Fusion of Multiple Attention Mechanisms and Background Feature Adaptive Update Strategies in Siamese Networks for Single-Object Tracking

Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in precision and speed. Since this tracking model only learns a similarity model offline, it is not able to obtain more useful feature discriminati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 14; číslo 18; s. 8199
Hlavní autoři: Feng, Wenliang, Meng, Fanbao, Yu, Chuan, You, Anqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2024
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in precision and speed. Since this tracking model only learns a similarity model offline, it is not able to obtain more useful feature discrimination information to adapt to the various variations of targets in complex scenes. To improve the performance of this tracking model, we propose a Siamese network tracking algorithm that incorporates multiple attention mechanisms and an adaptive updating strategy for background features. First, a backbone feature extraction network is proposed that utilizes a small convolutional kernel to fuse jump-layer connectivity features, thereby improving the feature representation capability of the network. Second, an adaptive update strategy for background features is proposed to improve the model’s ability to discriminate between the object and background features. Third, the fusion of multiple attention mechanisms is proposed so that the model learns to focus on the channel, spatial, and coordinate features. Fourth, the response fusion operation is proposed after the inter-correlation operation to enrich the output response of the model. Finally, our algorithm is trained using the GOT-10K dataset and evaluated by testing on the object tracking benchmark datasets OTB100 and VOT2018. The test results show that compared with other algorithms, our algorithm can effectively cope with the problem of degradation of the tracking performance in complex environments, and it can further improve the tracking precision and precision under the premise of ensuring the tracking speed.
AbstractList Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in precision and speed. Since this tracking model only learns a similarity model offline, it is not able to obtain more useful feature discrimination information to adapt to the various variations of targets in complex scenes. To improve the performance of this tracking model, we propose a Siamese network tracking algorithm that incorporates multiple attention mechanisms and an adaptive updating strategy for background features. First, a backbone feature extraction network is proposed that utilizes a small convolutional kernel to fuse jump-layer connectivity features, thereby improving the feature representation capability of the network. Second, an adaptive update strategy for background features is proposed to improve the model’s ability to discriminate between the object and background features. Third, the fusion of multiple attention mechanisms is proposed so that the model learns to focus on the channel, spatial, and coordinate features. Fourth, the response fusion operation is proposed after the inter-correlation operation to enrich the output response of the model. Finally, our algorithm is trained using the GOT-10K dataset and evaluated by testing on the object tracking benchmark datasets OTB100 and VOT2018. The test results show that compared with other algorithms, our algorithm can effectively cope with the problem of degradation of the tracking performance in complex environments, and it can further improve the tracking precision and precision under the premise of ensuring the tracking speed.
