Analytic Time Reentry Cooperative Guidance for Multi-Hypersonic Glide Vehicles

Aiming at the cooperative guidance problem of multi-hypersonic glide vehicles, a cooperative guidance method based on a parametric design and an analytical solution of time-to-go is proposed. First, the hypersonic reentry trajectory optimization problem was transformed into a parameter optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 13; H. 8; S. 4987
Hauptverfasser: Xu, Hui, Cai, Guangbin, Fan, Yonghua, Wei, Hao, Li, Xin, Wang, Yongchao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.04.2023
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the cooperative guidance problem of multi-hypersonic glide vehicles, a cooperative guidance method based on a parametric design and an analytical solution of time-to-go is proposed. First, the hypersonic reentry trajectory optimization problem was transformed into a parameter optimization problem. The parameters were optimized to determine the angle of attack profile and the time to enter the altitude velocity reentry corridor. Then, using the quasi-equilibrium glide condition, the estimation form of the remaining flight time was analytically derived to satisfy accurately the cooperative time constraint. Using the remaining time-to-go and range-to-go, combined with the heading angle deviation corridor, the bank angle command was further calculated. Finally, the swarm intelligence optimization algorithm was used to optimize the design parameters to obtain the cooperative guidance trajectory satisfying the time constraint. Simulations showed that the analytical time reentry cooperative guidance algorithm proposed in this paper can accurately meet the time constraints and cooperative flight accuracy. Monte Carlo simulation experiments verified that the proposed algorithm demonstrates a robust performance.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app13084987