A Geometric Calibration Method of Hydrophone Array Based on Maximum Likelihood Estimation with Sources in Near Field

Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geom...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of marine science and engineering Ročník 8; číslo 9; s. 678
Hlavní autori: Zou, Nan, Jia, Zhenqi, Fu, Jin, Feng, Jia, Liu, Mengqi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2020
Predmet:
ISSN:2077-1312, 2077-1312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geometry error model, the objective function of nonlinear optimization problem is constructed by using the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration is studied. The strong reflections are considered as the coherent sources, and the compensation strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE) is used to solve the geometry errors and sources’ position. The method in this paper is compared with the eigenvector method. The simulation results show that the method in this paper is more accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath environment. Experiment results further verify the effectiveness.
AbstractList Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geometry error model, the objective function of nonlinear optimization problem is constructed by using the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration is studied. The strong reflections are considered as the coherent sources, and the compensation strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE) is used to solve the geometry errors and sources’ position. The method in this paper is compared with the eigenvector method. The simulation results show that the method in this paper is more accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath environment. Experiment results further verify the effectiveness.
Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geometry error model, the objective function of nonlinear optimization problem is constructed by using the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration is studied. The strong reflections are considered as the coherent sources, and the compensation strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE) is used to solve the geometry errors and sources' position. The method in this paper is compared with the eigenvector method. The simulation results show that the method in this paper is more accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath environment. Experiment results further verify the effectiveness. Keywords: long hydrophone array; element position error; unconditioned maximum likelihood detector (UML); correlated multipath channel; optimization solution; lake experiment
Audience Academic
Author Fu, Jin
Liu, Mengqi
Jia, Zhenqi
Zou, Nan
Feng, Jia
Author_xml – sequence: 1
  givenname: Nan
  surname: Zou
  fullname: Zou, Nan
– sequence: 2
  givenname: Zhenqi
  surname: Jia
  fullname: Jia, Zhenqi
– sequence: 3
  givenname: Jin
  surname: Fu
  fullname: Fu, Jin
– sequence: 4
  givenname: Jia
  surname: Feng
  fullname: Feng, Jia
– sequence: 5
  givenname: Mengqi
  surname: Liu
  fullname: Liu, Mengqi
BookMark eNptkU2PFCEQholZE9d1T_4BEo9mVmi6gT6Ok_1KRj2o507xtcPY3YzAROffW24bszHCAVI89dZL1UtyNqfZE_KasyshevZuPxWvWc-k0s_IecOUWnHBm7Mn9xfkspQ9w6UbyZk8J3VNb32afM3R0g2M0WSoMc30g6-75GgK9O7kcjrssBhd5wwn-h6Kxxdk4GecjhPdxm9-jLuE_HWpcVoUfsS6o5_TMVtfaJzpRw-Z3kQ_ulfkeYCx-Ms_5wX5enP9ZXO32n66vd-styvbMlFXTloj0Sd0ANwKzoXQTXDCSik7EUIPXFrwUgoXrDY-GKcV15aLoHvLOnFB7hddl2A_HDI6y6chQRweAyk_DJBrtKMfhDEgm0Y616m26zutoTXKCNMrCBo8ar1ZtA45fT_6Uoc9fm1G-0PTtkx1jCuJ1NVCPQCKxjmkmsHidn6KFlsYIsbXsuVoTyiFCW-XBJtTKdmHvzY5G36PdXgyVqT5P7SN9bHbWCaO_835Ba2Mp9Q
CitedBy_id crossref_primary_10_1109_JOE_2022_3164721
crossref_primary_10_1109_JOE_2024_3357937
Cites_doi 10.1109/TSP.2014.2310431
10.1016/j.sigpro.2019.107267
10.1109/LGRS.2019.2938788
10.1109/78.127958
10.1109/TSP.2014.2307837
10.1109/ISSPIT.2016.7886006
10.1016/j.matcom.2020.04.003
10.1016/0165-1684(91)90013-9
10.1049/ip-rsn:19949538
10.1109/78.275633
10.2478/jaiscr-2020-0020
10.1109/LSP.2014.2377556
10.1109/TAP.2009.2021931
10.1109/LAWP.2019.2895268
10.1109/29.45542
10.1049/iet-spr.2011.0133
10.1007/s00034-018-0899-0
10.1016/j.sigpro.2020.107668
10.1109/ICASSP.2014.6854635
10.7498/aps.64.024304
10.1016/j.electacta.2010.09.017
10.1002/0471221104
10.1049/iet-com.2019.1045
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse8090678
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database (subscription)
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Environment Abstracts
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_3bba6226dd57459588a4b7b3b97af8ae
A641053377
10_3390_jmse8090678
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c403t-d6cb6261a5aa1c3113382fd3c66653ff9a16cae663dfc8befbd8718c13f89c053
IEDL.DBID PIMPY
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579945600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-1312
IngestDate Tue Oct 14 19:08:15 EDT 2025
Fri Jul 25 10:33:47 EDT 2025
Tue Nov 04 17:59:46 EST 2025
Tue Nov 18 21:09:02 EST 2025
Sat Nov 29 07:14:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-d6cb6261a5aa1c3113382fd3c66653ff9a16cae663dfc8befbd8718c13f89c053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/2440750176?pq-origsite=%requestingapplication%
PQID 2440750176
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_3bba6226dd57459588a4b7b3b97af8ae
proquest_journals_2440750176
gale_infotracacademiconefile_A641053377
crossref_primary_10_3390_jmse8090678
crossref_citationtrail_10_3390_jmse8090678
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jaroslaw (ref_25) 2020; 10
Gang (ref_26) 2020; 175
Wang (ref_14) 2010; 38
Weiss (ref_7) 1989; 37
ref_11
Ng (ref_8) 2009; 57
Ping (ref_2) 2014; 62
Nan (ref_12) 2016; 23
Kim (ref_18) 2019; 18
Dajun (ref_21) 2020; 14
Chen (ref_13) 2020; 17
ref_15
Ye (ref_3) 2020; 166
Eric (ref_17) 1994; 42
Yang (ref_1) 2014; 62
Jiajia (ref_19) 2019; 38
ref_22
Wan (ref_23) 2012; 6
Weiss (ref_16) 1991; 22
Tahere (ref_24) 2020; 177
Wang (ref_10) 2015; 64
Kim (ref_9) 2015; 22
Schmidt (ref_4) 1992; 40
ref_5
Ng (ref_20) 1994; 141
ref_6
References_xml – volume: 62
  start-page: 2504
  year: 2014
  ident: ref_2
  article-title: An Hybrid Cramer-Rao Bound in Closed Form for Direction-of-Arrival Estimation by an “Acoustic Vector Sensor” With Gain-Phase Uncertainties
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2310431
– volume: 166
  start-page: 107267
  year: 2020
  ident: ref_3
  article-title: Mixed source localization and gain-phase perturbation calibration in partly calibrated symmetric uniform linear arrays
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107267
– ident: ref_5
– volume: 17
  start-page: 988
  year: 2020
  ident: ref_13
  article-title: Calibration and Evaluation of a Circular Antenna Array for HF Radar Based on AIS Information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2938788
– volume: 40
  start-page: 857
  year: 1992
  ident: ref_4
  article-title: Multilinear array manifold interpolation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.127958
– volume: 62
  start-page: 2330
  year: 2014
  ident: ref_1
  article-title: “Quasi-Blind” Calibration of an Array of Acoustic Vector-Sensors That Are Subject to GainErrors/Mis-Location/Mis-Orientation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2307837
– ident: ref_11
  doi: 10.1109/ISSPIT.2016.7886006
– volume: 177
  start-page: 46
  year: 2020
  ident: ref_24
  article-title: Parameter optimization of software reliability models using improved differential evolution algorithm
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.04.003
– volume: 22
  start-page: 251
  year: 1991
  ident: ref_16
  article-title: Array shape calibration using eigenstructure methods
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(91)90013-9
– volume: 141
  start-page: 25
  year: 1994
  ident: ref_20
  article-title: Array gainlphase calibration techniques for adaptive beamforming and direction finding
  publication-title: IEEE Proc. Radar Sonar Navig.
  doi: 10.1049/ip-rsn:19949538
– volume: 42
  start-page: 471
  year: 1994
  ident: ref_17
  article-title: Critical Study of a Self-calibrating Direction-Finding Method for Arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.275633
– volume: 10
  start-page: 299
  year: 2020
  ident: ref_25
  article-title: Local Levenberg-Marquardt Algorithm for Learning Feedforward Neural Networks
  publication-title: J. Artif. Intell. Soft Comput. Res.
  doi: 10.2478/jaiscr-2020-0020
– ident: ref_6
– volume: 22
  start-page: 925
  year: 2015
  ident: ref_9
  article-title: Non-coherent direction of arrival estimation from magnitude-only measurements
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2377556
– volume: 57
  start-page: 1963
  year: 2009
  ident: ref_8
  article-title: A practical simple geometry and gain/phase calibration technique for antenna array processing
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2009.2021931
– volume: 18
  start-page: 497
  year: 2019
  ident: ref_18
  article-title: Self-calibration of an active uniform linear array using phase gradient characteristics
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2019.2895268
– volume: 37
  start-page: 1958
  year: 1989
  ident: ref_7
  article-title: Array Shape Calibration Using Sources in Unknown Locations-A Maximum Likelihood Approach
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.45542
– volume: 6
  start-page: 456
  year: 2012
  ident: ref_23
  article-title: Maximum likelihood array calibration using particleswarm optimisation
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2011.0133
– volume: 38
  start-page: 1137
  year: 2019
  ident: ref_19
  article-title: Self-Calibration of Mutual Coupling for Non-uniform Cross-Array
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-018-0899-0
– volume: 175
  start-page: 107668
  year: 2020
  ident: ref_26
  article-title: Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107668
– ident: ref_15
  doi: 10.1109/ICASSP.2014.6854635
– volume: 64
  start-page: 024304
  year: 2015
  ident: ref_10
  article-title: Auxiliary calibration method for near-field position of hydrophone array in strong multipath environment
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.64.024304
– volume: 23
  start-page: 1540008
  year: 2016
  ident: ref_12
  article-title: A Geometry Calibration Technique for Hydrophone Array with Sources in Near Field
  publication-title: J. Comput. Acoust.
– volume: 38
  start-page: 517
  year: 2010
  ident: ref_14
  article-title: A Novel Array Errors Auxiliary calibration Algorithm
  publication-title: Acta Electron. Sin.
  doi: 10.1016/j.electacta.2010.09.017
– ident: ref_22
  doi: 10.1002/0471221104
– volume: 14
  start-page: 838
  year: 2020
  ident: ref_21
  article-title: Iterative multi-channel FH-MFSK reception in mobile shallow underwater acoustic channels
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2019.1045
SSID ssj0000826106
Score 2.138871
Snippet Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 678
SubjectTerms Accuracy
Acoustics
Algorithms
Calibration
Computer simulation
correlated multipath channel
Differential geometry
Eigenvectors
element position error
Evolutionary computation
Geometry
Hydrophones
lake experiment
long hydrophone array
Mathematical research
Maximum likelihood estimation
Maximum likelihood estimators
Methods
Noise
Objective function
Optimization
optimization solution
Optimization theory
Parameter estimation
Self calibration
Signal to noise ratio
Simulation
unconditioned maximum likelihood detector (UML)
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHkQQn7i-yEEQhGK7aZvkuIqrB10FH3gLeULV3ZXdVfTfO5NWWUHx4jUdyjTzyHzpPAjZ05rleR5kUvjMJXnwMhEQNiSm7XxpUsN4nBJxd857PXF_L6-mRn1hTljdHrjeuENmjC4hRnCu4HkhCyF0brhhRnIdhPbofVMup8BU9MEQNQPYqQvyGOD6w4f-2ItUonP-dgTFTv2_-eN4yHSXyGITHdJOzdUymfGDFbJwab0eNK2lV8mkQ0_9sI-TsCzF0ipTC5FexGHQdBjo2bsbDTHp3MOrRvqdHsFZBU-ARr9V_Zc-Pa8e_VOFLY3pCRh5Xb9I8VKWXsfr_DGtBrQHZkC7mOO2Rm67JzfHZ0kzOyGxecomiSutAayS6ULrzLIMoWg7OGYBrhQsBKmz0moP8YYLVhgfjAPoJGzGgpAWLHOdzA6AzQ1CceA3uOfCCp_mJgTT9tJ4_IMa14oWOfjcTmWbxuI43-JJAcDAvVdTe98ie1_Ez3U_jZ_JjlAuXyTYBDsugGqoRjXUX6rRIvsoVYWmCgxZ3VQcwGdh0yvVKTHHlTHOW2T7U_CqseGxgsAH46mMl5v_wc0WmW8jVo_5adtkdjJ68Ttkzr5OqvFoN6rvBxzD91Q
  priority: 102
  providerName: Directory of Open Access Journals
Title A Geometric Calibration Method of Hydrophone Array Based on Maximum Likelihood Estimation with Sources in Near Field
URI https://www.proquest.com/docview/2440750176
https://doaj.org/article/3bba6226dd57459588a4b7b3b97af8ae
Volume 8
WOSCitedRecordID wos000579945600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PCBAR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M7S
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PATMY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF808UGE-llMrWEfCoJw5C57H3tPkkhihTYGq1Kflv2U0yZX71Kx_70ze5uooD75ujsce8zsfO3Mbwg5kpKlaerKKLOJiVJny4iD2xCpsbG5ihUr_JSIDyfFYsHPz8tlaI9uQ1nlVid6Rd2hPWPdNijhkak1ZsxHYJTQ1iVF_uLya4QzpPCtNQzUuEn6CLwV90h_-fp0-XGXcwFzB95C3rXpMYj2R59XreVxiSr7N8Pk8fv_pqW96Znf_b-Hvkf2ggtKJ53M3Cc37PoBufNGW7kO-NUPyWZCX9l6heO2NMX-LdVJCj31E6dp7ejxtWlqrGy38KlGXtMpGETYARr5vVpdrehJ9cVeVIibTGegSbomSYqZX3rm3wxaWq3pAu4anWMh3SPyfj579_I4CgMaIp3GbBOZXCsIiBKZSZlolmC8O3aGaYiJMuZcKZNcSwtOjXGaK-uUgfiM64Q5Xmq4_vukt4ZjPiYUp4qDDcg0t3GqnFNjWyqLz7R-LRuQ51vuCB3Qy3GIxoWAKAZZKX5h5YAc7YgvO9COP5NNkc07EkTa9gt180mEiyuYUjIHH9WYrEizMuNcpqpQTJWFdFzaAXmGQiJQH8CBtAxtDfBbiKwlJjkW0jJWFANyuBUSERRFK37KxMG_t5-Q22MM9X152yHpbZor-5Tc0t82VdsMSX86WyzfDn1KYYgFrGfDIP0_AI9vFUY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgmExG9EYYAfBkhI0ZI4P-wHHjpY6bS2TKKg7SnYjo0KazOSDug_xd_IXZIWkIC3PfAaW5Fjf7nvbN_dB7CtFI-iyEkvtkHuRc5KT6Db4Okwt4n2NU9rlYh3w3Q8FkdH8nADvq9yYSiscmUTa0OdF4bOyHeQhojdgjRpIygP7PIr7s-q5_svcTEfh2F_b_Ji4LUSAp6JfL7w8sRodNkDFSsVGB7Qjix0OTfotcfcOamCxCiLtJs7I7R1OscdhDABd0IanyQhwiennz1SqaLb3Fay4wJsikTGYQc2D3uT0fH6VAcJFf2RpEkE5Fz6Ox9nlRW-JFL4jfpqhYC_8UBNbv1r_9u0XIerrRvNeg3ub8CGnd-EK6-NVfO2BvctWPTYK1vMSDLMMMpB0w3a2ahWzWaFY4NlXhYUnW_xVaVasl0kdWzBPurbdHY2Y8PpJ3sypdrPbA-tYZPoyej0mr2p7z0qNp2zMU4K61Mw4G14ey5TcQc6cxzmXWCkjI48Fhth_Ug7p0MrtaWr5vpZ3IVnq_XPTFuBnYRATjLciRFYsl_A0oXtdefTpvDIn7vtEpDWXahaeP2gKD9krfHJuNYqQT87z-M0imUshIp0qrmWqXJC2S48JRhmZNNwQEa1qRn4WVQdLOslFAzMeZp2YWsFw6w1dlX2E4P3_t38CC4NJqNhNtwfH9yHyyEdXdThelvQWZRn9gFcNF8W06p82P5XDN6fN4x_APLOZI8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFiGExBuxUMCHIiSkaJM4D_uA0JZ2adXtshIFtSfjJwp0N2WzBfav8euYyWMBCbj1wDW2otj5PN_YnpmPkC2lWJIkXgSpi2yQeCcCDm5DoGPrMh1qltcqEe9G-XjMj4_FZI1873JhMKyys4m1obalwTPyPtAQsluUZ33fhkVMdoYvzj4HqCCFN62dnEYDkQO3_Arbt-r5_g786ydxPNw9erkXtAoDgUlCtghsZjR49JFKlYoMi3DDFnvLDDj1KfNeqCgzygErW2-4dl5b2GBwEzHPhQlRMQLM_wbP8hCMwsZkcHR4sjrhAXIF3yRrkgIZE2H_47RyPBRIEL_RYK0W8DdOqIlueP1_nqIb5FrrXtNBsx5ukjU3u0WuvjZOzdra3LfJYkBfuXKKUmKGYm6ablYBPazVtGnp6d7SzkuM2nfwqrla0m0ge2iBPupbMT2f0lHxyZ0WWBOa7oKVbBJAKZ5q0zf1fUhFixkdwwzQIQYJ3iFvL2Tcd8n6DD7zHqGomA78lhruwkR7r2MntMMr6PpZ2iPPOixI01ZmR4GQUwk7NASO_AU4PbK16nzWFCT5c7dtBNWqC1YRrx-U8w-yNUqSaa0y8L-tTfMkFSnnKtG5ZlrkynPleuQpQlKirYMPMqpN2YBhYdUwOcgwSJixPO-RzQ6SsjWClfyJx_v_bn5MLgNQ5Wh_fPCAXInxRKOO4tsk64v5uXtILpkvi6KaP2qXGCXvLxqyPwAJWm1F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Geometric+Calibration+Method+of+Hydrophone+Array+Based+on+Maximum+Likelihood+Estimation+with+Sources+in+Near+Field&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Zou%2C+Nan&rft.au=Jia%2C+Zhenqi&rft.au=Fu%2C+Jin&rft.au=Feng%2C+Jia&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=8&rft.issue=9&rft_id=info:doi/10.3390%2Fjmse8090678&rft.externalDocID=A641053377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon