.au=Pinheiro%2C+Felipe+A.&rft.au=Rosa%2C+Felipe+S.+S.&rft.date=2021-05-22&rft.issn=2218-1997&rft.eissn=2218-1997&rft.volume=7&rft.issue=6&rft.spage=159&rft_id=info:doi/10.3390%2Funiverse7060159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_universe7060159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1997&client=summon