Audience Academic
Author Feng, Wenliang
Meng, Fanbao
You, Anqing
Yu, Chuan
Author_xml – sequence: 1
  givenname: Wenliang
  surname: Feng
  fullname: Feng, Wenliang
– sequence: 2
  givenname: Fanbao
  surname: Meng
  fullname: Meng, Fanbao
– sequence: 3
  givenname: Chuan
  surname: Yu
  fullname: Yu, Chuan
– sequence: 4
  givenname: Anqing
  surname: You
  fullname: You, Anqing
BookMark eNptUcFu1DAQjVCRKKUnfsASR7TFjpO1fVwqFiq19ND2bE3sSfA2GwfbAfEHfDazLEgVwpY8o6f3nu15L6uTKU5YVa8Fv5DS8Hcwz6IRWgtjnlWnNVfrlWyEOnnSv6jOc95xWkZILfhp9XO75BAnFnt2s4wlzCOyTSk4lQN6g-4LTCHvM4PJs_fgHocUF2q3CGVJxPUwl_AN2cPsoSC7K4nKEDCzMLG7AHvMyD5j-R7TY2Z9TAROw4ir226HrrD7RKaEvKqe9zBmPP9Tz6qH7Yf7y0-r69uPV5eb65VruCx0tiCAAzrZ19C2grfSSIXYus6jada-Q63brvMgBRF7oVrZy1pq7T3vuTyrro6-PsLOzinsIf2wEYL9DcQ0WEgluBGtVI3Rpl43Zt02xtPAQIm2M41SyjROkNebo9ec4tcFc7G7uKSJnm_pci5ro7Qh1sWRNQCZhqmPNCNH2-M-OMqwD4RvtBBSSK4aEoijwKWYc8LeulDgEAgJw2gFt4fA7ZPASfP2H83fr_2P_Qu30q21
CitedBy_id crossref_primary_10_3390_s25030880
crossref_primary_10_3390_jimaging11090311
crossref_primary_10_3390_app15084275
Cites_doi 10.1142/S0218001493000339
10.1016/j.patcog.2017.11.007
10.1109/ICCAIS.2018.8570532
10.1109/TPAMI.2019.2957464
10.1109/CVPR.2017.531
10.1109/CVPR.2015.7299064
10.1007/978-3-642-33765-9_50
10.1109/TPAMI.2014.2345390
10.1007/s11390-023-3788-3
10.1109/CCDC.2018.8408173
10.1109/CVPR.2010.5539960
10.1109/CVPR.2013.312
10.1109/ICCV.2015.490
10.1109/CVPR42600.2020.01155
10.1609/aaai.v34i07.6944
10.1109/CVPR.2018.00935
10.1109/78.978374
10.1109/CVPR46437.2021.01350
10.1109/ICCV.2015.352
10.1109/CVPR.2016.156
10.1109/CVPR.2019.00441
10.1109/ICCV.2019.00679
10.1145/1177352.1177355
10.1007/978-3-319-10599-4_13
10.1007/978-3-030-03801-4_41
10.1109/TPAMI.2014.2388226
10.1109/TPAMI.2003.1195991
10.1109/CVPR.2019.00142
10.1109/ICCV.2009.5459369
10.1007/978-3-319-48881-3_56
10.1109/CVPR.2018.00508
10.1007/978-3-030-01234-2_1
10.5244/C.28.65
10.1016/j.cag.2019.08.004
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14188199
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_37498926496549d381a715b9477794c1
A811313074
10_3390_app14188199
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-c45a1a0aec3f2a551053937ee5cbde946dbe885bbda311a0f1753f32388dd0f03
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001323251100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:50:51 EDT 2025
Mon Jun 30 15:45:24 EDT 2025
Tue Nov 04 18:15:16 EST 2025
Sat Nov 29 07:12:57 EST 2025
Tue Nov 18 21:57:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-c45a1a0aec3f2a551053937ee5cbde946dbe885bbda311a0f1753f32388dd0f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/37498926496549d381a715b9477794c1
PQID 3110329789
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_37498926496549d381a715b9477794c1
proquest_journals_3110329789
gale_infotracacademiconefile_A811313074
crossref_citationtrail_10_3390_app14188199
crossref_primary_10_3390_app14188199
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_13
ref_35
ref_34
ref_11
ref_33
ref_32
ref_31
ref_30
Sarcinelli (ref_4) 2019; 84
ref_19
ref_17
ref_39
Li (ref_2) 2018; 76
ref_16
ref_38
ref_15
Henriques (ref_12) 2014; 37
Bromley (ref_18) 1993; 7
Comaniciu (ref_10) 2003; 25
Huang (ref_37) 2019; 43
ref_25
ref_24
ref_23
Yilmaz (ref_1) 2006; 38
ref_22
ref_21
ref_20
ref_42
Wu (ref_6) 2015; 37
ref_40
Wang (ref_41) 2024; 39
ref_3
ref_29
ref_28
Arulampalam (ref_8) 2002; 50
ref_27
ref_26
ref_9
ref_5
ref_7
References_xml – ident: ref_28
– volume: 7
  start-page: 669
  year: 1993
  ident: ref_18
  article-title: Signature verification using a “Siamese” time delay neural network
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001493000339
– volume: 76
  start-page: 323
  year: 2018
  ident: ref_2
  article-title: Deep visual tracking: Review And experimental comparison
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.007
– ident: ref_9
– ident: ref_30
– ident: ref_3
  doi: 10.1109/ICCAIS.2018.8570532
– volume: 43
  start-page: 1562
  year: 2019
  ident: ref_37
  article-title: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2957464
– ident: ref_27
  doi: 10.1109/CVPR.2017.531
– ident: ref_19
  doi: 10.1109/CVPR.2015.7299064
– ident: ref_13
  doi: 10.1007/978-3-642-33765-9_50
– volume: 37
  start-page: 583
  year: 2014
  ident: ref_12
  article-title: High-Speed Tracking with Kernelized Correlation Filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345390
– ident: ref_16
– volume: 39
  start-page: 691
  year: 2024
  ident: ref_41
  article-title: DCFNet: Discriminant Correlation Filters Network for Visual Tracking
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-023-3788-3
– ident: ref_38
  doi: 10.1109/CCDC.2018.8408173
– ident: ref_11
  doi: 10.1109/CVPR.2010.5539960
– ident: ref_5
  doi: 10.1109/CVPR.2013.312
– ident: ref_15
  doi: 10.1109/ICCV.2015.490
– ident: ref_42
– ident: ref_36
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref_23
  doi: 10.1609/aaai.v34i07.6944
– ident: ref_22
  doi: 10.1109/CVPR.2018.00935
– volume: 50
  start-page: 174
  year: 2002
  ident: ref_8
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.978374
– ident: ref_34
  doi: 10.1109/CVPR46437.2021.01350
– ident: ref_25
– ident: ref_14
  doi: 10.1109/ICCV.2015.352
– ident: ref_17
  doi: 10.1109/CVPR.2016.156
– ident: ref_24
  doi: 10.1109/CVPR.2019.00441
– ident: ref_29
– ident: ref_32
  doi: 10.1109/ICCV.2019.00679
– volume: 38
  start-page: 13
  year: 2006
  ident: ref_1
  article-title: Object Tracking: A Survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1177352.1177355
– ident: ref_39
  doi: 10.1007/978-3-319-10599-4_13
– ident: ref_21
  doi: 10.1007/978-3-030-03801-4_41
– volume: 37
  start-page: 1834
  year: 2015
  ident: ref_6
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2388226
– volume: 25
  start-page: 564
  year: 2003
  ident: ref_10
  article-title: Kernel-based object tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1195991
– ident: ref_26
  doi: 10.1109/CVPR.2019.00142
– ident: ref_7
  doi: 10.1109/ICCV.2009.5459369
– ident: ref_20
  doi: 10.1007/978-3-319-48881-3_56
– ident: ref_31
  doi: 10.1109/CVPR.2018.00508
– ident: ref_33
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_40
  doi: 10.5244/C.28.65
– volume: 84
  start-page: 173
  year: 2019
  ident: ref_4
  article-title: Handling pedestrians in self-driving cars using image tracking and alternative path generation with Frenét frames
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2019.08.004
– ident: ref_35
  doi: 10.1109/CVPR.2018.00745
SSID ssj0000913810
Score 2.3148746
Snippet Single-object tracking algorithms based on Siamese full convolutional networks have attracted much attention from researchers owing to their improvement in...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8199
SubjectTerms Algorithms
Analysis
background adaptive updating strategy
Computer vision
Deep learning
fusion of multiple attention mechanisms
Semantics
Siamese network
single-object tracking algorithm
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BlwMcgF1YUViQDyvxkCLs2mmcE2rRVhzYsgJW2pvl-LGqWNLSpPwGfjYzidvdA3DhEkXOSHHi8fib8cxngOMqeO7iOGTCB58p6UVmC15kRdDR-VGI1nY8sx-L-VxfXJRnKeDWpLTKrU3sDLVfOoqRv5WCqN_Q5ynfrX5kdGoU7a6mIzRuwx4xlakB7E1P5mefd1EWYr3UgveFeRL9e9oXFkpo3bO9Xi9FHWP_3-xyt9jMHvxvNx_C_QQz2aTXi324FeoDuHeDfPAA9tO0btirxD39-hH8mm0ofMaWkZ2mVEM2ads-J5KdBqoTXjTfG2Zrz6bWfaOqELwlJLlZo6y3KzKg7HxFoQS2Jb_Ftyxq9mVBObmBzfvc84YhYsbG-vIqZJ8qiggxXDsdRe8fw_ns5Ov7D1k6rCFzissWr7kVltvgZBzZnHAbce2FkLvKh1KNfRW0zqvKW_xHlkeiCI0SEYP2nkcuD2FQL-vwBJjLXVAOoSD3Y2U5t07FqGNVWsvzGPQQ3mzHzbjEZE4HalwZ9GhokM2NQR7C8U541RN4_FlsSgqwEyHW7a5hub40aRIbWahSlwghyzG61R41yxYir0pVFGjWnBjCS1IfQ7YBO-RsKnHAzyKWLTPRQkgEDYUawtFWfUwyGo251p2n_378DO6OEFv1qW5HMGjXm_Ac7rif7aJZv0hz4DfGmBOF
  priority: 102
  providerName: ProQuest
Title Fusion of Multiple Attention Mechanisms and Background Feature Adaptive Update Strategies in Siamese Networks for Single-Object Tracking
URI https://www.proquest.com/docview/3110329789
https://doaj.org/article/37498926496549d381a715b9477794c1
Volume 14
WOSCitedRecordID wos001323251100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ4QAHRAuIQFv5UImHtMKOvVn7mFSNikRCBFQqJ8vrRxVRtlF2w2_gZzOzdkoOoF64rHatkdY7M_Y8duYzISd18MzFUSi4D76QwvPCVqwqqqCi88MQre1xZj9W87m6vNSLnaO-sCYswQMnxr0XldRKg9nWIwhlPBgYW_Gy1rKqQJVcH_iA17MTTPV7sOYIXZUa8gTE9fg_mEuuVEJ5_WOCeqT-f-3HvZGZPiGPs3dIx2lW--ReaA7Iox3MwAOyn1djS99kyOi3T8mv6QazXvQm0lmuEKTjrkuljHQWsL132f5oqW08nVj3HZs54BYdwM0aaL1d4b5HL1aYAaBbzFp4y7KhX5ZYShvoPJWMtxQcXRhsrq5D8anGRA4Fk-cw6f6MXEzPvp6eF_mMhcJJJjq4lpZbZoMTcWhLdLcQIi-E0tU-aDnydVCqrGtvBQfCiMieUYChV96zyMRzstfcNOEFoa50QTrw4JgfScuYdTJGFWttLStjUAPybst24zIAOZ6DcW0gEEEZmR0ZDcjJLfEq4W78nWyC8rslQbDsfgBUyGQVMnep0IC8RukbXNIwIWdzZwJ8FoJjmbHiXICtr-SAHG4VxOS13hrgCxNDiMb1y_8xm1fk4RAcp1THdkj2uvUmHJEH7me3bNfH5P7kbL74fNyrOzwtPswW334DFsgEyg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gAgX2UMRDstiN1_H6gFAKRI2ahEi0Unsy631UEcUJcQLiH_Br-I3M-JH2ANx64GJZ65XXXn-emZ2d-QZgN3OWG991gbDOBjK0ItAxj4PYKW9sx3mtS57ZYTweq-PjZLIBv5pcGAqrbGRiKajtzJCP_FUoiPoN1zzJm_nXgKpG0e5qU0KjgsWB-_Edl2zF68E7_L5PO53--8O3-0FdVSAwkodLPEZaaK6dCX1HR2RgECmcc5HJrEtk12ZOqSjLrMYxNffEZelDVG3KWu55iPe9ApsSwa5asDkZjCYna68OsWwqwatEwDBMOO1DCymUqthlz1VfWSHgb3qgVG79W__btNyGm7UZzXoV7rdgw-XbcOMCueI2bNViq2DPa27tF3fgZ39F7kE282xUh1Ky3nJZxXyykaM86GnxpWA6t2xPm8-U9YKnZCmvFtjX6jkpCHY0J1cJa8h9cZRpzj5OKebYsXEVW18wXBFgY3565oIPGXm8GNoGhnYn7sLRpczPPWjls9zdB2Yi46RBU5fbrtScayO9Vz5LtOaRd6oNLxucpKZmaqeCIWcprtgIVOkFULVhd915XhGU_LnbHgFu3YVYxcuG2eI0rYVUGsYyUQmayEk3kolFJOtYRFki4xjFthFteEZwTUn24QMZXadw4GsRi1jaU0KEaBTFsg07DVzTWigW6TlWH_z78hO4tn84GqbDwfjgIVzvoB1ZhfXtQGu5WLlHcNV8W06LxeP6_2Pw6bKx_Rv7JXGn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE4AC0gAgX2UMSHZHU3XsfrA0IpJSJqEyJBpfZk1vtRRRQnxAmIf8Bv4tcxE6_THoBbD1wiy1nFjv125u3szBuAncJZbnzHRcI6G8nYikinPI1Sp7yxbee1XurMHqbDoTo-zkZr8KuphaG0ysYmLg21nRiKke_GgqTfcM2T7fqQFjHa772efo2ogxTttDbtNGqIHLgf33H5Vr3q7-O7ftpu995-fPMuCh0GIiN5PMfPRAvNtTOxb-uEyAYJxDmXmMK6THZs4ZRKisJqvL7mnnQtfYxuTlnLPY_xd6_ABlJyiXNsY9QfjE5WER5S3FSC10WBcZxx2pMWUihVK82eu8Flt4C_-YSlo-vd-p8f0W24Geg169bzYRPWXLkFNy6ILm7BZjBnFXseNLdf3IGfvQWFDdnEs0FIsWTd-bzOBWUDR_XR4-pLxXRp2Z42n6kaBg-JQS9mONbqKTkOdjSlEAprRH_xKuOSfRhTLrJjwzrnvmK4UsCT5emZi94XFAljyBkM7VrchaNLeT73YL2clO4-MJMYJw1SYG47UnOujfRe-SLTmifeqRa8bDCTm6DgTo1EznJcyRHA8gsAa8HOavC0Fi7587A9At9qCKmNL09MZqd5MF55nMpMZUids04iM4uo1qlIikymKZpzI1rwjKCbk03EGzI6lHbg3yJ1sbyrhIiRLKWyBdsNdPNgLKv8HLcP_v31E7iGgM4P-8ODh3C9jfSyzvbbhvX5bOEewVXzbT6uZo_DVGTw6bKh_RvszXpn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Multiple+Attention+Mechanisms+and+Background+Feature+Adaptive+Update+Strategies+in+Siamese+Networks+for+Single-Object+Tracking&rft.jtitle=Applied+sciences&rft.au=Feng%2C+Wenliang&rft.au=Meng%2C+Fanbao&rft.au=Yu%2C+Chuan&rft.au=You%2C+Anqing&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=18&rft_id=info:doi/10.3390%2Fapp14188199&rft.externalDocID=A811313074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon