Thermodynamic limits of the depolymerization of poly(olefin)s using mechanochemistry

Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in s...

Full description

Saved in:
Bibliographic Details
Published in:RSC Mechanochemistry Vol. 1; no. 5; pp. 54 - 513
Main Authors: Chang, Yuchen, Nguyen, Van Son, Hergesell, Adrian H, Seitzinger, Claire L, Meisner, Jan, Vollmer, Ina, Schork, F. Joseph, Sievers, Carsten
Format: Journal Article
Language:English
Published: England RSC 05.11.2024
Subjects:
ISSN:2976-8683, 2976-8683
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Feasibility of mechanochemical depolymerization of commodity poly(olefin)s in a ball mill reactor is assessed using thermodynamic data.
AbstractList Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.
Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Feasibility of mechanochemical depolymerization of commodity poly(olefin)s in a ball mill reactor is assessed using thermodynamic data.
Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.
Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Feasibility of mechanochemical depolymerization of commodity poly(olefin)s in a ball mill reactor is assessed using thermodynamic data.
Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.
Author Seitzinger, Claire L
Nguyen, Van Son
Schork, F. Joseph
Meisner, Jan
Vollmer, Ina
Sievers, Carsten
Chang, Yuchen
Hergesell, Adrian H
AuthorAffiliation School of Chemical & Biomolecular Engineering
Inorganic Chemistry and Catalysis
Heinrich Heine University Düsseldorf
Institute for Physical Chemistry
Institute for Sustainable and Circular Chemistry
Georgia Institute of Technology
Utrecht University
AuthorAffiliation_xml – sequence: 0
  name: Inorganic Chemistry and Catalysis
– sequence: 0
  name: School of Chemical & Biomolecular Engineering
– sequence: 0
  name: Georgia Institute of Technology
– sequence: 0
  name: Utrecht University
– sequence: 0
  name: Institute for Physical Chemistry
– sequence: 0
  name: Institute for Sustainable and Circular Chemistry
– sequence: 0
  name: Heinrich Heine University Düsseldorf
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Chang
  fullname: Chang, Yuchen
– sequence: 2
  givenname: Van Son
  surname: Nguyen
  fullname: Nguyen, Van Son
– sequence: 3
  givenname: Adrian H
  surname: Hergesell
  fullname: Hergesell, Adrian H
– sequence: 4
  givenname: Claire L
  surname: Seitzinger
  fullname: Seitzinger, Claire L
– sequence: 5
  givenname: Jan
  surname: Meisner
  fullname: Meisner, Jan
– sequence: 6
  givenname: Ina
  surname: Vollmer
  fullname: Vollmer, Ina
– sequence: 7
  givenname: F. Joseph
  surname: Schork
  fullname: Schork, F. Joseph
– sequence: 8
  givenname: Carsten
  surname: Sievers
  fullname: Sievers, Carsten
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39267902$$D View this record in MEDLINE/PubMed
BookMark eNptkV1PHCEUhomxUWu98b7NXNomaw9zmBm4ahr7HZsmzXpNWAYczAArzDbZ_vqyrlo1XgGH57zv-XhJdkMMhpBjCqcUULzvmU8A0ImrHXJQi66d8Zbj7oP7PjnK-aowiBQbDntkH0XddgLqAzKfDyb52K-D8k5Xo_NuylW01TSYqjfLOK69Se6vmlwMm_gmchJHY114m6tVduGy8kYPKkQ9GO_ylNavyAurxmyObs9DcvHl8_zs2-z819fvZx_PZ5oBTjMtFroUgq2ugeECGFAKbY9M1Lyz5QVgLbedalXDG-xL_VZ1tqkttj1Dg4fkw1Z3uVp402sTpqRGuUzOq7SWUTn5-Ce4QV7GP5JS5FwwVhRObhVSvF6ZPMnSgTbjqIKJqyyRAmtq3oquoG8emt273M2yALAFdIo5J2OldtPN3Iq3GyUFudmY_MR-_r7Z2I-S8u5Jyp3qs_DrLZyyvuf-rx__AfQpoQo
CitedBy_id crossref_primary_10_1039_D5SC03348A
crossref_primary_10_1016_j_progpolymsci_2024_101900
crossref_primary_10_1002_cssc_202500253
crossref_primary_10_1021_acs_macromol_5c01985
Cites_doi 10.1038/s41428-023-00863-9
10.1002/cssc.202002124
10.1016/S0032-5910(99)00175-8
10.1016/J.JEURCERAMSOC.2015.09.032
10.1021/cr200399q
10.1016/J.POWTEC.2021.06.017
10.1002/EJOC.201700961
10.1021/ja01259a068
10.1021/acssuschemeng.2c03376
10.1016/J.BIOSYSTEMSENG.2018.04.021
10.1002/047147875X.ch3
10.1021/acssuschemeng.3c01054
10.1002/anie.201810902
10.1039/D3GC03643J
10.3389/fchem.2021.685789
10.1039/tf9504600331
10.1002/anie.201915651
10.1039/D0NJ05984F
10.1039/D0CP01658F
10.1016/0032-3861(85)90156-9
10.1016/j.cej.2019.122954
10.1007/S11661-017-4195-6/FIGURES/11
10.1002/cber.19340670708
10.1063/1.1723621
10.1021/j150498a012
10.1070/rc2006v075n03abeh001205
10.1021/ef0100855
10.1063/1.555650
10.1016/j.matpr.2022.06.195
10.1021/acs.biomac.0c00769
10.1002/pol.1972.160100808
10.1016/j.cej.2023.148278
10.1039/C1CS15171A
10.1126/sciadv.1700782
10.1016/0079-6700(89)90004-X
10.1038/162705a0
10.1021/ja01267a066
10.1021/acssuschemeng.3c05296
10.1016/J.WASMAN.2017.07.044
10.1002/pol.20220578
10.1038/s41467-023-40915-5
10.1063/1.3656367
10.1002/pol.1974.180120211
10.1016/j.jallcom.2007.11.024
10.1021/acs.macromol.3c02664
10.1063/1.555663
10.1021/acs.macromol.0c01510
10.1007/BF00116370
10.1016/J.CHERD.2019.06.029
10.1021/acsenergylett.0c01895
10.1016/j.chempr.2020.12.006
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2024 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2024 RSC
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1039/d4mr00079j
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2976-8683
EndPage 513
ExternalDocumentID PMC11388944
39267902
10_1039_D4MR00079J
d4mr00079j
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2028998
– fundername: ;
  grantid: DE-SC0016486
– fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: VI.Veni.202.191, OCENW.XS22.1.093
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ANUXI
GROUPED_DOAJ
M~E
AAYXX
ABIQK
CITATION
H13
NPM
7X8
5PM
ID FETCH-LOGICAL-c403t-c9bc92636c2043b0401106d349287f40100ff8f7a6a5853d331fa7f52f36d43e3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552996200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2976-8683
IngestDate Tue Sep 30 17:07:45 EDT 2025
Fri Jul 11 16:34:36 EDT 2025
Mon Jul 21 06:05:21 EDT 2025
Tue Nov 18 21:06:06 EST 2025
Sat Nov 29 03:35:50 EST 2025
Tue Dec 17 20:57:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-c9bc92636c2043b0401106d349287f40100ff8f7a6a5853d331fa7f52f36d43e3
Notes https://doi.org/10.1039/d4mr00079j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0997-4069
0000-0001-9917-1499
0000-0002-5713-1875
0000-0002-4700-9964
0000-0002-1301-2612
0000-0003-3071-930X
OpenAccessLink http://dx.doi.org/10.1039/d4mr00079j
PMID 39267902
PQID 3104528697
PQPubID 23479
PageCount 1
ParticipantIDs rsc_primary_d4mr00079j
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388944
crossref_citationtrail_10_1039_D4MR00079J
crossref_primary_10_1039_D4MR00079J
proquest_miscellaneous_3104528697
pubmed_primary_39267902
PublicationCentury 2000
PublicationDate 2024-11-05
PublicationDateYYYYMMDD 2024-11-05
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle RSC Mechanochemistry
PublicationTitleAlternate RSC Mechanochem
PublicationYear 2024
Publisher RSC
Publisher_xml – name: RSC
References Yu (D4MR00079J/cit16/1) 2021; 391
Dainton (D4MR00079J/cit43/1) 1950; 46
Carta (D4MR00079J/cit39/1) 2020; 22
Martín (D4MR00079J/cit4/1) 2021; 7
Mucsi (D4MR00079J/cit8/1) 2019; 148
Zhurkov (D4MR00079J/cit47/1) 1974; 12
Flory (D4MR00079J/cit50/1) 1942; 10
Tricker (D4MR00079J/cit30/1) 2020; 5
Urakaev (D4MR00079J/cit17/1) 2000; 107
Tan (D4MR00079J/cit6/1) 2018; 2018
Delogu (D4MR00079J/cit46/1) 2008; 465
Zhurkov (D4MR00079J/cit48/1) 1975; 11
Chang (D4MR00079J/cit27/1) 2024; 12
Geyer (D4MR00079J/cit1/1) 2017; 3
Huggins (D4MR00079J/cit51/1) 1942; 64
Tricker (D4MR00079J/cit10/1) 2022; 10
Anglou (D4MR00079J/cit11/1) 2024; 481
Staudinger (D4MR00079J/cit33/1) 1934; 67
Grebowicz (D4MR00079J/cit40/1) 1985; 26
Zhao (D4MR00079J/cit14/1) 2017; 48
Lovell (D4MR00079J/cit49/1) 2020; 21
Bolm (D4MR00079J/cit29/1) 2019; 58
Broseghini (D4MR00079J/cit13/1) 2016; 36
Ragaert (D4MR00079J/cit3/1) 2017; 69
Patnode (D4MR00079J/cit45/1) 1939; 61
Ribas-Arino (D4MR00079J/cit20/1) 2012; 112
Sohma (D4MR00079J/cit36/1) 1989; 14
Zhurkov (D4MR00079J/cit35/1) 1972; 10
Kodera (D4MR00079J/cit37/1) 2002; 16
Simha (D4MR00079J/cit34/1) 1952; 56
Bulgakov (D4MR00079J/cit15/1) 2018; 171
Alrbaihat (D4MR00079J/cit22/1) 2022; 65
Nguyen (D4MR00079J/cit25/1) 2023; 11
Peterson (D4MR00079J/cit32/1) 2020; 53
Gaur (D4MR00079J/cit41/1) 1981; 10
James (D4MR00079J/cit5/1) 2012; 41
Jung (D4MR00079J/cit26/1) 2024; 57
Štrukil (D4MR00079J/cit9/1) 2021; 14
Lee (D4MR00079J/cit12/1) 2024; 26
Jung (D4MR00079J/cit28/1) 2022; 61
Aydonat (D4MR00079J/cit7/1) 2024; 56
Vollmer (D4MR00079J/cit2/1) 2020; 59
Dainton (D4MR00079J/cit44/1) 1948; 162
Odian (D4MR00079J/cit38/1) 2004
Tricker (D4MR00079J/cit21/1) 2020; 382
Balema (D4MR00079J/cit23/1) 2021; 45
Gaur (D4MR00079J/cit42/1) 1982; 11
Li (D4MR00079J/cit52/1) 2023; 14
Michalchuk (D4MR00079J/cit31/1) 2021; 9
Sriharsha (D4MR00079J/cit19/1) 2011; 135
Boldyrev (D4MR00079J/cit18/1) 2006; 75
References_xml – issn: 2024
  volume-title: Mechanochemical Catalytic Depolymerization
  doi: Vollmer Weckhuysen Hergesell
– issn: 2004
  volume-title: Radical Chain Polymerization
  end-page: p 198-349
  publication-title: Principles of Polymerization
  doi: Odian
– volume: 56
  start-page: 249
  issue: 4
  year: 2024
  ident: D4MR00079J/cit7/1
  publication-title: Polym. J.
  doi: 10.1038/s41428-023-00863-9
– volume: 14
  start-page: 330
  issue: 1
  year: 2021
  ident: D4MR00079J/cit9/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002124
– volume: 107
  start-page: 93
  issue: 1–2
  year: 2000
  ident: D4MR00079J/cit17/1
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(99)00175-8
– volume: 36
  start-page: 2205
  issue: 9
  year: 2016
  ident: D4MR00079J/cit13/1
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/J.JEURCERAMSOC.2015.09.032
– volume: 112
  start-page: 5412
  issue: 10
  year: 2012
  ident: D4MR00079J/cit20/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200399q
– volume: 391
  start-page: 173
  year: 2021
  ident: D4MR00079J/cit16/1
  publication-title: Powder Technol.
  doi: 10.1016/J.POWTEC.2021.06.017
– volume: 2018
  start-page: 18
  issue: 1
  year: 2018
  ident: D4MR00079J/cit6/1
  publication-title: European J. Org. Chem.
  doi: 10.1002/EJOC.201700961
– volume: 64
  start-page: 1712
  issue: 7
  year: 1942
  ident: D4MR00079J/cit51/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01259a068
– volume: 10
  start-page: 11338
  issue: 34
  year: 2022
  ident: D4MR00079J/cit10/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c03376
– volume: 171
  start-page: 155
  year: 2018
  ident: D4MR00079J/cit15/1
  publication-title: Biosyst. Eng.
  doi: 10.1016/J.BIOSYSTEMSENG.2018.04.021
– start-page: 198
  volume-title: Principles of Polymerization
  year: 2004
  ident: D4MR00079J/cit38/1
  doi: 10.1002/047147875X.ch3
– volume: 11
  start-page: 7617
  issue: 20
  year: 2023
  ident: D4MR00079J/cit25/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c01054
– volume: 58
  start-page: 3285
  issue: 11
  year: 2019
  ident: D4MR00079J/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810902
– volume: 26
  start-page: 2087
  issue: 4
  year: 2024
  ident: D4MR00079J/cit12/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC03643J
– volume: 9
  start-page: 359
  year: 2021
  ident: D4MR00079J/cit31/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.685789
– volume: 46
  start-page: 331
  year: 1950
  ident: D4MR00079J/cit43/1
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9504600331
– volume: 59
  start-page: 15402
  issue: 36
  year: 2020
  ident: D4MR00079J/cit2/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915651
– volume: 45
  start-page: 2935
  issue: 6
  year: 2021
  ident: D4MR00079J/cit23/1
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ05984F
– volume: 22
  start-page: 14489
  issue: 26
  year: 2020
  ident: D4MR00079J/cit39/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01658F
– volume: 26
  start-page: 561
  issue: 4
  year: 1985
  ident: D4MR00079J/cit40/1
  publication-title: Polymer
  doi: 10.1016/0032-3861(85)90156-9
– volume: 382
  start-page: 122954
  year: 2020
  ident: D4MR00079J/cit21/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122954
– volume: 48
  start-page: 4324
  issue: 9
  year: 2017
  ident: D4MR00079J/cit14/1
  publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
  doi: 10.1007/S11661-017-4195-6/FIGURES/11
– volume: 67
  start-page: 1159
  issue: 7
  year: 1934
  ident: D4MR00079J/cit33/1
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19340670708
– volume: 10
  start-page: 51
  issue: 1
  year: 1942
  ident: D4MR00079J/cit50/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1723621
– volume: 56
  start-page: 707
  issue: 6
  year: 1952
  ident: D4MR00079J/cit34/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150498a012
– volume: 75
  start-page: 177
  issue: 3
  year: 2006
  ident: D4MR00079J/cit18/1
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/rc2006v075n03abeh001205
– volume: 16
  start-page: 119
  issue: 1
  year: 2002
  ident: D4MR00079J/cit37/1
  publication-title: Energy and Fuels
  doi: 10.1021/ef0100855
– volume: 10
  start-page: 1051
  issue: 4
  year: 1981
  ident: D4MR00079J/cit41/1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555650
– volume: 65
  start-page: 3651
  year: 2022
  ident: D4MR00079J/cit22/1
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.06.195
– volume: 21
  start-page: 4396
  issue: 11
  year: 2020
  ident: D4MR00079J/cit49/1
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00769
– volume: 10
  start-page: 1509
  issue: 8
  year: 1972
  ident: D4MR00079J/cit35/1
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pol.1972.160100808
– volume: 481
  start-page: 148278
  year: 2024
  ident: D4MR00079J/cit11/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.148278
– volume: 41
  start-page: 413
  issue: 1
  year: 2012
  ident: D4MR00079J/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15171A
– volume: 3
  start-page: 25
  issue: 7
  year: 2017
  ident: D4MR00079J/cit1/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 14
  start-page: 451
  issue: 4
  year: 1989
  ident: D4MR00079J/cit36/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(89)90004-X
– volume: 162
  start-page: 705
  issue: 4122
  year: 1948
  ident: D4MR00079J/cit44/1
  publication-title: Nature
  doi: 10.1038/162705a0
– volume: 61
  start-page: 3449
  issue: 12
  year: 1939
  ident: D4MR00079J/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01267a066
– volume: 12
  start-page: 178
  issue: 1
  year: 2024
  ident: D4MR00079J/cit27/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c05296
– volume: 69
  start-page: 24
  year: 2017
  ident: D4MR00079J/cit3/1
  publication-title: Waste Manag
  doi: 10.1016/J.WASMAN.2017.07.044
– volume: 61
  start-page: 553
  issue: 7
  year: 2022
  ident: D4MR00079J/cit28/1
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20220578
– volume: 14
  start-page: 5257
  issue: 1
  year: 2023
  ident: D4MR00079J/cit52/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40915-5
– volume: 135
  start-page: 164103
  year: 2011
  ident: D4MR00079J/cit19/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3656367
– volume: 12
  start-page: 385
  issue: 2
  year: 1974
  ident: D4MR00079J/cit47/1
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
  doi: 10.1002/pol.1974.180120211
– volume: 465
  start-page: 540
  issue: 1–2
  year: 2008
  ident: D4MR00079J/cit46/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.11.024
– volume: 57
  start-page: 3131
  issue: 7
  year: 2024
  ident: D4MR00079J/cit26/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.3c02664
– volume: 11
  start-page: 313
  issue: 2
  year: 1982
  ident: D4MR00079J/cit42/1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555663
– volume: 53
  start-page: 7795
  issue: 18
  year: 2020
  ident: D4MR00079J/cit32/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01510
– volume: 11
  start-page: 629
  issue: 4
  year: 1975
  ident: D4MR00079J/cit48/1
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00116370
– volume: 148
  start-page: 460
  year: 2019
  ident: D4MR00079J/cit8/1
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/J.CHERD.2019.06.029
– volume: 5
  start-page: 3362
  issue: 11
  year: 2020
  ident: D4MR00079J/cit30/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01895
– volume: 7
  start-page: 1487
  issue: 6
  year: 2021
  ident: D4MR00079J/cit4/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.006
SSID ssj0003313580
Score 2.3360267
Snippet Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported....
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms Chemistry
Title Thermodynamic limits of the depolymerization of poly(olefin)s using mechanochemistry
URI https://www.ncbi.nlm.nih.gov/pubmed/39267902
https://www.proquest.com/docview/3104528697
https://pubmed.ncbi.nlm.nih.gov/PMC11388944
Volume 1
WOSCitedRecordID wos001552996200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2976-8683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313580
  issn: 2976-8683
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2976-8683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313580
  issn: 2976-8683
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfagQQXxNegfFRBcGCqsjVx4tjHqYAqtFbTKFM5VWkcQ1GaTkk7bTvwt_Oe3TjrugMgcYlS27Va_15efn5-H4S8E4kU3pTGbixC5QYYoxuj41rgx0AWPBkznZ3_9CgaDvl4LI4bDRvFf55Fec4vLsTZf4Ua2gBsDJ39C7jtpNAA9wA6XAF2uP4p8MV8IU2l-U6GAUxl5QkggW5nl3hIc2WpIrYAzVxkqdJGgrKz0vaDeYpBwVhQy1SEu05jT770OoPb-o2jgNEf31bQZ2Vv-H11aVTcKaqU-vS_j_Gf5fr441AWqHH6-9byk86WV9r0qE26WQwqunO0f91Y4Qc6ai-04gW_zrx3tILzgQq5nJlCNluqvEsxE6oM5gXyGPGzfmFZN8LjQc_zKOciCJrkjh-FAp36Br9qKxulHp7zVnlpqTioJ9xkIlvbi20v2WZRFYXR5GP0kDxY7xqcQ4P2I9JI88fkXq9a-idktIG6Y1B3FsoB1J2bqGM7trw3mO-VjkbcuYn4U_L108dRr--uC2a4SdClSzcR00T4jLIEI56n8MwBuWMSE1DySMGnblcprqKYxbBLpBJWR8WRCn1FmQxoSnfJTr7I0-fESTiDnWgiuFA8SHjIp76nfEmV5DBeshbZqxZvkqyzyWNRk2yivRqomHwIBid6oT-3yFs79szkULl11JsKgwn8Szy3ivN0sSonsAMJQp8zEbXIM4OJnQfoPYtE128RvoGWHYDp0zd78tkPnUa9Ep0W2QVg7RdqAXnx73O-JPdr8X9FdpbFKn1N7ibny1lZtEkzGvO2Nv-0tbz-BlKapxg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+limits+of+the+depolymerization+of+poly%28olefin%29s+using+mechanochemistry&rft.jtitle=RSC+Mechanochemistry&rft.au=Chang%2C+Yuchen&rft.au=Nguyen%2C+Van+Son&rft.au=Hergesell%2C+Adrian+H.&rft.au=Seitzinger%2C+Claire+L.&rft.date=2024-11-05&rft.pub=RSC&rft.eissn=2976-8683&rft_id=info:doi/10.1039%2Fd4mr00079j&rft.externalDocID=PMC11388944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-8683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-8683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-8683&client=summon