Fusion of Multiple Attention Mechanisms and Background Feature Adaptive Update Strategies in Siamese Networks for Single-Object Tracking
Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in precision and speed. Since this tracking model only learns a similarity model offline, it is not able to obtain more useful feature discriminati...
Saved in:
| Published in: | Applied sciences Vol. 14; no. 18; p. 8199 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.09.2024
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in precision and speed. Since this tracking model only learns a similarity model offline, it is not able to obtain more useful feature discrimination information to adapt to the various variations of targets in complex scenes. To improve the performance of this tracking model, we propose a Siamese network tracking algorithm that incorporates multiple attention mechanisms and an adaptive updating strategy for background features. First, a backbone feature extraction network is proposed that utilizes a small convolutional kernel to fuse jump-layer connectivity features, thereby improving the feature representation capability of the network. Second, an adaptive update strategy for background features is proposed to improve the model’s ability to discriminate between the object and background features. Third, the fusion of multiple attention mechanisms is proposed so that the model learns to focus on the channel, spatial, and coordinate features. Fourth, the response fusion operation is proposed after the inter-correlation operation to enrich the output response of the model. Finally, our algorithm is trained using the GOT-10K dataset and evaluated by testing on the object tracking benchmark datasets OTB100 and VOT2018. The test results show that compared with other algorithms, our algorithm can effectively cope with the problem of degradation of the tracking performance in complex environments, and it can further improve the tracking precision and precision under the premise of ensuring the tracking speed. |
|---|---|
| AbstractList | Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in precision and speed. Since this tracking model only learns a similarity model offline, it is not able to obtain more useful feature discrimination information to adapt to the various variations of targets in complex scenes. To improve the performance of this tracking model, we propose a Siamese network tracking algorithm that incorporates multiple attention mechanisms and an adaptive updating strategy for background features. First, a backbone feature extraction network is proposed that utilizes a small convolutional kernel to fuse jump-layer connectivity features, thereby improving the feature representation capability of the network. Second, an adaptive update strategy for background features is proposed to improve the model’s ability to discriminate between the object and background features. Third, the fusion of multiple attention mechanisms is proposed so that the model learns to focus on the channel, spatial, and coordinate features. Fourth, the response fusion operation is proposed after the inter-correlation operation to enrich the output response of the model. Finally, our algorithm is trained using the GOT-10K dataset and evaluated by testing on the object tracking benchmark datasets OTB100 and VOT2018. The test results show that compared with other algorithms, our algorithm can effectively cope with the problem of degradation of the tracking performance in complex environments, and it can further improve the tracking precision and precision under the premise of ensuring the tracking speed. |
| Audience | Academic |
| Author | Feng, Wenliang Meng, Fanbao You, Anqing Yu, Chuan |
| Author_xml | – sequence: 1 givenname: Wenliang surname: Feng fullname: Feng, Wenliang – sequence: 2 givenname: Fanbao surname: Meng fullname: Meng, Fanbao – sequence: 3 givenname: Chuan surname: Yu fullname: Yu, Chuan – sequence: 4 givenname: Anqing surname: You fullname: You, Anqing |
| BookMark | eNptUcFu1DAQjVCRKKUnfsASR7TFjpO1fVwqFiq19ND2bE3sSfA2GwfbAfEHfDazLEgVwpY8o6f3nu15L6uTKU5YVa8Fv5DS8Hcwz6IRWgtjnlWnNVfrlWyEOnnSv6jOc95xWkZILfhp9XO75BAnFnt2s4wlzCOyTSk4lQN6g-4LTCHvM4PJs_fgHocUF2q3CGVJxPUwl_AN2cPsoSC7K4nKEDCzMLG7AHvMyD5j-R7TY2Z9TAROw4ir226HrrD7RKaEvKqe9zBmPP9Tz6qH7Yf7y0-r69uPV5eb65VruCx0tiCAAzrZ19C2grfSSIXYus6jada-Q63brvMgBRF7oVrZy1pq7T3vuTyrro6-PsLOzinsIf2wEYL9DcQ0WEgluBGtVI3Rpl43Zt02xtPAQIm2M41SyjROkNebo9ec4tcFc7G7uKSJnm_pci5ro7Qh1sWRNQCZhqmPNCNH2-M-OMqwD4RvtBBSSK4aEoijwKWYc8LeulDgEAgJw2gFt4fA7ZPASfP2H83fr_2P_Qu30q21 |
| CitedBy_id | crossref_primary_10_3390_s25030880 crossref_primary_10_3390_jimaging11090311 crossref_primary_10_3390_app15084275 |
| Cites_doi | 10.1142/S0218001493000339 10.1016/j.patcog.2017.11.007 10.1109/ICCAIS.2018.8570532 10.1109/TPAMI.2019.2957464 10.1109/CVPR.2017.531 10.1109/CVPR.2015.7299064 10.1007/978-3-642-33765-9_50 10.1109/TPAMI.2014.2345390 10.1007/s11390-023-3788-3 10.1109/CCDC.2018.8408173 10.1109/CVPR.2010.5539960 10.1109/CVPR.2013.312 10.1109/ICCV.2015.490 10.1109/CVPR42600.2020.01155 10.1609/aaai.v34i07.6944 10.1109/CVPR.2018.00935 10.1109/78.978374 10.1109/CVPR46437.2021.01350 10.1109/ICCV.2015.352 10.1109/CVPR.2016.156 10.1109/CVPR.2019.00441 10.1109/ICCV.2019.00679 10.1145/1177352.1177355 10.1007/978-3-319-10599-4_13 10.1007/978-3-030-03801-4_41 10.1109/TPAMI.2014.2388226 10.1109/TPAMI.2003.1195991 10.1109/CVPR.2019.00142 10.1109/ICCV.2009.5459369 10.1007/978-3-319-48881-3_56 10.1109/CVPR.2018.00508 10.1007/978-3-030-01234-2_1 10.5244/C.28.65 10.1016/j.cag.2019.08.004 10.1109/CVPR.2018.00745 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app14188199 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_37498926496549d381a715b9477794c1 A811313074 10_3390_app14188199 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c403t-c45a1a0aec3f2a551053937ee5cbde946dbe885bbda311a0f1753f32388dd0f03 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001323251100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:50:51 EDT 2025 Mon Jun 30 15:45:24 EDT 2025 Tue Nov 04 18:15:16 EST 2025 Sat Nov 29 07:12:57 EST 2025 Tue Nov 18 21:57:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-c45a1a0aec3f2a551053937ee5cbde946dbe885bbda311a0f1753f32388dd0f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3110329789?pq-origsite=%requestingapplication% |
| PQID | 3110329789 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_37498926496549d381a715b9477794c1 proquest_journals_3110329789 gale_infotracacademiconefile_A811313074 crossref_citationtrail_10_3390_app14188199 crossref_primary_10_3390_app14188199 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_14 ref_36 ref_13 ref_35 ref_34 ref_11 ref_33 ref_32 ref_31 ref_30 Sarcinelli (ref_4) 2019; 84 ref_19 ref_17 ref_39 Li (ref_2) 2018; 76 ref_16 ref_38 ref_15 Henriques (ref_12) 2014; 37 Bromley (ref_18) 1993; 7 Comaniciu (ref_10) 2003; 25 Huang (ref_37) 2019; 43 ref_25 ref_24 ref_23 Yilmaz (ref_1) 2006; 38 ref_22 ref_21 ref_20 ref_42 Wu (ref_6) 2015; 37 ref_40 Wang (ref_41) 2024; 39 ref_3 ref_29 ref_28 Arulampalam (ref_8) 2002; 50 ref_27 ref_26 ref_9 ref_5 ref_7 |
| References_xml | – ident: ref_28 – volume: 7 start-page: 669 year: 1993 ident: ref_18 article-title: Signature verification using a “Siamese” time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001493000339 – volume: 76 start-page: 323 year: 2018 ident: ref_2 article-title: Deep visual tracking: Review And experimental comparison publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.11.007 – ident: ref_9 – ident: ref_30 – ident: ref_3 doi: 10.1109/ICCAIS.2018.8570532 – volume: 43 start-page: 1562 year: 2019 ident: ref_37 article-title: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2957464 – ident: ref_27 doi: 10.1109/CVPR.2017.531 – ident: ref_19 doi: 10.1109/CVPR.2015.7299064 – ident: ref_13 doi: 10.1007/978-3-642-33765-9_50 – volume: 37 start-page: 583 year: 2014 ident: ref_12 article-title: High-Speed Tracking with Kernelized Correlation Filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345390 – ident: ref_16 – volume: 39 start-page: 691 year: 2024 ident: ref_41 article-title: DCFNet: Discriminant Correlation Filters Network for Visual Tracking publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-023-3788-3 – ident: ref_38 doi: 10.1109/CCDC.2018.8408173 – ident: ref_11 doi: 10.1109/CVPR.2010.5539960 – ident: ref_5 doi: 10.1109/CVPR.2013.312 – ident: ref_15 doi: 10.1109/ICCV.2015.490 – ident: ref_42 – ident: ref_36 doi: 10.1109/CVPR42600.2020.01155 – ident: ref_23 doi: 10.1609/aaai.v34i07.6944 – ident: ref_22 doi: 10.1109/CVPR.2018.00935 – volume: 50 start-page: 174 year: 2002 ident: ref_8 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.978374 – ident: ref_34 doi: 10.1109/CVPR46437.2021.01350 – ident: ref_25 – ident: ref_14 doi: 10.1109/ICCV.2015.352 – ident: ref_17 doi: 10.1109/CVPR.2016.156 – ident: ref_24 doi: 10.1109/CVPR.2019.00441 – ident: ref_29 – ident: ref_32 doi: 10.1109/ICCV.2019.00679 – volume: 38 start-page: 13 year: 2006 ident: ref_1 article-title: Object Tracking: A Survey publication-title: ACM Comput. Surv. doi: 10.1145/1177352.1177355 – ident: ref_39 doi: 10.1007/978-3-319-10599-4_13 – ident: ref_21 doi: 10.1007/978-3-030-03801-4_41 – volume: 37 start-page: 1834 year: 2015 ident: ref_6 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2388226 – volume: 25 start-page: 564 year: 2003 ident: ref_10 article-title: Kernel-based object tracking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1195991 – ident: ref_26 doi: 10.1109/CVPR.2019.00142 – ident: ref_7 doi: 10.1109/ICCV.2009.5459369 – ident: ref_20 doi: 10.1007/978-3-319-48881-3_56 – ident: ref_31 doi: 10.1109/CVPR.2018.00508 – ident: ref_33 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_40 doi: 10.5244/C.28.65 – volume: 84 start-page: 173 year: 2019 ident: ref_4 article-title: Handling pedestrians in self-driving cars using image tracking and alternative path generation with Frenét frames publication-title: Comput. Graph. doi: 10.1016/j.cag.2019.08.004 – ident: ref_35 doi: 10.1109/CVPR.2018.00745 |
| SSID | ssj0000913810 |
| Score | 2.3148746 |
| Snippet | Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 8199 |
| SubjectTerms | Algorithms Analysis background adaptive updating strategy Computer vision Deep learning fusion of multiple attention mechanisms Semantics Siamese network single-object tracking algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NAeSpKmdPNCh0AfYCpZ8so-bkKXXLIttIHchJ5laeIsa29-Q352ZixtsoeWXnIxxgxY1sxoHp75hpDTynFuWQxFLJksZAiqMKz0heXC85JFr5gZhk2o2ay-vm5-bIz6wpqwBA-cNu6rULKpGzDbzRhCGQ8Gxihe2UYqBaLkhsAHvJ6NYGo4gxuO0FWpIU9AXI__g7nkdZ1QXp9N0IDU_6_zeDAy0x3yNnuHdJJWtUtehXaPvNnADNwju1kbO_opQ0Z_fkcepivMetG7SC9zhSCd9H0qZaSXAdt7591tR03r6Zlxf7CZA27RAVwtgdabBZ579GqBGQC6xqyFt8xb-nOOpbSBzlLJeEfB0YWH7e-bUHy3mMihYPIcJt33ydX026_ziyLPWCicZKKHa2W4YSY4EUtTobuFEHkhVM760Mixt6GuK2u9ERwIIyJ7RgGGvvaeRSbek632rg0fCGUeLJ2UtoxjiFEkEEvuvAMVd2OveDkiX9bbrl0GIMc5GDcaAhHkkd7g0YicPhEvEu7G38nOkH9PJAiWPTwAEdJZhPT_RGhEPiL3Nao0LMiZ3JkAn4XgWHpScy7A1is5IkdrAdFZ1zsN-8JECdF4c_ASqzkkr0twnFId2xHZ6percEy23X0_75Yng5g_ApjG_xA priority: 102 providerName: Directory of Open Access Journals |
| Title | Fusion of Multiple Attention Mechanisms and Background Feature Adaptive Update Strategies in Siamese Networks for Single-Object Tracking |
| URI | https://www.proquest.com/docview/3110329789 https://doaj.org/article/37498926496549d381a715b9477794c1 |
| Volume | 14 |
| WOSCitedRecordID | wos001323251100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BygEOhRYqQh_aQyUeksWuvY7XpypBjeCQEAGVysla76OKKE6Inf4GfjYz9ibtgXLhYvkxktfe2XntzDcAp6kRouTeRT7mMpLOZZHmsY1KkVgRc28zrttmE9l0qi4v81kIuNUhrXIjE1tBbReGYuTvE0HQb-jz5GfLXxF1jaLd1dBC4yHsEFKZ7MHO6Hw6-7KNshDqpRK8K8xL0L-nfWEhhVId2uutKmoR---Ty62yGT_932E-g91gZrJhxxd78MBV-_DkDvjgPuyFZV2zNwF7-u1z-D1eU_iMLTybhFRDNmyaLieSTRzVCc_rnzXTlWUjbX5QVQiekiW5XiGt1UsSoOxiSaEEtgG_xbfMK_Z1Tjm5jk273POaocWMN6uraxd9LikixFB3Gorev4CL8fm3Dx-j0KwhMpInDR5TLTTXziQ-1inZbYS151xqSutyObClUyotS6vxH2nuCSLUJ2gxKGu558kB9KpF5V4C4xZVppRl7Afo7EgklsJYg7LCDGwm4j6828xbYQKSOTXUuC7Qo6FJLu5Mch9Ot8TLDsDj72QjYoAtCaFutzcWq6siLOIiyWSucjQh8wG61RY5S2ciLXOZZSjWjOjDa2KfgmQDDsjoUOKAn0UoW8VQCZGg0ZDJPhxt2KcIQqMubnnn1b8fH8LjGG2rLtXtCHrNau2O4ZG5aeb16iSsgZM2vIBXs0-T2fc_gY4TzQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIlyAFqoCBTYQxEPyWLXXsf2AaEUiBq1CZFopfa0rHfXVURxQuyA-Af8Gn4jM36kPQC3HrhElj2KX5_ntTPfAOyGRoiUZ87LfC496Vzkae5bLxWBFT7PbMR1NWwiGo_jk5Nksga_2l4YKqtsdWKlqO3MUI78VSCI-g1jnuTN_KtHU6NodbUdoVHD4sD9-I4hW_F6-A7f71PfH7w_ervvNVMFPCN5UOJvqIXm2pkg83VIDgaRwjkXmtS6RPZs6uI4TFOr8ZyaZ8RlmQVo2mJrecYD_N9rsC4R7HEH1ifD0eR0ldUhls1Y8LoRMAgSTuvQQoo4rtllL0xfNSHgb3agMm6D2__bY7kDtxo3mvVr3G_Cmsu34OYlcsUt2GzUVsGeN9zaL-7Cz8GS0oNslrFRU0rJ-mVZ13yykaM-6GnxpWA6t2xPm8_U9YKb5CkvFyhr9ZwMBDueU6qEteS-eJZpzj5OqebYsXFdW18wjAhwZ3527rwPKWW8GPoGhlYn7sHxlTyfbejks9zdB8YtugRSpn7Ww2BOorAUxhrUhaZnI-F34WWLE2UapnYaGHKuMGIjUKlLoOrC7kp4XhOU_FlsjwC3EiFW8WrHbHGmGiWlgkgmcYIuctILZWIRyToSYZrIKEK1bUQXnhFcFek-vCCjmxYOvC1iEVP9WIgAnaJIdmGnhatqlGKhLrD64N-Hn8CN_aPRoTocjg8ewoaPfmRd1rcDnXKxdI_guvlWTovF4-b7Y_DpqrH9G8AUb0g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE4AC2gBgrsoYiHZHXXXsf2AaGUEhGVhEhQqZzMeh9V1OKEOAHxD_hN_Dpm7HXaA3DrgYtl2SM_v52ZnZ35BmA31kIU3NnAhVwG0tokUDw0QSEiI0LuTMJV3WwiGY3S4-NsvAa_2loYSqtsdWKtqM1UU4x8LxJE_YZznmzP-bSI8UH_1exrQB2kaKW1bafRQOTQ_viO07fq5eAA__WTMOy_-fj6beA7DARa8miB21gJxZXVkQtVTM4GEcRZG-vC2Ex2TWHTNC4Ko_D-ijvitXQRmrnUGO54hNe9AhvokkscYxvjwXD8aRXhIcbNVPCmKDCKMk5r0kKKNG2YZs_NYN0t4G82oTZ0_Vv_8ye6DTe9e816zXjYhDVbbsGNC6SLW7Dp1VnFnnnO7ed34Gd_SWFDNnVs6FMsWW-xaHJB2dBSffSk-lIxVRq2r_QpVcPgLnnQyznKGjUjw8GOZhRCYS3pL95lUrIPE8pFtmzU5NxXDGcKeLA8ObPB-4IiYQx9Bk2rFnfh6FK-zz1YL6el3QbGDboKUhah6xKiUFgKbTTqSN01iQg78KLFTK49gzs1EjnLcSZHAMsvAKwDuyvhWUNc8mexfQLfSoTYxusD0_lJ7pVXHiUySzN0nbNuLDODqFaJiItMJgmqcy068JSgm5NOxAfSypd24GsRu1jeS4WI0FlKZAd2WujmXllW-Tlu7__79GO4hoDO3w1Ghw_geojuZZPttwPri_nSPoSr-ttiUs0f-aHI4PNlQ_s3moN4CA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Multiple+Attention+Mechanisms+and+Background+Feature+Adaptive+Update+Strategies+in+Siamese+Networks+for+Single-Object+Tracking&rft.jtitle=Applied+sciences&rft.au=Feng%2C+Wenliang&rft.au=Meng%2C+Fanbao&rft.au=Yu%2C+Chuan&rft.au=You%2C+Anqing&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=18&rft.spage=8199&rft_id=info:doi/10.3390%2Fapp14188199&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |