A Vehicle–Bridge Interaction Element: Implementation in ABAQUS and Verification
Vibration analysis of bridges induced by train loads is a crucial aspect of railway design, particularly considering the complexity of vehicle components such as bogie-suspension systems. Consequently, railway engineers have endeavored to improve the computational efficiency and applicability of tra...
Saved in:
| Published in: | Applied sciences Vol. 13; no. 15; p. 8812 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2023
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Vibration analysis of bridges induced by train loads is a crucial aspect of railway design, particularly considering the complexity of vehicle components such as bogie-suspension systems. Consequently, railway engineers have endeavored to improve the computational efficiency and applicability of train models using the finite-element method. This paper introduces a toolbox implemented in ABAQUS through a user-defined element (UEL) subroutine, which incorporates the vehicle–bridge interaction (VBI) element theory. This toolbox effectively handles diverse vehicle–bridge interaction systems. In the proposed theory, the wheel-track contact force is derived based on the bridge response, eliminating the need for an iterative process and significantly reducing computational workload compared to classical physics-based analysis. The presented approach is validated through a moving sprung mass model and a moving rigid bar model. Furthermore, a case study is conducted on a three-dimensional finite-element model of a high-speed railway bridge in China, based on a design sketch, to showcase the capabilities of the developed scheme. The study demonstrates the practical application of the proposed methodology in analyzing vehicle–bridge structures with high complexity. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app13158812 |