CDDO–HS: Child Drawing Development Optimization–Harmony Search Algorithm
Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning behavior and cognitive development, with the golden ratio being employed to optimize the aesthetic value of their artwork. Unfortunately, CDDO s...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 13; číslo 9; s. 5795 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2023
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning behavior and cognitive development, with the golden ratio being employed to optimize the aesthetic value of their artwork. Unfortunately, CDDO suffers from low performance in the exploration phase, and the local best solution stagnates. Harmony search (HS) is a highly competitive algorithm relative to other prevalent metaheuristic algorithms, as its exploration phase performance on unimodal benchmark functions is outstanding. Thus, to avoid these issues, we present CDDO–HS, a hybridization of both standards of CDDO and HS. The hybridized model proposed consists of two phases. Initially, the pattern size (PS) is relocated to the algorithm’s core and the initial pattern size is set to 80% of the total population size. Second, the standard harmony search (HS) is added to the pattern size (PS) for the exploration phase to enhance and update the solution after each iteration. Experiments are evaluated using two distinct standard benchmark functions, known as classical test functions, including 23 common functions and 10 CEC-C06 2019 functions. Additionally, the suggested CDDO–HS is compared to CDDO, the HS, and six others widely used algorithms. Using the Wilcoxon rank-sum test, the results indicate that CDDO–HS beats alternative algorithms. |
|---|---|
| AbstractList | Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning behavior and cognitive development, with the golden ratio being employed to optimize the aesthetic value of their artwork. Unfortunately, CDDO suffers from low performance in the exploration phase, and the local best solution stagnates. Harmony search (HS) is a highly competitive algorithm relative to other prevalent metaheuristic algorithms, as its exploration phase performance on unimodal benchmark functions is outstanding. Thus, to avoid these issues, we present CDDO–HS, a hybridization of both standards of CDDO and HS. The hybridized model proposed consists of two phases. Initially, the pattern size (PS) is relocated to the algorithm’s core and the initial pattern size is set to 80% of the total population size. Second, the standard harmony search (HS) is added to the pattern size (PS) for the exploration phase to enhance and update the solution after each iteration. Experiments are evaluated using two distinct standard benchmark functions, known as classical test functions, including 23 common functions and 10 CEC-C06 2019 functions. Additionally, the suggested CDDO–HS is compared to CDDO, the HS, and six others widely used algorithms. Using the Wilcoxon rank-sum test, the results indicate that CDDO–HS beats alternative algorithms. |
| Audience | Academic |
| Author | Ameen, Azad A. Rashid, Tarik A. Askar, Shavan |
| Author_xml | – sequence: 1 givenname: Azad A. orcidid: 0000-0001-9350-2330 surname: Ameen fullname: Ameen, Azad A. – sequence: 2 givenname: Tarik A. orcidid: 0000-0002-8661-258X surname: Rashid fullname: Rashid, Tarik A. – sequence: 3 givenname: Shavan surname: Askar fullname: Askar, Shavan |
| BookMark | eNptkctKJDEUhsPgwHhbzQsUuJTW3KpScdd06yg09MKZdTiVS3eaqkqZioqufAff0CeZaIuImE3C4fv_c07-PbTTh94i9JvgE8YkPoVhIAzLUsjyB9qlWFQTxonY-fT-hQ7HcYPzkYTVBO-ixWw-X748PV9enxWztW9NMY9w7_tVMbd3tg1DZ_tULIfkO_8IyYf-FYbYhf6huLYQ9bqYtqsQfVp3B-ing3a0h-_3Pvp3cf53djlZLP9czaaLieaYpUljheVEg26waDiV3DaUQ1Uz5pg0lIEraWMotlhWwEgtG15bIyvDBHcUO7aPrra-JsBGDdF3EB9UAK_eCiGuFMTkdWsVJUZLWWMMuuJVJXOnklhDnKgMp02ZvY62XkMMN7d2TGoTbmOfx1e0JpRJUUqcqZMttYJs6nsXUoS8ARjbeZ1zcD7Xp6KkjGDB6iw43gp0DOMYrfsYk2D1Gpf6FFemyRda-_T227mNb7_V_AfQw5mD |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3529714 crossref_primary_10_1007_s00521_025_11584_w crossref_primary_10_1016_j_rineng_2025_104840 crossref_primary_10_1177_0309524X241247230 crossref_primary_10_3390_a17090423 crossref_primary_10_1038_s41598_024_54910_3 |
| Cites_doi | 10.1016/j.asoc.2013.02.001 10.1016/j.compstruc.2012.09.003 10.1007/978-3-642-00185-7 10.1016/j.advengsoft.2017.03.014 10.1016/j.asoc.2012.05.018 10.1007/s00707-009-0270-4 10.1016/0031-9201(90)90096-G 10.1016/j.swevo.2014.02.002 10.1016/j.ins.2009.03.004 10.1109/MCI.2006.329691 10.1002/9780470496916 10.3390/math9202633 10.1109/CEC.2019.8789936 10.1201/9780429324413 10.1109/ACCESS.2019.2907012 10.1109/TEVC.2009.2011992 10.1016/j.advengsoft.2016.01.008 10.1007/978-981-10-5221-7 10.1007/s00521-015-1920-1 10.1177/003754970107600201 10.1007/BF02125421 10.1016/j.asoc.2016.02.038 10.1007/978-94-015-7744-1 10.1007/s00521-021-06041-3 10.1109/CESYS.2016.7889811 10.1016/j.cma.2008.02.006 10.1016/j.amc.2006.11.033 10.1007/s00607-021-00955-5 10.1007/978-3-642-13495-1 10.1016/j.asoc.2014.02.006 10.1023/A:1008202821328 10.1007/s00521-020-04823-9 10.1108/02644401211235834 10.1016/j.istruc.2020.03.033 10.1016/j.eij.2020.08.003 10.1007/s13369-021-05928-6 10.1016/j.advengsoft.2013.03.004 10.1016/j.swevo.2018.10.002 10.1016/j.isatra.2014.03.018 10.1016/j.asoc.2012.11.026 10.1109/TEVC.2008.919004 10.1016/j.advengsoft.2005.04.005 10.1007/s00500-018-3102-4 10.1109/NABIC.2009.5393690 10.1109/4235.771163 10.1155/2019/8718571 10.3390/a15110424 10.1016/j.procs.2014.05.177 10.1016/j.ins.2012.08.023 10.1109/ACCESS.2019.2893662 10.2528/PIER07082403 10.1007/s00521-023-08465-5 10.3390/math9233111 10.1016/j.cie.2019.106040 10.1023/A:1022602019183 10.1080/18756891.2016.1256577 10.1007/s10489-022-03533-0 10.1016/j.ins.2014.02.123 10.1016/j.eswa.2020.113338 10.1016/j.cie.2021.107250 10.1007/BF02078647 10.1007/978-3-319-91086-4 10.1109/SoCPaR.2009.21 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app13095795 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_21dc99800ac64669b2451ed1f76d42b5 A752310738 10_3390_app13095795 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c403t-be7e41cacb07b4294eb24a6833f39d23af52bd20e096a3189b48ed96d374f20f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000987240200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:07:18 EDT 2025 Mon Jun 30 07:45:03 EDT 2025 Tue Nov 04 17:55:35 EST 2025 Sat Nov 29 07:10:34 EST 2025 Tue Nov 18 21:58:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-be7e41cacb07b4294eb24a6833f39d23af52bd20e096a3189b48ed96d374f20f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9350-2330 0000-0002-8661-258X |
| OpenAccessLink | https://www.proquest.com/docview/2812397590?pq-origsite=%requestingapplication% |
| PQID | 2812397590 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_21dc99800ac64669b2451ed1f76d42b5 proquest_journals_2812397590 gale_infotracacademiconefile_A752310738 crossref_primary_10_3390_app13095795 crossref_citationtrail_10_3390_app13095795 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kaveh (ref_38) 2017; 110 Gandomi (ref_45) 2014; 53 Shamsaldin (ref_31) 2019; 6 ref_14 ref_10 Rashedi (ref_36) 2009; 179 Sadollah (ref_46) 2013; 13 Wang (ref_22) 2014; 274 ref_19 ref_18 Simon (ref_20) 2008; 12 Hatamlou (ref_32) 2013; 222 Ghorbani (ref_48) 2014; 19 ref_16 Yao (ref_54) 1999; 3 Dokeroglu (ref_13) 2019; 137 Hellwig (ref_70) 2019; 44 Abualigah (ref_1) 2021; 157 ref_61 Yang (ref_28) 2012; 29 Khishe (ref_56) 2020; 149 ref_25 Yarmohamadi (ref_68) 2020; 2 Amini (ref_3) 2013; 13 ref_24 Ramezani (ref_49) 2013; 13 ref_66 Molga (ref_72) 2005; 101 ref_62 Mahdavi (ref_67) 2007; 188 Osman (ref_17) 1996; 63 Glover (ref_11) 1993; 41 Anand (ref_15) 2022; 104 Feng (ref_69) 2016; 9 Kossobokov (ref_50) 1990; 61 Rahman (ref_44) 2021; 22 Mohammed (ref_60) 2020; 32 Mohammed (ref_59) 2019; 2019 ref_71 Goldberg (ref_8) 1988; 3 Kaveh (ref_26) 2013; 59 Storn (ref_52) 1997; 11 Mirjalili (ref_53) 2016; 95 ref_30 Geem (ref_40) 2001; 76 Mohammed (ref_55) 2023; 53 Ahmed (ref_58) 2021; 33 Arora (ref_57) 2019; 23 He (ref_29) 2009; 13 Kaveh (ref_33) 2012; 112–113 Kaveh (ref_34) 2010; 213 Jaderyan (ref_21) 2016; 43 Turky (ref_64) 2014; 29 Abdullah (ref_23) 2019; 7 Mirjalili (ref_27) 2016; 27 ref_43 ref_42 Fesanghary (ref_63) 2008; 197 ref_41 Abdulhameed (ref_51) 2022; 47 Kaveh (ref_39) 2020; 25 Moosavian (ref_47) 2014; 17 ref_2 Erol (ref_35) 2006; 37 Formato (ref_37) 2007; 77 Alsewari (ref_65) 2019; 7 ref_9 Dorigo (ref_12) 2006; 1 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 13 start-page: 2272 year: 2013 ident: ref_3 article-title: Hybridization of Harmony Search and Ant Colony Optimization for optimal locating of structural dampers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.02.001 – volume: 112–113 start-page: 283 year: 2012 ident: ref_33 article-title: A new meta-heuristic method: Ray Optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.09.003 – ident: ref_66 doi: 10.1007/978-3-642-00185-7 – ident: ref_9 – volume: 110 start-page: 69 year: 2017 ident: ref_38 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – volume: 13 start-page: 2837 year: 2013 ident: ref_49 article-title: Social-based algorithm (SBA) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.018 – ident: ref_5 – volume: 213 start-page: 267 year: 2010 ident: ref_34 article-title: A novel heuristic optimization method: Charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – volume: 61 start-page: 73 year: 1990 ident: ref_50 article-title: Premonitory activation of earthquake flow: Algorithm M8 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(90)90096-G – volume: 17 start-page: 14 year: 2014 ident: ref_47 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.02.002 – volume: 179 start-page: 2232 year: 2009 ident: ref_36 article-title: GSA: A Gravitational Search Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 1 start-page: 28 year: 2006 ident: ref_12 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – ident: ref_6 doi: 10.1002/9780470496916 – ident: ref_2 doi: 10.3390/math9202633 – ident: ref_71 doi: 10.1109/CEC.2019.8789936 – ident: ref_18 doi: 10.1201/9780429324413 – volume: 7 start-page: 43473 year: 2019 ident: ref_23 article-title: Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907012 – volume: 13 start-page: 973 year: 2009 ident: ref_29 article-title: Group search optimizer: An optimization algorithm inspired by animal searching behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2011992 – volume: 95 start-page: 51 year: 2016 ident: ref_53 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_61 doi: 10.1007/978-981-10-5221-7 – volume: 27 start-page: 1053 year: 2016 ident: ref_27 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 76 start-page: 60 year: 2001 ident: ref_40 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 63 start-page: 511 year: 1996 ident: ref_17 article-title: Metaheuristics: A bibliography publication-title: Ann. Oper. Res. doi: 10.1007/BF02125421 – ident: ref_4 – volume: 43 start-page: 596 year: 2016 ident: ref_21 article-title: Virulence optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.038 – ident: ref_10 doi: 10.1007/978-94-015-7744-1 – volume: 33 start-page: 13981 year: 2021 ident: ref_58 article-title: Dynamic Cat Swarm Optimization algorithm for backboard wiring problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06041-3 – ident: ref_16 doi: 10.1109/CESYS.2016.7889811 – volume: 197 start-page: 3080 year: 2008 ident: ref_63 article-title: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.02.006 – volume: 188 start-page: 1567 year: 2007 ident: ref_67 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.11.033 – volume: 104 start-page: 251 year: 2022 ident: ref_15 article-title: Nature inspired meta heuristic algorithms for optimization problems publication-title: Computing doi: 10.1007/s00607-021-00955-5 – ident: ref_42 doi: 10.1007/978-3-642-13495-1 – volume: 19 start-page: 177 year: 2014 ident: ref_48 article-title: Exchange market algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.006 – volume: 11 start-page: 341 year: 1997 ident: ref_52 article-title: Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 32 start-page: 14701 year: 2020 ident: ref_60 article-title: A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04823-9 – volume: 29 start-page: 464 year: 2012 ident: ref_28 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – volume: 2 start-page: 1 year: 2020 ident: ref_68 article-title: An enhanced adaptive global-best harmony search algorithm for continuous optimization problems publication-title: Eng. Rep. – volume: 25 start-page: 520 year: 2020 ident: ref_39 article-title: Water strider algorithm: A new metaheuristic and applications publication-title: Structures doi: 10.1016/j.istruc.2020.03.033 – volume: 22 start-page: 213 year: 2021 ident: ref_44 article-title: A new evolutionary algorithm: Learner performance based behavior algorithm publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2020.08.003 – volume: 47 start-page: 1337 year: 2022 ident: ref_51 article-title: Child Drawing Development Optimization Algorithm Based on Child’s Cognitive Development publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05928-6 – volume: 59 start-page: 53 year: 2013 ident: ref_26 article-title: A new optimization method: Dolphin echolocation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.03.004 – ident: ref_24 – volume: 101 start-page: 48 year: 2005 ident: ref_72 article-title: Test functions for optimization needs publication-title: Test Funct. Optim. Needs – volume: 44 start-page: 927 year: 2019 ident: ref_70 article-title: Benchmarking evolutionary algorithms for single objective real-valued constrained optimization—A critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.002 – volume: 53 start-page: 1168 year: 2014 ident: ref_45 article-title: Interior search algorithm (ISA): A novel approach for global optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2014.03.018 – volume: 13 start-page: 2592 year: 2013 ident: ref_46 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 12 start-page: 702 year: 2008 ident: ref_20 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 37 start-page: 106 year: 2006 ident: ref_35 article-title: A new optimization method: Big bang–big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 23 start-page: 715 year: 2019 ident: ref_57 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – ident: ref_25 doi: 10.1109/NABIC.2009.5393690 – volume: 3 start-page: 82 year: 1999 ident: ref_54 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – ident: ref_14 – volume: 2019 start-page: 8718571 year: 2019 ident: ref_59 article-title: A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/8718571 – ident: ref_62 doi: 10.3390/a15110424 – volume: 29 start-page: 1926 year: 2014 ident: ref_64 article-title: A Hybrid Harmony Search Algorithm for Solving Dynamic Optimisation Problems publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.05.177 – volume: 222 start-page: 175 year: 2013 ident: ref_32 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 7 start-page: 14233 year: 2019 ident: ref_65 article-title: Comprehensive Review of the Development of the Harmony Search Algorithm and its Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893662 – volume: 77 start-page: 425 year: 2007 ident: ref_37 article-title: Central force optimization publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER07082403 – ident: ref_41 doi: 10.1007/s00521-023-08465-5 – ident: ref_30 doi: 10.3390/math9233111 – volume: 137 start-page: 106040 year: 2019 ident: ref_13 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106040 – volume: 3 start-page: 95 year: 1988 ident: ref_8 article-title: Genetic Algorithms and Machine Learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 9 start-page: 1174 year: 2016 ident: ref_69 article-title: A novel hybrid cuckoo search algorithm with global harmony search for 0–1 knapsack problems publication-title: Int. J. Comput. Intell. Syst. doi: 10.1080/18756891.2016.1256577 – volume: 53 start-page: 1030 year: 2023 ident: ref_55 article-title: FOX: A FOX-inspired optimization algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-022-03533-0 – volume: 274 start-page: 17 year: 2014 ident: ref_22 article-title: Chaotic Krill Herd algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.123 – volume: 6 start-page: 562 year: 2019 ident: ref_31 article-title: Donkey and smuggler optimization algorithm: A collaborative working approach to path finding publication-title: J. Comput. Des. Eng. – ident: ref_19 – volume: 149 start-page: 113338 year: 2020 ident: ref_56 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 157 start-page: 107250 year: 2021 ident: ref_1 article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 41 start-page: 1 year: 1993 ident: ref_11 article-title: A user’s guide to tabu search publication-title: Ann. Oper. Res. doi: 10.1007/BF02078647 – ident: ref_7 doi: 10.1007/978-3-319-91086-4 – ident: ref_43 doi: 10.1109/SoCPaR.2009.21 |
| SSID | ssj0000913810 |
| Score | 2.2996988 |
| Snippet | Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning... Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children's learning... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 5795 |
