Thermodynamic limits of the depolymerization of poly(olefin)s using mechanochemistry
Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in s...
Saved in:
| Published in: | RSC Mechanochemistry Vol. 1; no. 5; pp. 54 - 513 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
RSC
05.11.2024
|
| Subjects: | |
| ISSN: | 2976-8683, 2976-8683 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor
via
a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.
Feasibility of mechanochemical depolymerization of commodity poly(olefin)s in a ball mill reactor is assessed using thermodynamic data. |
|---|---|
| AbstractList | Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor
via
a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Feasibility of mechanochemical depolymerization of commodity poly(olefin)s in a ball mill reactor is assessed using thermodynamic data. Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. Feasibility of mechanochemical depolymerization of commodity poly(olefin)s in a ball mill reactor is assessed using thermodynamic data. Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted. |
| Author | Seitzinger, Claire L Nguyen, Van Son Schork, F. Joseph Meisner, Jan Vollmer, Ina Sievers, Carsten Chang, Yuchen Hergesell, Adrian H |
| AuthorAffiliation | School of Chemical & Biomolecular Engineering Inorganic Chemistry and Catalysis Heinrich Heine University Düsseldorf Institute for Physical Chemistry Institute for Sustainable and Circular Chemistry Georgia Institute of Technology Utrecht University |
| AuthorAffiliation_xml | – sequence: 0 name: Inorganic Chemistry and Catalysis – sequence: 0 name: School of Chemical & Biomolecular Engineering – sequence: 0 name: Georgia Institute of Technology – sequence: 0 name: Utrecht University – sequence: 0 name: Institute for Physical Chemistry – sequence: 0 name: Institute for Sustainable and Circular Chemistry – sequence: 0 name: Heinrich Heine University Düsseldorf |
| Author_xml | – sequence: 1 givenname: Yuchen surname: Chang fullname: Chang, Yuchen – sequence: 2 givenname: Van Son surname: Nguyen fullname: Nguyen, Van Son – sequence: 3 givenname: Adrian H surname: Hergesell fullname: Hergesell, Adrian H – sequence: 4 givenname: Claire L surname: Seitzinger fullname: Seitzinger, Claire L – sequence: 5 givenname: Jan surname: Meisner fullname: Meisner, Jan – sequence: 6 givenname: Ina surname: Vollmer fullname: Vollmer, Ina – sequence: 7 givenname: F. Joseph surname: Schork fullname: Schork, F. Joseph – sequence: 8 givenname: Carsten surname: Sievers fullname: Sievers, Carsten |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39267902$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkV1PHCEUhomxUWu98b7NXNomaw9zmBm4ahr7HZsmzXpNWAYczAArzDbZ_vqyrlo1XgGH57zv-XhJdkMMhpBjCqcUULzvmU8A0ImrHXJQi66d8Zbj7oP7PjnK-aowiBQbDntkH0XddgLqAzKfDyb52K-D8k5Xo_NuylW01TSYqjfLOK69Se6vmlwMm_gmchJHY114m6tVduGy8kYPKkQ9GO_ylNavyAurxmyObs9DcvHl8_zs2-z819fvZx_PZ5oBTjMtFroUgq2ugeECGFAKbY9M1Lyz5QVgLbedalXDG-xL_VZ1tqkttj1Dg4fkw1Z3uVp402sTpqRGuUzOq7SWUTn5-Ce4QV7GP5JS5FwwVhRObhVSvF6ZPMnSgTbjqIKJqyyRAmtq3oquoG8emt273M2yALAFdIo5J2OldtPN3Iq3GyUFudmY_MR-_r7Z2I-S8u5Jyp3qs_DrLZyyvuf-rx__AfQpoQo |
| CitedBy_id | crossref_primary_10_1039_D5SC03348A crossref_primary_10_1016_j_progpolymsci_2024_101900 crossref_primary_10_1002_cssc_202500253 crossref_primary_10_1021_acs_macromol_5c01985 |
| Cites_doi | 10.1038/s41428-023-00863-9 10.1002/cssc.202002124 10.1016/S0032-5910(99)00175-8 10.1016/J.JEURCERAMSOC.2015.09.032 10.1021/cr200399q 10.1016/J.POWTEC.2021.06.017 10.1002/EJOC.201700961 10.1021/ja01259a068 10.1021/acssuschemeng.2c03376 10.1016/J.BIOSYSTEMSENG.2018.04.021 10.1002/047147875X.ch3 10.1021/acssuschemeng.3c01054 10.1002/anie.201810902 10.1039/D3GC03643J 10.3389/fchem.2021.685789 10.1039/tf9504600331 10.1002/anie.201915651 10.1039/D0NJ05984F 10.1039/D0CP01658F 10.1016/0032-3861(85)90156-9 10.1016/j.cej.2019.122954 10.1007/S11661-017-4195-6/FIGURES/11 10.1002/cber.19340670708 10.1063/1.1723621 10.1021/j150498a012 10.1070/rc2006v075n03abeh001205 10.1021/ef0100855 10.1063/1.555650 10.1016/j.matpr.2022.06.195 10.1021/acs.biomac.0c00769 10.1002/pol.1972.160100808 10.1016/j.cej.2023.148278 10.1039/C1CS15171A 10.1126/sciadv.1700782 10.1016/0079-6700(89)90004-X 10.1038/162705a0 10.1021/ja01267a066 10.1021/acssuschemeng.3c05296 10.1016/J.WASMAN.2017.07.044 10.1002/pol.20220578 10.1038/s41467-023-40915-5 10.1063/1.3656367 10.1002/pol.1974.180120211 10.1016/j.jallcom.2007.11.024 10.1021/acs.macromol.3c02664 10.1063/1.555663 10.1021/acs.macromol.0c01510 10.1007/BF00116370 10.1016/J.CHERD.2019.06.029 10.1021/acsenergylett.0c01895 10.1016/j.chempr.2020.12.006 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2024 RSC |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2024 RSC |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1039/d4mr00079j |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2976-8683 |
| EndPage | 513 |
| ExternalDocumentID | PMC11388944 39267902 10_1039_D4MR00079J d4mr00079j |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: 2028998 – fundername: ; grantid: DE-SC0016486 – fundername: ; grantid: Unassigned – fundername: ; grantid: VI.Veni.202.191, OCENW.XS22.1.093 |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS ANUXI GROUPED_DOAJ M~E AAYXX ABIQK CITATION H13 NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c403t-c9bc92636c2043b0401106d349287f40100ff8f7a6a5853d331fa7f52f36d43e3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552996200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2976-8683 |
| IngestDate | Tue Sep 30 17:07:45 EDT 2025 Fri Jul 11 16:34:36 EDT 2025 Mon Jul 21 06:05:21 EDT 2025 Tue Nov 18 21:06:06 EST 2025 Sat Nov 29 03:35:50 EST 2025 Tue Dec 17 20:57:09 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c403t-c9bc92636c2043b0401106d349287f40100ff8f7a6a5853d331fa7f52f36d43e3 |
| Notes | https://doi.org/10.1039/d4mr00079j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0997-4069 0000-0001-9917-1499 0000-0002-5713-1875 0000-0002-4700-9964 0000-0002-1301-2612 0000-0003-3071-930X |
| OpenAccessLink | http://dx.doi.org/10.1039/d4mr00079j |
| PMID | 39267902 |
| PQID | 3104528697 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | rsc_primary_d4mr00079j pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388944 crossref_citationtrail_10_1039_D4MR00079J crossref_primary_10_1039_D4MR00079J proquest_miscellaneous_3104528697 pubmed_primary_39267902 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-05 |
| PublicationDateYYYYMMDD | 2024-11-05 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | RSC Mechanochemistry |
| PublicationTitleAlternate | RSC Mechanochem |
| PublicationYear | 2024 |
| Publisher | RSC |
| Publisher_xml | – name: RSC |
| References | Yu (D4MR00079J/cit16/1) 2021; 391 Dainton (D4MR00079J/cit43/1) 1950; 46 Carta (D4MR00079J/cit39/1) 2020; 22 Martín (D4MR00079J/cit4/1) 2021; 7 Mucsi (D4MR00079J/cit8/1) 2019; 148 Zhurkov (D4MR00079J/cit47/1) 1974; 12 Flory (D4MR00079J/cit50/1) 1942; 10 Tricker (D4MR00079J/cit30/1) 2020; 5 Urakaev (D4MR00079J/cit17/1) 2000; 107 Tan (D4MR00079J/cit6/1) 2018; 2018 Delogu (D4MR00079J/cit46/1) 2008; 465 Zhurkov (D4MR00079J/cit48/1) 1975; 11 Chang (D4MR00079J/cit27/1) 2024; 12 Geyer (D4MR00079J/cit1/1) 2017; 3 Huggins (D4MR00079J/cit51/1) 1942; 64 Tricker (D4MR00079J/cit10/1) 2022; 10 Anglou (D4MR00079J/cit11/1) 2024; 481 Staudinger (D4MR00079J/cit33/1) 1934; 67 Grebowicz (D4MR00079J/cit40/1) 1985; 26 Zhao (D4MR00079J/cit14/1) 2017; 48 Lovell (D4MR00079J/cit49/1) 2020; 21 Bolm (D4MR00079J/cit29/1) 2019; 58 Broseghini (D4MR00079J/cit13/1) 2016; 36 Ragaert (D4MR00079J/cit3/1) 2017; 69 Patnode (D4MR00079J/cit45/1) 1939; 61 Ribas-Arino (D4MR00079J/cit20/1) 2012; 112 Sohma (D4MR00079J/cit36/1) 1989; 14 Zhurkov (D4MR00079J/cit35/1) 1972; 10 Kodera (D4MR00079J/cit37/1) 2002; 16 Simha (D4MR00079J/cit34/1) 1952; 56 Bulgakov (D4MR00079J/cit15/1) 2018; 171 Alrbaihat (D4MR00079J/cit22/1) 2022; 65 Nguyen (D4MR00079J/cit25/1) 2023; 11 Peterson (D4MR00079J/cit32/1) 2020; 53 Gaur (D4MR00079J/cit41/1) 1981; 10 James (D4MR00079J/cit5/1) 2012; 41 Jung (D4MR00079J/cit26/1) 2024; 57 Štrukil (D4MR00079J/cit9/1) 2021; 14 Lee (D4MR00079J/cit12/1) 2024; 26 Jung (D4MR00079J/cit28/1) 2022; 61 Aydonat (D4MR00079J/cit7/1) 2024; 56 Vollmer (D4MR00079J/cit2/1) 2020; 59 Dainton (D4MR00079J/cit44/1) 1948; 162 Odian (D4MR00079J/cit38/1) 2004 Tricker (D4MR00079J/cit21/1) 2020; 382 Balema (D4MR00079J/cit23/1) 2021; 45 Gaur (D4MR00079J/cit42/1) 1982; 11 Li (D4MR00079J/cit52/1) 2023; 14 Michalchuk (D4MR00079J/cit31/1) 2021; 9 Sriharsha (D4MR00079J/cit19/1) 2011; 135 Boldyrev (D4MR00079J/cit18/1) 2006; 75 |
| References_xml | – issn: 2024 volume-title: Mechanochemical Catalytic Depolymerization doi: Vollmer Weckhuysen Hergesell – issn: 2004 volume-title: Radical Chain Polymerization end-page: p 198-349 publication-title: Principles of Polymerization doi: Odian – volume: 56 start-page: 249 issue: 4 year: 2024 ident: D4MR00079J/cit7/1 publication-title: Polym. J. doi: 10.1038/s41428-023-00863-9 – volume: 14 start-page: 330 issue: 1 year: 2021 ident: D4MR00079J/cit9/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002124 – volume: 107 start-page: 93 issue: 1–2 year: 2000 ident: D4MR00079J/cit17/1 publication-title: Powder Technol. doi: 10.1016/S0032-5910(99)00175-8 – volume: 36 start-page: 2205 issue: 9 year: 2016 ident: D4MR00079J/cit13/1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/J.JEURCERAMSOC.2015.09.032 – volume: 112 start-page: 5412 issue: 10 year: 2012 ident: D4MR00079J/cit20/1 publication-title: Chem. Rev. doi: 10.1021/cr200399q – volume: 391 start-page: 173 year: 2021 ident: D4MR00079J/cit16/1 publication-title: Powder Technol. doi: 10.1016/J.POWTEC.2021.06.017 – volume: 2018 start-page: 18 issue: 1 year: 2018 ident: D4MR00079J/cit6/1 publication-title: European J. Org. Chem. doi: 10.1002/EJOC.201700961 – volume: 64 start-page: 1712 issue: 7 year: 1942 ident: D4MR00079J/cit51/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01259a068 – volume: 10 start-page: 11338 issue: 34 year: 2022 ident: D4MR00079J/cit10/1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c03376 – volume: 171 start-page: 155 year: 2018 ident: D4MR00079J/cit15/1 publication-title: Biosyst. Eng. doi: 10.1016/J.BIOSYSTEMSENG.2018.04.021 – start-page: 198 volume-title: Principles of Polymerization year: 2004 ident: D4MR00079J/cit38/1 doi: 10.1002/047147875X.ch3 – volume: 11 start-page: 7617 issue: 20 year: 2023 ident: D4MR00079J/cit25/1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c01054 – volume: 58 start-page: 3285 issue: 11 year: 2019 ident: D4MR00079J/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810902 – volume: 26 start-page: 2087 issue: 4 year: 2024 ident: D4MR00079J/cit12/1 publication-title: Green Chem. doi: 10.1039/D3GC03643J – volume: 9 start-page: 359 year: 2021 ident: D4MR00079J/cit31/1 publication-title: Front. Chem. doi: 10.3389/fchem.2021.685789 – volume: 46 start-page: 331 year: 1950 ident: D4MR00079J/cit43/1 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9504600331 – volume: 59 start-page: 15402 issue: 36 year: 2020 ident: D4MR00079J/cit2/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915651 – volume: 45 start-page: 2935 issue: 6 year: 2021 ident: D4MR00079J/cit23/1 publication-title: New J. Chem. doi: 10.1039/D0NJ05984F – volume: 22 start-page: 14489 issue: 26 year: 2020 ident: D4MR00079J/cit39/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP01658F – volume: 26 start-page: 561 issue: 4 year: 1985 ident: D4MR00079J/cit40/1 publication-title: Polymer doi: 10.1016/0032-3861(85)90156-9 – volume: 382 start-page: 122954 year: 2020 ident: D4MR00079J/cit21/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122954 – volume: 48 start-page: 4324 issue: 9 year: 2017 ident: D4MR00079J/cit14/1 publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/S11661-017-4195-6/FIGURES/11 – volume: 67 start-page: 1159 issue: 7 year: 1934 ident: D4MR00079J/cit33/1 publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19340670708 – volume: 10 start-page: 51 issue: 1 year: 1942 ident: D4MR00079J/cit50/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1723621 – volume: 56 start-page: 707 issue: 6 year: 1952 ident: D4MR00079J/cit34/1 publication-title: J. Phys. Chem. doi: 10.1021/j150498a012 – volume: 75 start-page: 177 issue: 3 year: 2006 ident: D4MR00079J/cit18/1 publication-title: Russ. Chem. Rev. doi: 10.1070/rc2006v075n03abeh001205 – volume: 16 start-page: 119 issue: 1 year: 2002 ident: D4MR00079J/cit37/1 publication-title: Energy and Fuels doi: 10.1021/ef0100855 – volume: 10 start-page: 1051 issue: 4 year: 1981 ident: D4MR00079J/cit41/1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555650 – volume: 65 start-page: 3651 year: 2022 ident: D4MR00079J/cit22/1 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.06.195 – volume: 21 start-page: 4396 issue: 11 year: 2020 ident: D4MR00079J/cit49/1 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00769 – volume: 10 start-page: 1509 issue: 8 year: 1972 ident: D4MR00079J/cit35/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pol.1972.160100808 – volume: 481 start-page: 148278 year: 2024 ident: D4MR00079J/cit11/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.148278 – volume: 41 start-page: 413 issue: 1 year: 2012 ident: D4MR00079J/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15171A – volume: 3 start-page: 25 issue: 7 year: 2017 ident: D4MR00079J/cit1/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 14 start-page: 451 issue: 4 year: 1989 ident: D4MR00079J/cit36/1 publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(89)90004-X – volume: 162 start-page: 705 issue: 4122 year: 1948 ident: D4MR00079J/cit44/1 publication-title: Nature doi: 10.1038/162705a0 – volume: 61 start-page: 3449 issue: 12 year: 1939 ident: D4MR00079J/cit45/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01267a066 – volume: 12 start-page: 178 issue: 1 year: 2024 ident: D4MR00079J/cit27/1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c05296 – volume: 69 start-page: 24 year: 2017 ident: D4MR00079J/cit3/1 publication-title: Waste Manag doi: 10.1016/J.WASMAN.2017.07.044 – volume: 61 start-page: 553 issue: 7 year: 2022 ident: D4MR00079J/cit28/1 publication-title: J. Polym. Sci. doi: 10.1002/pol.20220578 – volume: 14 start-page: 5257 issue: 1 year: 2023 ident: D4MR00079J/cit52/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40915-5 – volume: 135 start-page: 164103 year: 2011 ident: D4MR00079J/cit19/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3656367 – volume: 12 start-page: 385 issue: 2 year: 1974 ident: D4MR00079J/cit47/1 publication-title: J. Polym. Sci. Polym. Phys. Ed. doi: 10.1002/pol.1974.180120211 – volume: 465 start-page: 540 issue: 1–2 year: 2008 ident: D4MR00079J/cit46/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.11.024 – volume: 57 start-page: 3131 issue: 7 year: 2024 ident: D4MR00079J/cit26/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.3c02664 – volume: 11 start-page: 313 issue: 2 year: 1982 ident: D4MR00079J/cit42/1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555663 – volume: 53 start-page: 7795 issue: 18 year: 2020 ident: D4MR00079J/cit32/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c01510 – volume: 11 start-page: 629 issue: 4 year: 1975 ident: D4MR00079J/cit48/1 publication-title: Int. J. Fract. doi: 10.1007/BF00116370 – volume: 148 start-page: 460 year: 2019 ident: D4MR00079J/cit8/1 publication-title: Chem. Eng. Res. Des. doi: 10.1016/J.CHERD.2019.06.029 – volume: 5 start-page: 3362 issue: 11 year: 2020 ident: D4MR00079J/cit30/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01895 – volume: 7 start-page: 1487 issue: 6 year: 2021 ident: D4MR00079J/cit4/1 publication-title: Chem doi: 10.1016/j.chempr.2020.12.006 |
| SSID | ssj0003313580 |
| Score | 2.3360267 |
| Snippet | Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported.... |
| SourceID | pubmedcentral proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 54 |
| SubjectTerms | Chemistry |
| Title | Thermodynamic limits of the depolymerization of poly(olefin)s using mechanochemistry |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39267902 https://www.proquest.com/docview/3104528697 https://pubmed.ncbi.nlm.nih.gov/PMC11388944 |
| Volume | 1 |
| WOSCitedRecordID | wos001552996200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2976-8683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313580 issn: 2976-8683 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2976-8683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313580 issn: 2976-8683 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfagQQXxNegfFRBcGCqsjVx4tjHqYAqtFbTKFM5VWkcQ1GaTkk7bTvwt_Oe3TjrugMgcYlS27Va_15efn5-H4S8E4kU3pTGbixC5QYYoxuj41rgx0AWPBkznZ3_9CgaDvl4LI4bDRvFf55Fec4vLsTZf4Ua2gBsDJ39C7jtpNAA9wA6XAF2uP4p8MV8IU2l-U6GAUxl5QkggW5nl3hIc2WpIrYAzVxkqdJGgrKz0vaDeYpBwVhQy1SEu05jT770OoPb-o2jgNEf31bQZ2Vv-H11aVTcKaqU-vS_j_Gf5fr441AWqHH6-9byk86WV9r0qE26WQwqunO0f91Y4Qc6ai-04gW_zrx3tILzgQq5nJlCNluqvEsxE6oM5gXyGPGzfmFZN8LjQc_zKOciCJrkjh-FAp36Br9qKxulHp7zVnlpqTioJ9xkIlvbi20v2WZRFYXR5GP0kDxY7xqcQ4P2I9JI88fkXq9a-idktIG6Y1B3FsoB1J2bqGM7trw3mO-VjkbcuYn4U_L108dRr--uC2a4SdClSzcR00T4jLIEI56n8MwBuWMSE1DySMGnblcprqKYxbBLpBJWR8WRCn1FmQxoSnfJTr7I0-fESTiDnWgiuFA8SHjIp76nfEmV5DBeshbZqxZvkqyzyWNRk2yivRqomHwIBid6oT-3yFs79szkULl11JsKgwn8Szy3ivN0sSonsAMJQp8zEbXIM4OJnQfoPYtE128RvoGWHYDp0zd78tkPnUa9Ep0W2QVg7RdqAXnx73O-JPdr8X9FdpbFKn1N7ibny1lZtEkzGvO2Nv-0tbz-BlKapxg |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+limits+of+the+depolymerization+of+poly%28olefin%29s+using+mechanochemistry&rft.jtitle=RSC+Mechanochemistry&rft.au=Chang%2C+Yuchen&rft.au=Nguyen%2C+Van+Son&rft.au=Hergesell%2C+Adrian+H.&rft.au=Seitzinger%2C+Claire+L.&rft.date=2024-11-05&rft.pub=RSC&rft.eissn=2976-8683&rft_id=info:doi/10.1039%2Fd4mr00079j&rft.externalDocID=PMC11388944 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-8683&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-8683&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-8683&client=summon |