A Geometric Calibration Method of Hydrophone Array Based on Maximum Likelihood Estimation with Sources in Near Field
Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geom...
Uložené v:
| Vydané v: | Journal of marine science and engineering Ročník 8; číslo 9; s. 678 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2020
|
| Predmet: | |
| ISSN: | 2077-1312, 2077-1312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geometry error model, the objective function of nonlinear optimization problem is constructed by using the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration is studied. The strong reflections are considered as the coherent sources, and the compensation strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE) is used to solve the geometry errors and sources’ position. The method in this paper is compared with the eigenvector method. The simulation results show that the method in this paper is more accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath environment. Experiment results further verify the effectiveness. |
|---|---|
| AbstractList | Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geometry error model, the objective function of nonlinear optimization problem is constructed by using the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration is studied. The strong reflections are considered as the coherent sources, and the compensation strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE) is used to solve the geometry errors and sources’ position. The method in this paper is compared with the eigenvector method. The simulation results show that the method in this paper is more accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath environment. Experiment results further verify the effectiveness. Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on maximum likelihood estimation is proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field geometry error model, the objective function of nonlinear optimization problem is constructed by using the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration is studied. The strong reflections are considered as the coherent sources, and the compensation strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE) is used to solve the geometry errors and sources' position. The method in this paper is compared with the eigenvector method. The simulation results show that the method in this paper is more accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath environment. Experiment results further verify the effectiveness. Keywords: long hydrophone array; element position error; unconditioned maximum likelihood detector (UML); correlated multipath channel; optimization solution; lake experiment |
| Audience | Academic |
| Author | Fu, Jin Liu, Mengqi Jia, Zhenqi Zou, Nan Feng, Jia |
| Author_xml | – sequence: 1 givenname: Nan surname: Zou fullname: Zou, Nan – sequence: 2 givenname: Zhenqi surname: Jia fullname: Jia, Zhenqi – sequence: 3 givenname: Jin surname: Fu fullname: Fu, Jin – sequence: 4 givenname: Jia surname: Feng fullname: Feng, Jia – sequence: 5 givenname: Mengqi surname: Liu fullname: Liu, Mengqi |
| BookMark | eNptkU2PFCEQholZE9d1T_4BEo9mVmi6gT6Ok_1KRj2o507xtcPY3YzAROffW24bszHCAVI89dZL1UtyNqfZE_KasyshevZuPxWvWc-k0s_IecOUWnHBm7Mn9xfkspQ9w6UbyZk8J3VNb32afM3R0g2M0WSoMc30g6-75GgK9O7kcjrssBhd5wwn-h6Kxxdk4GecjhPdxm9-jLuE_HWpcVoUfsS6o5_TMVtfaJzpRw-Z3kQ_ulfkeYCx-Ms_5wX5enP9ZXO32n66vd-styvbMlFXTloj0Sd0ANwKzoXQTXDCSik7EUIPXFrwUgoXrDY-GKcV15aLoHvLOnFB7hddl2A_HDI6y6chQRweAyk_DJBrtKMfhDEgm0Y616m26zutoTXKCNMrCBo8ar1ZtA45fT_6Uoc9fm1G-0PTtkx1jCuJ1NVCPQCKxjmkmsHidn6KFlsYIsbXsuVoTyiFCW-XBJtTKdmHvzY5G36PdXgyVqT5P7SN9bHbWCaO_835Ba2Mp9Q |
| CitedBy_id | crossref_primary_10_1109_JOE_2022_3164721 crossref_primary_10_1109_JOE_2024_3357937 |
| Cites_doi | 10.1109/TSP.2014.2310431 10.1016/j.sigpro.2019.107267 10.1109/LGRS.2019.2938788 10.1109/78.127958 10.1109/TSP.2014.2307837 10.1109/ISSPIT.2016.7886006 10.1016/j.matcom.2020.04.003 10.1016/0165-1684(91)90013-9 10.1049/ip-rsn:19949538 10.1109/78.275633 10.2478/jaiscr-2020-0020 10.1109/LSP.2014.2377556 10.1109/TAP.2009.2021931 10.1109/LAWP.2019.2895268 10.1109/29.45542 10.1049/iet-spr.2011.0133 10.1007/s00034-018-0899-0 10.1016/j.sigpro.2020.107668 10.1109/ICASSP.2014.6854635 10.7498/aps.64.024304 10.1016/j.electacta.2010.09.017 10.1002/0471221104 10.1049/iet-com.2019.1045 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
| DOI | 10.3390/jmse8090678 |
| DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database (subscription) Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Environment Abstracts DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Oceanography |
| EISSN | 2077-1312 |
| ExternalDocumentID | oai_doaj_org_article_3bba6226dd57459588a4b7b3b97af8ae A641053377 10_3390_jmse8090678 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI |
| ID | FETCH-LOGICAL-c403t-d6cb6261a5aa1c3113382fd3c66653ff9a16cae663dfc8befbd8718c13f89c053 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579945600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-1312 |
| IngestDate | Tue Oct 14 19:08:15 EDT 2025 Fri Jul 25 10:33:47 EDT 2025 Tue Nov 04 17:59:46 EST 2025 Tue Nov 18 21:09:02 EST 2025 Sat Nov 29 07:14:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-d6cb6261a5aa1c3113382fd3c66653ff9a16cae663dfc8befbd8718c13f89c053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2440750176?pq-origsite=%requestingapplication% |
| PQID | 2440750176 |
| PQPubID | 2032377 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3bba6226dd57459588a4b7b3b97af8ae proquest_journals_2440750176 gale_infotracacademiconefile_A641053377 crossref_primary_10_3390_jmse8090678 crossref_citationtrail_10_3390_jmse8090678 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of marine science and engineering |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Jaroslaw (ref_25) 2020; 10 Gang (ref_26) 2020; 175 Wang (ref_14) 2010; 38 Weiss (ref_7) 1989; 37 ref_11 Ng (ref_8) 2009; 57 Ping (ref_2) 2014; 62 Nan (ref_12) 2016; 23 Kim (ref_18) 2019; 18 Dajun (ref_21) 2020; 14 Chen (ref_13) 2020; 17 ref_15 Ye (ref_3) 2020; 166 Eric (ref_17) 1994; 42 Yang (ref_1) 2014; 62 Jiajia (ref_19) 2019; 38 ref_22 Wan (ref_23) 2012; 6 Weiss (ref_16) 1991; 22 Tahere (ref_24) 2020; 177 Wang (ref_10) 2015; 64 Kim (ref_9) 2015; 22 Schmidt (ref_4) 1992; 40 ref_5 Ng (ref_20) 1994; 141 ref_6 |
| References_xml | – volume: 62 start-page: 2504 year: 2014 ident: ref_2 article-title: An Hybrid Cramer-Rao Bound in Closed Form for Direction-of-Arrival Estimation by an “Acoustic Vector Sensor” With Gain-Phase Uncertainties publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2310431 – volume: 166 start-page: 107267 year: 2020 ident: ref_3 article-title: Mixed source localization and gain-phase perturbation calibration in partly calibrated symmetric uniform linear arrays publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107267 – ident: ref_5 – volume: 17 start-page: 988 year: 2020 ident: ref_13 article-title: Calibration and Evaluation of a Circular Antenna Array for HF Radar Based on AIS Information publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2938788 – volume: 40 start-page: 857 year: 1992 ident: ref_4 article-title: Multilinear array manifold interpolation publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.127958 – volume: 62 start-page: 2330 year: 2014 ident: ref_1 article-title: “Quasi-Blind” Calibration of an Array of Acoustic Vector-Sensors That Are Subject to GainErrors/Mis-Location/Mis-Orientation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2307837 – ident: ref_11 doi: 10.1109/ISSPIT.2016.7886006 – volume: 177 start-page: 46 year: 2020 ident: ref_24 article-title: Parameter optimization of software reliability models using improved differential evolution algorithm publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.04.003 – volume: 22 start-page: 251 year: 1991 ident: ref_16 article-title: Array shape calibration using eigenstructure methods publication-title: Signal Process. doi: 10.1016/0165-1684(91)90013-9 – volume: 141 start-page: 25 year: 1994 ident: ref_20 article-title: Array gainlphase calibration techniques for adaptive beamforming and direction finding publication-title: IEEE Proc. Radar Sonar Navig. doi: 10.1049/ip-rsn:19949538 – volume: 42 start-page: 471 year: 1994 ident: ref_17 article-title: Critical Study of a Self-calibrating Direction-Finding Method for Arrays publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.275633 – volume: 10 start-page: 299 year: 2020 ident: ref_25 article-title: Local Levenberg-Marquardt Algorithm for Learning Feedforward Neural Networks publication-title: J. Artif. Intell. Soft Comput. Res. doi: 10.2478/jaiscr-2020-0020 – ident: ref_6 – volume: 22 start-page: 925 year: 2015 ident: ref_9 article-title: Non-coherent direction of arrival estimation from magnitude-only measurements publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2377556 – volume: 57 start-page: 1963 year: 2009 ident: ref_8 article-title: A practical simple geometry and gain/phase calibration technique for antenna array processing publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2009.2021931 – volume: 18 start-page: 497 year: 2019 ident: ref_18 article-title: Self-calibration of an active uniform linear array using phase gradient characteristics publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2019.2895268 – volume: 37 start-page: 1958 year: 1989 ident: ref_7 article-title: Array Shape Calibration Using Sources in Unknown Locations-A Maximum Likelihood Approach publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.45542 – volume: 6 start-page: 456 year: 2012 ident: ref_23 article-title: Maximum likelihood array calibration using particleswarm optimisation publication-title: IET Signal Process. doi: 10.1049/iet-spr.2011.0133 – volume: 38 start-page: 1137 year: 2019 ident: ref_19 article-title: Self-Calibration of Mutual Coupling for Non-uniform Cross-Array publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-018-0899-0 – volume: 175 start-page: 107668 year: 2020 ident: ref_26 article-title: Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107668 – ident: ref_15 doi: 10.1109/ICASSP.2014.6854635 – volume: 64 start-page: 024304 year: 2015 ident: ref_10 article-title: Auxiliary calibration method for near-field position of hydrophone array in strong multipath environment publication-title: Acta Phys. Sin. doi: 10.7498/aps.64.024304 – volume: 23 start-page: 1540008 year: 2016 ident: ref_12 article-title: A Geometry Calibration Technique for Hydrophone Array with Sources in Near Field publication-title: J. Comput. Acoust. – volume: 38 start-page: 517 year: 2010 ident: ref_14 article-title: A Novel Array Errors Auxiliary calibration Algorithm publication-title: Acta Electron. Sin. doi: 10.1016/j.electacta.2010.09.017 – ident: ref_22 doi: 10.1002/0471221104 – volume: 14 start-page: 838 year: 2020 ident: ref_21 article-title: Iterative multi-channel FH-MFSK reception in mobile shallow underwater acoustic channels publication-title: IET Commun. doi: 10.1049/iet-com.2019.1045 |
| SSID | ssj0000826106 |
| Score | 2.138871 |
| Snippet | Considering the requirement of the near-field calibration under strong underwater multipath condition, a high-precision geometric calibration method based on... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 678 |
| SubjectTerms | Accuracy Acoustics Algorithms Calibration Computer simulation correlated multipath channel Differential geometry Eigenvectors element position error Evolutionary computation Geometry Hydrophones lake experiment long hydrophone array Mathematical research Maximum likelihood estimation Maximum likelihood estimators Methods Noise Objective function Optimization optimization solution Optimization theory Parameter estimation Self calibration Signal to noise ratio Simulation unconditioned maximum likelihood detector (UML) |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHkQQn7i-yEEQhGK7aZvkuIqrB10FH3gLeULV3ZXdVfTfO5NWWUHx4jUdyjTzyHzpPAjZ05rleR5kUvjMJXnwMhEQNiSm7XxpUsN4nBJxd857PXF_L6-mRn1hTljdHrjeuENmjC4hRnCu4HkhCyF0brhhRnIdhPbofVMup8BU9MEQNQPYqQvyGOD6w4f-2ItUonP-dgTFTv2_-eN4yHSXyGITHdJOzdUymfGDFbJwab0eNK2lV8mkQ0_9sI-TsCzF0ipTC5FexGHQdBjo2bsbDTHp3MOrRvqdHsFZBU-ARr9V_Zc-Pa8e_VOFLY3pCRh5Xb9I8VKWXsfr_DGtBrQHZkC7mOO2Rm67JzfHZ0kzOyGxecomiSutAayS6ULrzLIMoWg7OGYBrhQsBKmz0moP8YYLVhgfjAPoJGzGgpAWLHOdzA6AzQ1CceA3uOfCCp_mJgTT9tJ4_IMa14oWOfjcTmWbxuI43-JJAcDAvVdTe98ie1_Ez3U_jZ_JjlAuXyTYBDsugGqoRjXUX6rRIvsoVYWmCgxZ3VQcwGdh0yvVKTHHlTHOW2T7U_CqseGxgsAH46mMl5v_wc0WmW8jVo_5adtkdjJ68Ttkzr5OqvFoN6rvBxzD91Q priority: 102 providerName: Directory of Open Access Journals |
| Title | A Geometric Calibration Method of Hydrophone Array Based on Maximum Likelihood Estimation with Sources in Near Field |
| URI | https://www.proquest.com/docview/2440750176 https://doaj.org/article/3bba6226dd57459588a4b7b3b97af8ae |
| Volume | 8 |
| WOSCitedRecordID | wos000579945600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PCBAR dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M7S dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PATMY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF808UGE-llMrWEfCoJw5C57H3tPkkhihTYGq1Kflv2U0yZX71Kx_70ze5uooD75ujsce8zsfO3Mbwg5kpKlaerKKLOJiVJny4iD2xCpsbG5ihUr_JSIDyfFYsHPz8tlaI9uQ1nlVid6Rd2hPWPdNijhkak1ZsxHYJTQ1iVF_uLya4QzpPCtNQzUuEn6CLwV90h_-fp0-XGXcwFzB95C3rXpMYj2R59XreVxiSr7N8Pk8fv_pqW96Znf_b-Hvkf2ggtKJ53M3Cc37PoBufNGW7kO-NUPyWZCX9l6heO2NMX-LdVJCj31E6dp7ejxtWlqrGy38KlGXtMpGETYARr5vVpdrehJ9cVeVIibTGegSbomSYqZX3rm3wxaWq3pAu4anWMh3SPyfj579_I4CgMaIp3GbBOZXCsIiBKZSZlolmC8O3aGaYiJMuZcKZNcSwtOjXGaK-uUgfiM64Q5Xmq4_vukt4ZjPiYUp4qDDcg0t3GqnFNjWyqLz7R-LRuQ51vuCB3Qy3GIxoWAKAZZKX5h5YAc7YgvO9COP5NNkc07EkTa9gt180mEiyuYUjIHH9WYrEizMuNcpqpQTJWFdFzaAXmGQiJQH8CBtAxtDfBbiKwlJjkW0jJWFANyuBUSERRFK37KxMG_t5-Q22MM9X152yHpbZor-5Tc0t82VdsMSX86WyzfDn1KYYgFrGfDIP0_AI9vFUY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgmExG9EYYAfBkhI0ZI4P-wHHjpY6bS2TKKg7SnYjo0KazOSDug_xd_IXZIWkIC3PfAaW5Fjf7nvbN_dB7CtFI-iyEkvtkHuRc5KT6Db4Okwt4n2NU9rlYh3w3Q8FkdH8nADvq9yYSiscmUTa0OdF4bOyHeQhojdgjRpIygP7PIr7s-q5_svcTEfh2F_b_Ji4LUSAp6JfL7w8sRodNkDFSsVGB7Qjix0OTfotcfcOamCxCiLtJs7I7R1OscdhDABd0IanyQhwiennz1SqaLb3Fay4wJsikTGYQc2D3uT0fH6VAcJFf2RpEkE5Fz6Ox9nlRW-JFL4jfpqhYC_8UBNbv1r_9u0XIerrRvNeg3ub8CGnd-EK6-NVfO2BvctWPTYK1vMSDLMMMpB0w3a2ahWzWaFY4NlXhYUnW_xVaVasl0kdWzBPurbdHY2Y8PpJ3sypdrPbA-tYZPoyej0mr2p7z0qNp2zMU4K61Mw4G14ey5TcQc6cxzmXWCkjI48Fhth_Ug7p0MrtaWr5vpZ3IVnq_XPTFuBnYRATjLciRFYsl_A0oXtdefTpvDIn7vtEpDWXahaeP2gKD9krfHJuNYqQT87z-M0imUshIp0qrmWqXJC2S48JRhmZNNwQEa1qRn4WVQdLOslFAzMeZp2YWsFw6w1dlX2E4P3_t38CC4NJqNhNtwfH9yHyyEdXdThelvQWZRn9gFcNF8W06p82P5XDN6fN4x_APLOZI8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFiGExBuxUMCHIiSkaJM4D_uA0JZ2adXtshIFtSfjJwp0N2WzBfav8euYyWMBCbj1wDW2otj5PN_YnpmPkC2lWJIkXgSpi2yQeCcCDm5DoGPrMh1qltcqEe9G-XjMj4_FZI1873JhMKyys4m1obalwTPyPtAQsluUZ33fhkVMdoYvzj4HqCCFN62dnEYDkQO3_Arbt-r5_g786ydxPNw9erkXtAoDgUlCtghsZjR49JFKlYoMi3DDFnvLDDj1KfNeqCgzygErW2-4dl5b2GBwEzHPhQlRMQLM_wbP8hCMwsZkcHR4sjrhAXIF3yRrkgIZE2H_47RyPBRIEL_RYK0W8DdOqIlueP1_nqIb5FrrXtNBsx5ukjU3u0WuvjZOzdra3LfJYkBfuXKKUmKGYm6ablYBPazVtGnp6d7SzkuM2nfwqrla0m0ge2iBPupbMT2f0lHxyZ0WWBOa7oKVbBJAKZ5q0zf1fUhFixkdwwzQIQYJ3iFvL2Tcd8n6DD7zHqGomA78lhruwkR7r2MntMMr6PpZ2iPPOixI01ZmR4GQUwk7NASO_AU4PbK16nzWFCT5c7dtBNWqC1YRrx-U8w-yNUqSaa0y8L-tTfMkFSnnKtG5ZlrkynPleuQpQlKirYMPMqpN2YBhYdUwOcgwSJixPO-RzQ6SsjWClfyJx_v_bn5MLgNQ5Wh_fPCAXInxRKOO4tsk64v5uXtILpkvi6KaP2qXGCXvLxqyPwAJWm1F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Geometric+Calibration+Method+of+Hydrophone+Array+Based+on+Maximum+Likelihood+Estimation+with+Sources+in+Near+Field&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Zou%2C+Nan&rft.au=Jia%2C+Zhenqi&rft.au=Fu%2C+Jin&rft.au=Feng%2C+Jia&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=8&rft.issue=9&rft_id=info:doi/10.3390%2Fjmse8090678&rft.externalDocID=A641053377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |