CDDO–HS: Child Drawing Development Optimization–Harmony Search Algorithm

Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning behavior and cognitive development, with the golden ratio being employed to optimize the aesthetic value of their artwork. Unfortunately, CDDO s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 13; číslo 9; s. 5795
Hlavní autoři: Ameen, Azad A., Rashid, Tarik A., Askar, Shavan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2023
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning behavior and cognitive development, with the golden ratio being employed to optimize the aesthetic value of their artwork. Unfortunately, CDDO suffers from low performance in the exploration phase, and the local best solution stagnates. Harmony search (HS) is a highly competitive algorithm relative to other prevalent metaheuristic algorithms, as its exploration phase performance on unimodal benchmark functions is outstanding. Thus, to avoid these issues, we present CDDO–HS, a hybridization of both standards of CDDO and HS. The hybridized model proposed consists of two phases. Initially, the pattern size (PS) is relocated to the algorithm’s core and the initial pattern size is set to 80% of the total population size. Second, the standard harmony search (HS) is added to the pattern size (PS) for the exploration phase to enhance and update the solution after each iteration. Experiments are evaluated using two distinct standard benchmark functions, known as classical test functions, including 23 common functions and 10 CEC-C06 2019 functions. Additionally, the suggested CDDO–HS is compared to CDDO, the HS, and six others widely used algorithms. Using the Wilcoxon rank-sum test, the results indicate that CDDO–HS beats alternative algorithms.
AbstractList Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning behavior and cognitive development, with the golden ratio being employed to optimize the aesthetic value of their artwork. Unfortunately, CDDO suffers from low performance in the exploration phase, and the local best solution stagnates. Harmony search (HS) is a highly competitive algorithm relative to other prevalent metaheuristic algorithms, as its exploration phase performance on unimodal benchmark functions is outstanding. Thus, to avoid these issues, we present CDDO–HS, a hybridization of both standards of CDDO and HS. The hybridized model proposed consists of two phases. Initially, the pattern size (PS) is relocated to the algorithm’s core and the initial pattern size is set to 80% of the total population size. Second, the standard harmony search (HS) is added to the pattern size (PS) for the exploration phase to enhance and update the solution after each iteration. Experiments are evaluated using two distinct standard benchmark functions, known as classical test functions, including 23 common functions and 10 CEC-C06 2019 functions. Additionally, the suggested CDDO–HS is compared to CDDO, the HS, and six others widely used algorithms. Using the Wilcoxon rank-sum test, the results indicate that CDDO–HS beats alternative algorithms.
Audience Academic
Author Ameen, Azad A.
Rashid, Tarik A.
Askar, Shavan
Author_xml – sequence: 1
  givenname: Azad A.
  orcidid: 0000-0001-9350-2330
  surname: Ameen
  fullname: Ameen, Azad A.
– sequence: 2
  givenname: Tarik A.
  orcidid: 0000-0002-8661-258X
  surname: Rashid
  fullname: Rashid, Tarik A.
– sequence: 3
  givenname: Shavan
  surname: Askar
  fullname: Askar, Shavan
BookMark eNptkctKJDEUhsPgwHhbzQsUuJTW3KpScdd06yg09MKZdTiVS3eaqkqZioqufAff0CeZaIuImE3C4fv_c07-PbTTh94i9JvgE8YkPoVhIAzLUsjyB9qlWFQTxonY-fT-hQ7HcYPzkYTVBO-ixWw-X748PV9enxWztW9NMY9w7_tVMbd3tg1DZ_tULIfkO_8IyYf-FYbYhf6huLYQ9bqYtqsQfVp3B-ing3a0h-_3Pvp3cf53djlZLP9czaaLieaYpUljheVEg26waDiV3DaUQ1Uz5pg0lIEraWMotlhWwEgtG15bIyvDBHcUO7aPrra-JsBGDdF3EB9UAK_eCiGuFMTkdWsVJUZLWWMMuuJVJXOnklhDnKgMp02ZvY62XkMMN7d2TGoTbmOfx1e0JpRJUUqcqZMttYJs6nsXUoS8ARjbeZ1zcD7Xp6KkjGDB6iw43gp0DOMYrfsYk2D1Gpf6FFemyRda-_T227mNb7_V_AfQw5mD
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3529714
crossref_primary_10_1007_s00521_025_11584_w
crossref_primary_10_1016_j_rineng_2025_104840
crossref_primary_10_1177_0309524X241247230
crossref_primary_10_3390_a17090423
crossref_primary_10_1038_s41598_024_54910_3
Cites_doi 10.1016/j.asoc.2013.02.001
10.1016/j.compstruc.2012.09.003
10.1007/978-3-642-00185-7
10.1016/j.advengsoft.2017.03.014
10.1016/j.asoc.2012.05.018
10.1007/s00707-009-0270-4
10.1016/0031-9201(90)90096-G
10.1016/j.swevo.2014.02.002
10.1016/j.ins.2009.03.004
10.1109/MCI.2006.329691
10.1002/9780470496916
10.3390/math9202633
10.1109/CEC.2019.8789936
10.1201/9780429324413
10.1109/ACCESS.2019.2907012
10.1109/TEVC.2009.2011992
10.1016/j.advengsoft.2016.01.008
10.1007/978-981-10-5221-7
10.1007/s00521-015-1920-1
10.1177/003754970107600201
10.1007/BF02125421
10.1016/j.asoc.2016.02.038
10.1007/978-94-015-7744-1
10.1007/s00521-021-06041-3
10.1109/CESYS.2016.7889811
10.1016/j.cma.2008.02.006
10.1016/j.amc.2006.11.033
10.1007/s00607-021-00955-5
10.1007/978-3-642-13495-1
10.1016/j.asoc.2014.02.006
10.1023/A:1008202821328
10.1007/s00521-020-04823-9
10.1108/02644401211235834
10.1016/j.istruc.2020.03.033
10.1016/j.eij.2020.08.003
10.1007/s13369-021-05928-6
10.1016/j.advengsoft.2013.03.004
10.1016/j.swevo.2018.10.002
10.1016/j.isatra.2014.03.018
10.1016/j.asoc.2012.11.026
10.1109/TEVC.2008.919004
10.1016/j.advengsoft.2005.04.005
10.1007/s00500-018-3102-4
10.1109/NABIC.2009.5393690
10.1109/4235.771163
10.1155/2019/8718571
10.3390/a15110424
10.1016/j.procs.2014.05.177
10.1016/j.ins.2012.08.023
10.1109/ACCESS.2019.2893662
10.2528/PIER07082403
10.1007/s00521-023-08465-5
10.3390/math9233111
10.1016/j.cie.2019.106040
10.1023/A:1022602019183
10.1080/18756891.2016.1256577
10.1007/s10489-022-03533-0
10.1016/j.ins.2014.02.123
10.1016/j.eswa.2020.113338
10.1016/j.cie.2021.107250
10.1007/BF02078647
10.1007/978-3-319-91086-4
10.1109/SoCPaR.2009.21
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13095795
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_21dc99800ac64669b2451ed1f76d42b5
A752310738
10_3390_app13095795
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-be7e41cacb07b4294eb24a6833f39d23af52bd20e096a3189b48ed96d374f20f3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000987240200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:07:18 EDT 2025
Mon Jun 30 07:45:03 EDT 2025
Tue Nov 04 17:55:35 EST 2025
Sat Nov 29 07:10:34 EST 2025
Tue Nov 18 21:58:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-be7e41cacb07b4294eb24a6833f39d23af52bd20e096a3189b48ed96d374f20f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9350-2330
0000-0002-8661-258X
OpenAccessLink https://www.proquest.com/docview/2812397590?pq-origsite=%requestingapplication%
PQID 2812397590
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_21dc99800ac64669b2451ed1f76d42b5
proquest_journals_2812397590
gale_infotracacademiconefile_A752310738
crossref_primary_10_3390_app13095795
crossref_citationtrail_10_3390_app13095795
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kaveh (ref_38) 2017; 110
Gandomi (ref_45) 2014; 53
Shamsaldin (ref_31) 2019; 6
ref_14
ref_10
Rashedi (ref_36) 2009; 179
