Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models

This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 33; H. 4; S. 767 - 779
Hauptverfasser: España-Boquera, S, Castro-Bleda, M J, Gorbe-Moya, J, Zamora-Martinez, F
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.04.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0162-8828
1939-3539
1939-3539
DOI:10.1109/TPAMI.2010.141