| SubjectTerms | Algorithms Analysis CDDO CDDO–HS Exploitation Genetic algorithms Heuristic metaheuristics optimization Optimization algorithms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4keNCDmKi4GqUPAR8w2NPd0w9va9aQQ0gEH-TW9GtMINnI7Kp48z_4D_0lVs1MwgiKFy9zGOrQU6-umqr6CmBHuhBVy22lG_p1U0RT2VioBo_mYYMOtl_n8-HAHB7a42P3ZrLqi3rCBnjggXEvRJ0TpgSch6SV1i4K1dQl163RWYnYo5dy4ybJVO-DXU3QVcNAnsS8nurB6K6pKNX8dgX1SP1_88f9JbN3G26N0SGbD6fahGtluQU3J5iBW7A5WuOKPR0ho5_dgYPdxeLo5_cf-29fsh6smC268BXp2aQpiB2hezgf5y6JOHSog9_Y0HHM5mcfL7rT9cn5XXi_9_rd7n417kmokuJyXcViiqpTSJGbiPeLwmxZBW2lbKXLQoa2ETELXjBdCWjDLipbstNZGtUK3sp7sLG8WJb7wHhbsmxUssXV-LSWIApTllq2tQkyzOD5Jet8GkHEaZfFmcdkgvjsJ3yewc4V8acBO-PPZK9IBlckBHjdv0A18KMa-H-pwQyekAQ9mSUeCJkxTBfgZxHAlZ-bhiJZI-0Mti-F7Ed7XXmBcQ5GZo3jD_7HaR7CDVpLPzRGbsPGuvtcHsH19GV9uuoe96r6C6_f7E4 priority: 102 providerName: Directory of Open Access Journals |
| Title | CDDO–HS: Child Drawing Development Optimization–Harmony Search Algorithm |
| URI | https://www.proquest.com/docview/2812397590 https://doaj.org/article/21dc99800ac64669b2451ed1f76d42b5 |
| Volume | 13 |
| WOSCitedRecordID | wos000987240200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources(FREE) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOQAsVW0rlQyUeUoQTO47DBW27rYpUtiteKifLsZ2C1O622QXEjf_AP-SXMJN4l0UCLlwiJRklfszDM2N_A7AjSlvJmutE5RS6CVme6CpQDh7FQ1tldVvO591RMRzqk5NyFANu07itcq4TW0XtJ45i5E8ztERoO_OSP7-4TKhqFGVXYwmNq7BKSGXI56u7-8PRq0WUhVAvdcq7g3kC_XvKC6PapuRU_pspahH7_6aXW2NzcOt_m3kbbsZlJut3fLEGV8J4HW4sgQ-uw1oU6yl7FLGnH9-Bo73B4PjHt--Hr5-xFvWYDRr7BenZ0u4idox65jwe4CRi2-Bvv7Ju6zLrn51ii2Yfzu_C24P9N3uHSSy4kDjJxSypQhFk6qyreFGhoZLodkurtBC1KH0mbJ1nlc94QL_HojIoK6mDL5UXhawzXosNWBlPxuEeMF4HL3LpdChTvGpNWIfOCyXqtLDC9uDJfOyNi2jkVBTjzKBXQhNlliaqBzsL4osOhOPPZLs0iQsSQs5uH0yaUxMF0WSpd-hicm6dkkqV2MM8DT6tC-VlVuFHHhILGJJvbBAORndMAbtFSFmmX-S0JC6E7sHWnAVMFPyp-TX_m_9-fR-uU-X6bu_kFqzMmk_hAVxzn2cfp8125OPtNkSAd6MXL0fvfwJRDf8G |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFAk4AC0gAgV8KOJHWtVre3e9SAiFhipR0zQSLSon12t7C1KblE2g6o134D14KJ6E8f6EIAG3HrjsYXdk7difZzwe-xuAdZ7qTORUBnHkt24ciwKZOZ-Dx-khdaxlWc7n3SAZDuXBQTpagu_NXRh_rLKxiaWhthPj98g3GHoi9J1RSl-dfgp81SifXW1KaFSw2HbnZxiyTV_2uzi-jxnberO32QvqqgKBEZTPgswlToRGm4wmGVpjgbGl0LHkPOepZVznEcssow4X9xoRn2ZCOpvGliciZzTn2O4lWBYe7C1YHvV3Ru_nuzqeZVOGtLoIyHlKfR4a3YRPhkW_ub6yQsDf_EDp3LZu_G_dchOu18to0qlwvwJLbrwK1xbIFVdhpTZbU_K05tZ-dgsGm93u7o-v33pvX5CS1Zl0C32G8mTh9BTZRTt6Ul9Q9cK6QDXPSXU0m3SOj7AHZh9ObsP-heh4B1rjydjdBUJzZ3kkjHRpiE8pPZejsTzmeZhortvwvBlrZWq2dV_041hh1OWBoRaA0Yb1ufBpRTLyZ7HXHjRzEc8MXr6YFEeqNjSKhdZgCE2pNrGI4xQ1jEJnwzyJrWAZNvLEQ055-4U_hJ1RXcNAtTwTmOokkV_yJ1y2Ya2BnKoN21T9wtu9f39-BFd6ezsDNegPt-_DVYZrw-qc6Bq0ZsVn9wAumy-zj9PiYT2HCBxeND5_AsB3Wa8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLULlALRQsVDAhyJ-pKiO7SQOEkJLl1VXXbYr8aNyMk7sFKR2d8kuVL3xDrwNj8OTME6cZZGAWw9cckhGVmx_nvHYM98AbPNUZ6KgMogjd3RjWRTIzLo7eFweUsdaVuV83g6S4VAeHqajFfje5MK4sMpGJ1aK2kxyd0a-w9ASoe2MUrpT-LCIUbf3bPopcBWk3E1rU06jhsi-PTtF9232tN_Fub7PWO_F6929wFcYCHJB-TzIbGJFmOs8o0mGmlmgnyl0LDkveGoY10XEMsOoxY2-RvSnmZDWpLHhiSgYLTi2ewFWcUsuWAtWR_2Xo3eLEx7HuClDWicFco4_rqdTNBnuYiz6zQxW1QL-ZhMqQ9e7-j8P0TW44rfXpFOvh3VYseMNuLxEurgB616dzchDz7n96DoMdrvdgx9fv-29ekIqtmfSLfUpypOlqCpygPr1xCeuOmFdYjfPSB2yTTrHRzgC8w8nN-DNufRxE1rjydjeBEILa3gkcmnTEJ9SOo7H3PCYF2GiuW7D42beVe5Z2F0xkGOF3pgDiVoCSRu2F8LTmnzkz2LPHYAWIo4xvHoxKY-UV0CKhSZH15pSnccijlPsYRRaExZJbATLsJEHDn7K6TX8IRyMOj0Du-UYwlQniZwrkHDZhq0GfsorvJn6hb1b__58Dy4hKNWgP9y_DWsMt4x1-OgWtOblZ3sHLuZf5h9n5V2_nAi8P294_gRzZWJv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CDDO%E2%80%93HS%3A+Child+Drawing+Development+Optimization%E2%80%93Harmony+Search+Algorithm&rft.jtitle=Applied+sciences&rft.au=Ameen%2C+Azad+A&rft.au=Rashid%2C+Tarik+A&rft.au=Askar%2C+Shavan&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fapp13095795&rft.externalDocID=A752310738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |