Anomaly Detection in Student Activity in Solving Unique Programming Exercises: Motivated Students against Suspicious Ones

This article presents a dataset containing messages from the Digital Teaching Assistant (DTA) system, which records the results from the automatic verification of students’ solutions to unique programming exercises of 11 various types. These results are automatically generated by the system, which a...

Full description

Saved in:
Bibliographic Details
Published in:Data (Basel) Vol. 8; no. 8; p. 129
Main Authors: Demidova, Liliya A., Sovietov, Peter N., Andrianova, Elena G., Demidova, Anna A.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2023
Subjects:
ISSN:2306-5729, 2306-5729
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a dataset containing messages from the Digital Teaching Assistant (DTA) system, which records the results from the automatic verification of students’ solutions to unique programming exercises of 11 various types. These results are automatically generated by the system, which automates a massive Python programming course at MIREA—Russian Technological University (RTU MIREA). The DTA system is trained to distinguish between approaches to solve programming exercises, as well as to identify correct and incorrect solutions, using intelligent algorithms responsible for analyzing the source code in the DTA system using vector representations of programs based on Markov chains, calculating pairwise Jensen–Shannon distances for programs and using a hierarchical clustering algorithm to detect high-level approaches used by students in solving unique programming exercises. In the process of learning, each student must correctly solve 11 unique exercises in order to receive admission to the intermediate certification in the form of a test. In addition, a motivated student may try to find additional approaches to solve exercises they have already solved. At the same time, not all students are able or willing to solve the 11 unique exercises proposed to them; some will resort to outside help in solving all or part of the exercises. Since all information about the interactions of the students with the DTA system is recorded, it is possible to identify different types of students. First of all, the students can be classified into 2 classes: those who failed to solve 11 exercises and those who received admission to the intermediate certification in the form of a test, having solved the 11 unique exercises correctly. However, it is possible to identify classes of typical, motivated and suspicious students among the latter group based on the proposed dataset. The proposed dataset can be used to develop regression models that will predict outbursts of student activity when interacting with the DTA system, to solve clustering problems, to identify groups of students with a similar behavior model in the learning process and to develop intelligent data classifiers that predict the students’ behavior model and draw appropriate conclusions, not only at the end of the learning process but also during the course of it in order to motivate all students, even those who are classified as suspicious, to visualize the results of the learning process using various tools.
AbstractList This article presents a dataset containing messages from the Digital Teaching Assistant (DTA) system, which records the results from the automatic verification of students’ solutions to unique programming exercises of 11 various types. These results are automatically generated by the system, which automates a massive Python programming course at MIREA—Russian Technological University (RTU MIREA). The DTA system is trained to distinguish between approaches to solve programming exercises, as well as to identify correct and incorrect solutions, using intelligent algorithms responsible for analyzing the source code in the DTA system using vector representations of programs based on Markov chains, calculating pairwise Jensen–Shannon distances for programs and using a hierarchical clustering algorithm to detect high-level approaches used by students in solving unique programming exercises. In the process of learning, each student must correctly solve 11 unique exercises in order to receive admission to the intermediate certification in the form of a test. In addition, a motivated student may try to find additional approaches to solve exercises they have already solved. At the same time, not all students are able or willing to solve the 11 unique exercises proposed to them; some will resort to outside help in solving all or part of the exercises. Since all information about the interactions of the students with the DTA system is recorded, it is possible to identify different types of students. First of all, the students can be classified into 2 classes: those who failed to solve 11 exercises and those who received admission to the intermediate certification in the form of a test, having solved the 11 unique exercises correctly. However, it is possible to identify classes of typical, motivated and suspicious students among the latter group based on the proposed dataset. The proposed dataset can be used to develop regression models that will predict outbursts of student activity when interacting with the DTA system, to solve clustering problems, to identify groups of students with a similar behavior model in the learning process and to develop intelligent data classifiers that predict the students’ behavior model and draw appropriate conclusions, not only at the end of the learning process but also during the course of it in order to motivate all students, even those who are classified as suspicious, to visualize the results of the learning process using various tools.
This article presents a dataset containing messages from the Digital Teaching Assistant (DTA) system, which records the results from the automatic verification of students’ solutions to unique programming exercises of 11 various types. These results are automatically generated by the system, which automates a massive Python programming course at MIREA—Russian Technological University (RTU MIREA). The DTA system is trained to distinguish between approaches to solve programming exercises, as well as to identify correct and incorrect solutions, using intelligent algorithms responsible for analyzing the source code in the DTA system using vector representations of programs based on Markov chains, calculating pairwise Jensen–Shannon distances for programs and using a hierarchical clustering algorithm to detect high-level approaches used by students in solving unique programming exercises. In the process of learning, each student must correctly solve 11 unique exercises in order to receive admission to the intermediate certification in the form of a test. In addition, a motivated student may try to find additional approaches to solve exercises they have already solved. At the same time, not all students are able or willing to solve the 11 unique exercises proposed to them; some will resort to outside help in solving all or part of the exercises. Since all information about the interactions of the students with the DTA system is recorded, it is possible to identify different types of students. First of all, the students can be classified into 2 classes: those who failed to solve 11 exercises and those who received admission to the intermediate certification in the form of a test, having solved the 11 unique exercises correctly. However, it is possible to identify classes of typical, motivated and suspicious students among the latter group based on the proposed dataset. The proposed dataset can be used to develop regression models that will predict outbursts of student activity when interacting with the DTA system, to solve clustering problems, to identify groups of students with a similar behavior model in the learning process and to develop intelligent data classifiers that predict the students’ behavior model and draw appropriate conclusions, not only at the end of the learning process but also during the course of it in order to motivate all students, even those who are classified as suspicious, to visualize the results of the learning process using various tools.Dataset: doi: 10.5281/zenodo.8092417.Dataset License: CC-BY-4.0
Audience Academic
Author Sovietov, Peter N.
Demidova, Liliya A.
Andrianova, Elena G.
Demidova, Anna A.
Author_xml – sequence: 1
  givenname: Liliya A.
  orcidid: 0000-0003-4516-3746
  surname: Demidova
  fullname: Demidova, Liliya A.
– sequence: 2
  givenname: Peter N.
  surname: Sovietov
  fullname: Sovietov, Peter N.
– sequence: 3
  givenname: Elena G.
  orcidid: 0000-0001-6418-6797
  surname: Andrianova
  fullname: Andrianova, Elena G.
– sequence: 4
  givenname: Anna A.
  surname: Demidova
  fullname: Demidova, Anna A.
BookMark eNptkV9LHDEUxQexoFWf-gUCfSxr83-Svi3WtoJiwfocMpk7Q5aZZJtkxP32zboVpJQ8JBzO73BvzvvmOMQATfOB4EvGNP7c22IVVphQfdScUoblSrRUH795nzQXOW8wxpRyIak6bXbrEGc77dBXKOCKjwH5gB7K0kMoaF2VJ192L1qcnnwY0WPwvxdAP1Mck53nvXT9DMn5DPkLuouVsAX614yM7Gh9yAU9LHnrnY9LRvcB8nnzbrBThou_91nz-O3619WP1e3995ur9e3KcczKCogC5ZxgoDDrdUewarnuGOUds63VxILoOFGyl30LBCTlVA1EUgpcDCDZWXNzyO2j3Zht8rNNOxOtNy9CTKOxqXg3gRGkI63WmAo1cD2wTnVSCcEdc5JITmrWx0PWNsX6CbmYTVxSqOMbqoTUbStbUV2XB9doa6gPQyzJunp6mL2rpQ2-6uu2jqowp3uAHACXYs4JBuN8sfsyKugnQ7DZN2zeNFyZT_8wr6v9z_0HH0GpBQ
CitedBy_id crossref_primary_10_3390_data9100121
crossref_primary_10_3390_fi15090314
crossref_primary_10_1016_j_caeai_2025_100403
Cites_doi 10.1016/j.heliyon.2023.e13939
10.1109/ICCCBDA55098.2022.9778874
10.3390/data8060109
10.3390/jimaging8040113
10.21667/1995-4565-2022-81-51-64
10.3390/e21050485
10.1093/comjnl/bxh119
10.3390/app12031289
10.21105/joss.00861
10.1109/TELE55498.2022.9801060
10.1109/ACCESS.2020.2990980
10.1155/2022/4151487
10.1145/2325296.2325344
10.1109/ICADIWT.2014.6814687
10.1109/SMC.2018.00255
10.32362/2500-316X-2022-10-3-7-23
10.3390/software1010002
10.1109/TELE52840.2021.9482762
10.1002/cjce.5450820602
10.1109/ACCESS.2020.2988796
10.3390/a15090329
10.1109/MS.2016.147
10.1109/IFEEA51475.2020.00199
10.1109/DSAA49011.2020.00096
10.32362/2500-316X-2023-11-1-7-17
10.1109/TPAMI.2002.1017616
10.1080/01621459.1963.10500845
10.1109/18.61115
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/data8080129
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2306-5729
ExternalDocumentID oai_doaj_org_article_51b17990258f49f3b8b68554c3c61641
A762480425
10_3390_data8080129
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 8FE
8FG
AADQD
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
MODMG
M~E
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-e18e8cc53e803d9b108749b324b3a7a91ae5b4186d6d7e1e62428f1622e45fe63
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055995900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5729
IngestDate Tue Oct 14 19:07:54 EDT 2025
Fri Jul 25 08:33:48 EDT 2025
Tue Nov 04 18:38:01 EST 2025
Sat Nov 29 07:13:06 EST 2025
Tue Nov 18 21:28:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-e18e8cc53e803d9b108749b324b3a7a91ae5b4186d6d7e1e62428f1622e45fe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4516-3746
0000-0001-6418-6797
OpenAccessLink https://doaj.org/article/51b17990258f49f3b8b68554c3c61641
PQID 2856977675
PQPubID 2055419
ParticipantIDs doaj_primary_oai_doaj_org_article_51b17990258f49f3b8b68554c3c61641
proquest_journals_2856977675
gale_infotracacademiconefile_A762480425
crossref_citationtrail_10_3390_data8080129
crossref_primary_10_3390_data8080129
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Data (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lin (ref_22) 1991; 37
(ref_10) 2022; 1
ref_13
ref_35
(ref_9) 2020; 8
ref_12
ref_34
ref_11
Moussiades (ref_14) 2005; 48
ref_33
ref_31
Pedregosa (ref_43) 2011; 12
ref_18
ref_39
ref_16
Berthiaux (ref_21) 2004; 82
ref_15
Ebert (ref_30) 2016; 33
Ester (ref_38) 1996; 96
Gorchakov (ref_27) 2022; 82
Wang (ref_32) 2021; 22
Starichkova (ref_5) 2023; 11
Kanungo (ref_36) 2002; 24
ref_23
ref_44
ref_20
Ward (ref_25) 1963; 58
ref_42
Alsariera (ref_3) 2022; 2022
ref_41
ref_40
ref_1
Sinaga (ref_37) 2020; 8
Andrianova (ref_17) 2022; 10
Sokal (ref_24) 1957; 11
ref_2
ref_29
ref_28
ref_26
ref_8
ref_4
ref_7
ref_6
Demidova (ref_19) 2022; 81
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_4
  doi: 10.1016/j.heliyon.2023.e13939
– ident: ref_1
  doi: 10.1109/ICCCBDA55098.2022.9778874
– ident: ref_34
– volume: 96
  start-page: 226
  year: 1996
  ident: ref_38
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– ident: ref_26
  doi: 10.3390/data8060109
– ident: ref_11
– ident: ref_33
  doi: 10.3390/jimaging8040113
– volume: 81
  start-page: 51
  year: 2022
  ident: ref_19
  article-title: Clustering of Program Source Text Representations Based on Markov Chains
  publication-title: Vestn. Ryazan State Radio Eng. Univ.
  doi: 10.21667/1995-4565-2022-81-51-64
– ident: ref_23
  doi: 10.3390/e21050485
– volume: 48
  start-page: 651
  year: 2005
  ident: ref_14
  article-title: PDetect: A Clustering Approach for Detecting Plagiarism in Source Code Datasets
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxh119
– ident: ref_2
  doi: 10.3390/app12031289
– ident: ref_31
  doi: 10.21105/joss.00861
– ident: ref_16
  doi: 10.1109/TELE55498.2022.9801060
– ident: ref_42
– volume: 8
  start-page: 81154
  year: 2020
  ident: ref_9
  article-title: Building a Comprehensive Automated Programming Assessment System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990980
– ident: ref_35
– ident: ref_44
– volume: 2022
  start-page: 11
  year: 2022
  ident: ref_3
  article-title: Assessment and Evaluation of Different Machine Learning Algorithms for Predicting Student Performance
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/4151487
– ident: ref_6
  doi: 10.1145/2325296.2325344
– ident: ref_39
  doi: 10.1109/ICADIWT.2014.6814687
– volume: 22
  start-page: 9129
  year: 2021
  ident: ref_32
  article-title: Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
  publication-title: J. Mach. Learn. Res.
– ident: ref_8
  doi: 10.1109/SMC.2018.00255
– volume: 10
  start-page: 7
  year: 2022
  ident: ref_17
  article-title: Pedagogical Design of a Digital Teaching Assistant in Massive Professional Training for the Digital Economy
  publication-title: Russ. Technol. J.
  doi: 10.32362/2500-316X-2022-10-3-7-23
– volume: 1
  start-page: 3
  year: 2022
  ident: ref_10
  article-title: Automated Code Assessment for Education: Review, Classification and Perspectives on Techniques and Tools
  publication-title: Software
  doi: 10.3390/software1010002
– ident: ref_18
  doi: 10.1109/TELE52840.2021.9482762
– ident: ref_29
– volume: 82
  start-page: 1143
  year: 2004
  ident: ref_21
  article-title: Applications of Markov chains in particulate process engineering: A review
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450820602
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_43
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref_37
  article-title: Unsupervised K-Means Clustering Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– ident: ref_20
  doi: 10.3390/a15090329
– volume: 33
  start-page: 27
  year: 2016
  ident: ref_30
  article-title: Cyclomatic complexity
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2016.147
– ident: ref_12
– volume: 82
  start-page: 89
  year: 2022
  ident: ref_27
  article-title: Automated Program Text Analysis Using Representations Based on Markov Chains and Extreme Learning Machines
  publication-title: Vestn. Ryazan State Radio Eng. Univ.
– ident: ref_40
  doi: 10.1109/IFEEA51475.2020.00199
– ident: ref_41
  doi: 10.1109/DSAA49011.2020.00096
– volume: 11
  start-page: 7
  year: 2023
  ident: ref_5
  article-title: Developing the data management component of an academic discipline program for an educational management information system
  publication-title: Russ. Technol. J.
  doi: 10.32362/2500-316X-2023-11-1-7-17
– volume: 24
  start-page: 881
  year: 2002
  ident: ref_36
  article-title: An efficient k-means clustering algorithm: Analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref_15
– volume: 58
  start-page: 236
  year: 1963
  ident: ref_25
  article-title: Hierarchical Grouping to Optimize an Objective Function
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500845
– ident: ref_13
– volume: 37
  start-page: 145
  year: 1991
  ident: ref_22
  article-title: Divergence Measures Based on the Shannon Entropy
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.61115
– volume: 11
  start-page: 130
  year: 1957
  ident: ref_24
  article-title: A Statistical Method for Evaluating Systematic Relationships
  publication-title: Evolution
SSID ssj0002245628
Score 2.2682557
Snippet This article presents a dataset containing messages from the Digital Teaching Assistant (DTA) system, which records the results from the automatic verification...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 129
SubjectTerms Academic achievement
Algorithms
Anomalies
anomalies detection
Certification
Cluster analysis
Clustering
Colleges & universities
Computer programming
Datasets
Differential thermal analysis
Digital Teaching Assistant
Higher education
Learning
Markov analysis
Markov chains
Plagiarism
Programming languages
Python
Regression models
Software
Source code
Student behavior
Students
tasks
Teaching assistants
Tests, problems and exercises
typical students
unique programming exercises
Uniqueness
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFWh5ioUU-VOIhRY3jRyZc0La04gBlpVKp4mI5jlOttM0umy1S_z0ex7vlAFy4OpblaMbz8vj7APZ9CIWw4XXmKqsyaWUe7CC6rLAeLXqphY2S_lyenuLFRTVJBbc-tVWubWI01M3cUY38oEClK4KeUR8WPzJijaLb1UShcRfuEUoCUTdM1PdNjaWgW70Ch2d5ImT3B9R2SUiKPIaUt44o4vX_zSpHV3Py6H83uQ0PU5DJxoNW7MAd3z2GnXSMe_YmYU2_fQI3If2_srMb9tGvYlNWx6YdOxsAL9nYDdwScWw-o9oDO4-Ir2wy9HVd0dBxom3q37MvA12ab9Zr9Mxe2mmIQdnZdb-YOmq5ZV-DfX0K5yfH344-ZYmNIXMyF6vMc_TonBIec9FUNc-xlFUdArJa2NJW3HpVS4660U3puaeHJ9hyXRReqtZr8Qy2unnnnwPLXWNl4VBXOmiDLy0vhWqCZ0Tylq0cwbu1aIxLUOXEmDEzIWUhOZrf5DiC_c3kxYDQ8edphyTjzRSC1Y4D8-WlSafUKF4TQl6IA7GVVStqrDX18TnhdMgr-Qhek4YYOvxhQ86mNwzhtwhGy4yDa5FIdnAEu2sNMckq9OZWPV78-_NLeEC09kOj4S5srZbXfg_uu5-rab98FZX8F_8ABuI
  priority: 102
  providerName: ProQuest
Title Anomaly Detection in Student Activity in Solving Unique Programming Exercises: Motivated Students against Suspicious Ones
URI https://www.proquest.com/docview/2856977675
https://doaj.org/article/51b17990258f49f3b8b68554c3c61641
Volume 8
WOSCitedRecordID wos001055995900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: P5Z
  dateStart: 20160601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: BENPR
  dateStart: 20160601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5729
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245628
  issn: 2306-5729
  databaseCode: PIMPY
  dateStart: 20160601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4cAFUR5ioVQ-VOIhRY3jR8bctrAVSHSJKJUKF8txHLRom1bNFqn_Ho_tLXsAceGSw8iKHM94HtE33xCy50MqBB1rC6etLIQVZfCD4IrKerDgheI2avpjPZ_D6aluNkZ9ISYs0QOng9uXrEXSshCaoRe65y20CqFVjjsVUv1Y-JS13iimfkRSF8zsITXk8VDX7yPgEjkUWUwmf4egyNT_N38cg8zhfXIvZ4d0mna1TW754QHZzvdvpC8zSfSrh-Q61O1ndnlN3_lVRFMNdDHQ48RUSacuDYWIsvMl_jSgJ5GqlTYJkHWGolmetzS-oUdpzpnv1u8Yqf1uFyF5pMdX48XCIVaWfgqO8RE5OZx9efu-yGMUCidKvio8Aw_OSe6h5J1uWQm10G3IpFpua6uZ9bIVDFSnutozjx0j0DNVVV7I3iv-mGwN54N_QmjpOisqB0qroEZfW1Zz2YWQBhjmejEhr9cna1zmGMdRF0sTag1Ug9lQw4Ts3Sy-SNQaf152gCq6WYJ82FEQrMRkKzH_spIJeYEKNnhrw4aczc0H4bOQ_8pMQ0wQgA5sQnbWNmDydR5NBVJp5D2ST__Hbp6Ruzi1PuEId8jW6vLKPyd33M_VYrzcJbcPZvPm82606PBs5Lcgaz4cNV9_AcrP-xM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8AOMiCgP8MMRFihZf4jhICBW2adXaUmmbNJ6M4zhTpS4tTQfqn-I34pNLxwPwtgdeHctK7C_fObbP-Q7AjvOukMpoGtjERIEwIvQ8qGzAjFNGOSG5qVZ6EI9G6uwsGW_AzzYXBsMqW06siDqbWTwj32UqkglKz0Qf5t8CrBqFt6ttCY0aFkdu9cNv2cr3_T2_vi8ZO9g_-XQYNFUFAitCvgwcVU5ZG3GnQp4lKQ1VLJLUOxYpN7FJqHFRKqiSmcxiRx0mUKicSsaciHInuR_3BmwKBHsHNsf94fjL-lSH4T0iU3UiIOdJuIuBnqjdSCsn9sr0VRUC_mYHKuN2cPd_m5Z7cKdxo0mvxv0WbLjiPmw1RFWS142a9psHsOoVswszXZE9t6zCzgoyKchxLelJeraunlG1zaZ4ukJOK01bMq4j1y6wab8pTFW-I8O6IJzL2jFKYs7NxHvZ5PiynE8sBhWTz96CPITTa5mCR9ApZoV7DCS0mRHMKplIj3cXGxrzKPO2X6E_kIsuvG2hoG0jxo41Qabab8oQN_o33HRhZ915XmuQ_LnbR8TUugsKh1cNs8W5bnhIRzRFDUDv6apcJDlPVSoxUtFyK_3OmXbhFSJSI735F7KmydLwn4VCYbrnjadQyPRd2G4RqRveK_UVHJ_8-_ELuHV4MhzoQX909BRuM-861mGV29BZLi7dM7hpvy8n5eJ584sR-Hrd8P0FmUhj2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwGLXGQGgvwLiIjgF-GOIiRY0vcRwkhApdxbRRKo1JEy_GcZypUpeUpgP1r_Hr8Oc4HQ_A2x54dawol-PvO7aPz4fQnnVUSBYkj0ymk4hrHrs4KE1EtZVaWi6Y9n_6KB2P5elpNtlAP7uzMCCr7GKiD9RFbWCNvE9lIjKwnkn6ZZBFTIajt_NvEVSQgp3WrpxGC5FDu_rhpm_Nm4Oh-9fPKB3tf37_IQoVBiLDY7aMLJFWGpMwK2NWZDmJZcqz3JGMnOlUZ0TbJOdEikIUqSUWDlPIkghKLU9KK5i77zV0PXVzTJATTpIv6_UdCjuKVLZHAhnL4j5IPsHFkXg6e5kEfa2Av2UEn-ZGt__nD3QH3QrkGg_a0bCNNmx1F22H8NXgF8Fj--U9tBpU9bmerfDQLr0YrcLTCh-3Rp94YNqaGr6tnsGaCz7xTrd40urZzqFpP5Sral7jj22ZOFt092iwPtNTx73x8UUznxqQGuNPLq_cRydX8gkeoM2qruxDhGNTaE6NFJlwo8CmmqQsKRwjkMASSt5DrzpYKBMs2qFSyEy5qRpgSP2GoR7aW3eet84kf-72DvC17gJ24r6hXpypEJ1UQnJwBnT8V5Y8K1kucwH6RcOMcPNp0kPPAZ0Kgp57IKPD2Q33WmAfpgYupXIJ8b-Hdjt0qhANG3UJzZ1_X36KbjrMqqOD8eEjtEUdn2y1lrtoc7m4sI_RDfN9OW0WT_xYw-jrVWP3F2VEazs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+Student+Activity+in+Solving+Unique+Programming+Exercises%3A+Motivated+Students+against+Suspicious+Ones&rft.jtitle=Data+%28Basel%29&rft.au=Demidova%2C+Liliya+A.&rft.au=Sovietov%2C+Peter+N.&rft.au=Andrianova%2C+Elena+G.&rft.au=Demidova%2C+Anna+A.&rft.date=2023-08-01&rft.issn=2306-5729&rft.eissn=2306-5729&rft.volume=8&rft.issue=8&rft.spage=129&rft_id=info:doi/10.3390%2Fdata8080129&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_data8080129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5729&client=summon