Sadollah (ref_46) 2013; 13
Wang (ref_22) 2014; 274
ref_19
ref_18
Simon (ref_20) 2008; 12
Hatamlou (ref_32) 2013; 222
Ghorbani (ref_48) 2014; 19
ref_16
Yao (ref_54) 1999; 3
Dokeroglu (ref_13) 2019; 137
Hellwig (ref_70) 2019; 44
Abualigah (ref_1) 2021; 157
ref_61
Yang (ref_28) 2012; 29
Khishe (ref_56) 2020; 149
ref_25
Yarmohamadi (ref_68) 2020; 2
Amini (ref_3) 2013; 13
ref_24
Ramezani (ref_49) 2013; 13
ref_66
Molga (ref_72) 2005; 101
ref_62
Mahdavi (ref_67) 2007; 188
Osman (ref_17) 1996; 63
Glover (ref_11) 1993; 41
Anand (ref_15) 2022; 104
Feng (ref_69) 2016; 9
Kossobokov (ref_50) 1990; 61
Rahman (ref_44) 2021; 22
Mohammed (ref_60) 2020; 32
Mohammed (ref_59) 2019; 2019
ref_71
Goldberg (ref_8) 1988; 3
Kaveh (ref_26) 2013; 59
Storn (ref_52) 1997; 11
Mirjalili (ref_53) 2016; 95
ref_30
Geem (ref_40) 2001; 76
Mohammed (ref_55) 2023; 53
Ahmed (ref_58) 2021; 33
Arora (ref_57) 2019; 23
He (ref_29) 2009; 13
Kaveh (ref_33) 2012; 112–113
Kaveh (ref_34) 2010; 213
Jaderyan (ref_21) 2016; 43
Turky (ref_64) 2014; 29
Abdullah (ref_23) 2019; 7
Mirjalili (ref_27) 2016; 27
ref_43
ref_42
Fesanghary (ref_63) 2008; 197
ref_41
Abdulhameed (ref_51) 2022; 47
Kaveh (ref_39) 2020; 25
Moosavian (ref_47) 2014; 17
ref_2
Erol (ref_35) 2006; 37
Formato (ref_37) 2007; 77
Alsewari (ref_65) 2019; 7
ref_9
Dorigo (ref_12) 2006; 1
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 13
  start-page: 2272
  year: 2013
  ident: ref_3
  article-title: Hybridization of Harmony Search and Ant Colony Optimization for optimal locating of structural dampers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.02.001
– volume: 112–113
  start-page: 283
  year: 2012
  ident: ref_33
  article-title: A new meta-heuristic method: Ray Optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.09.003
– ident: ref_66
  doi: 10.1007/978-3-642-00185-7
– ident: ref_9
– volume: 110
  start-page: 69
  year: 2017
  ident: ref_38
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 13
  start-page: 2837
  year: 2013
  ident: ref_49
  article-title: Social-based algorithm (SBA)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.018
– ident: ref_5
– volume: 213
  start-page: 267
  year: 2010
  ident: ref_34
  article-title: A novel heuristic optimization method: Charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– volume: 61
  start-page: 73
  year: 1990
  ident: ref_50
  article-title: Premonitory activation of earthquake flow: Algorithm M8
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(90)90096-G
– volume: 17
  start-page: 14
  year: 2014
  ident: ref_47
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.02.002
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_36
  article-title: GSA: A Gravitational Search Algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 1
  start-page: 28
  year: 2006
  ident: ref_12
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– ident: ref_6
  doi: 10.1002/9780470496916
– ident: ref_2
  doi: 10.3390/math9202633
– ident: ref_71
  doi: 10.1109/CEC.2019.8789936
– ident: ref_18
  doi: 10.1201/9780429324413
– volume: 7
  start-page: 43473
  year: 2019
  ident: ref_23
  article-title: Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907012
– volume: 13
  start-page: 973
  year: 2009
  ident: ref_29
  article-title: Group search optimizer: An optimization algorithm inspired by animal searching behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2011992
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_53
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_61
  doi: 10.1007/978-981-10-5221-7
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_27
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 76
  start-page: 60
  year: 2001
  ident: ref_40
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 63
  start-page: 511
  year: 1996
  ident: ref_17
  article-title: Metaheuristics: A bibliography
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02125421
– ident: ref_4
– volume: 43
  start-page: 596
  year: 2016
  ident: ref_21
  article-title: Virulence optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.038
– ident: ref_10
  doi: 10.1007/978-94-015-7744-1
– volume: 33
  start-page: 13981
  year: 2021
  ident: ref_58
  article-title: Dynamic Cat Swarm Optimization algorithm for backboard wiring problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06041-3
– ident: ref_16
  doi: 10.1109/CESYS.2016.7889811
– volume: 197
  start-page: 3080
  year: 2008
  ident: ref_63
  article-title: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.02.006
– volume: 188
  start-page: 1567
  year: 2007
  ident: ref_67
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.11.033
– volume: 104
  start-page: 251
  year: 2022
  ident: ref_15
  article-title: Nature inspired meta heuristic algorithms for optimization problems
  publication-title: Computing
  doi: 10.1007/s00607-021-00955-5
– ident: ref_42
  doi: 10.1007/978-3-642-13495-1
– volume: 19
  start-page: 177
  year: 2014
  ident: ref_48
  article-title: Exchange market algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.006
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_52
  article-title: Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 32
  start-page: 14701
  year: 2020
  ident: ref_60
  article-title: A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04823-9
– volume: 29
  start-page: 464
  year: 2012
  ident: ref_28
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– volume: 2
  start-page: 1
  year: 2020
  ident: ref_68
  article-title: An enhanced adaptive global-best harmony search algorithm for continuous optimization problems
  publication-title: Eng. Rep.
– volume: 25
  start-page: 520
  year: 2020
  ident: ref_39
  article-title: Water strider algorithm: A new metaheuristic and applications
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.03.033
– volume: 22
  start-page: 213
  year: 2021
  ident: ref_44
  article-title: A new evolutionary algorithm: Learner performance based behavior algorithm
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2020.08.003
– volume: 47
  start-page: 1337
  year: 2022
  ident: ref_51
  article-title: Child Drawing Development Optimization Algorithm Based on Child’s Cognitive Development
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05928-6
– volume: 59
  start-page: 53
  year: 2013
  ident: ref_26
  article-title: A new optimization method: Dolphin echolocation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.03.004
– ident: ref_24
– volume: 101
  start-page: 48
  year: 2005
  ident: ref_72
  article-title: Test functions for optimization needs
  publication-title: Test Funct. Optim. Needs
– volume: 44
  start-page: 927
  year: 2019
  ident: ref_70
  article-title: Benchmarking evolutionary algorithms for single objective real-valued constrained optimization—A critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.002
– volume: 53
  start-page: 1168
  year: 2014
  ident: ref_45
  article-title: Interior search algorithm (ISA): A novel approach for global optimization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2014.03.018
– volume: 13
  start-page: 2592
  year: 2013
  ident: ref_46
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_20
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 37
  start-page: 106
  year: 2006
  ident: ref_35
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_57
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– ident: ref_25
  doi: 10.1109/NABIC.2009.5393690
– volume: 3
  start-page: 82
  year: 1999
  ident: ref_54
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– ident: ref_14
– volume: 2019
  start-page: 8718571
  year: 2019
  ident: ref_59
  article-title: A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/8718571
– ident: ref_62
  doi: 10.3390/a15110424
– volume: 29
  start-page: 1926
  year: 2014
  ident: ref_64
  article-title: A Hybrid Harmony Search Algorithm for Solving Dynamic Optimisation Problems
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.05.177
– volume: 222
  start-page: 175
  year: 2013
  ident: ref_32
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– volume: 7
  start-page: 14233
  year: 2019
  ident: ref_65
  article-title: Comprehensive Review of the Development of the Harmony Search Algorithm and its Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893662
– volume: 77
  start-page: 425
  year: 2007
  ident: ref_37
  article-title: Central force optimization
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER07082403
– ident: ref_41
  doi: 10.1007/s00521-023-08465-5
– ident: ref_30
  doi: 10.3390/math9233111
– volume: 137
  start-page: 106040
  year: 2019
  ident: ref_13
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106040
– volume: 3
  start-page: 95
  year: 1988
  ident: ref_8
  article-title: Genetic Algorithms and Machine Learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 9
  start-page: 1174
  year: 2016
  ident: ref_69
  article-title: A novel hybrid cuckoo search algorithm with global harmony search for 0–1 knapsack problems
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2016.1256577
– volume: 53
  start-page: 1030
  year: 2023
  ident: ref_55
  article-title: FOX: A FOX-inspired optimization algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03533-0
– volume: 274
  start-page: 17
  year: 2014
  ident: ref_22
  article-title: Chaotic Krill Herd algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.123
– volume: 6
  start-page: 562
  year: 2019
  ident: ref_31
  article-title: Donkey and smuggler optimization algorithm: A collaborative working approach to path finding
  publication-title: J. Comput. Des. Eng.
– ident: ref_19
– volume: 149
  start-page: 113338
  year: 2020
  ident: ref_56
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 157
  start-page: 107250
  year: 2021
  ident: ref_1
  article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 41
  start-page: 1
  year: 1993
  ident: ref_11
  article-title: A user’s guide to tabu search
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02078647
– ident: ref_7
  doi: 10.1007/978-3-319-91086-4
– ident: ref_43
  doi: 10.1109/SoCPaR.2009.21
SSID ssj0000913810
Score 2.2996988
Snippet Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children’s learning...
Child drawing development optimization (CDDO) is a recent example of a metaheuristic algorithm. The motive for inventing this method is children's learning...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5795
SubjectTerms Algorithms
Analysis
CDDO
CDDO–HS
Exploitation
Genetic algorithms
Heuristic
metaheuristics
optimization
Optimization algorithms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxEB0h1AMcqiZQkTatfECCIq3w2t71urc0aZRDBEiFKjfL9noLEiTVJoC49R_6h_2Sjnc3aCsVceG6Gq3s8cx4njzzBmCfFalncW4j9AYeiaxwkZJJGonQ9EgNT1xVjPl9Kk9OstlMnbVGfYWasJoeuFbcMf7IISSg1LhUpKmyTCSxz-NCprlgtmIvpVK1wFQVg1UcqKvqhjyOuD68B2O4Do9SyT9XUMXU_1Q8ri6Z8Rt43WSHZFCvqgMbft6F7RZnYBc6jTcuyWFDGf1pB6bD0ej0z6_fk2-fSUVWTEaluUd50ioKIqcYHm6avssgbEq0wQdSVxyTwfWPRXm1urzZhYvx1_PhJGrmJEROUL6KrJdexM44S6XF-0UgWhYmzTgvuMoZN0XCbM6oR7hi0IeVFZnPVZpzKQpGC_4WNueLud8DggmJ85kysSyUsJJnuZUOIVuGGNomGe3B0Vp12jUk4mGWxbVGMBH0rFt67sH-o_DPmjvj_2Jfwhk8igTC6-oDmoFuzEA_ZwY9OAgnqINb4oJQGXV3AW4rEFzpgUxCJos76kF_fci68delZpjnYGaWKPruJVbzHrbCWPq6MLIPm6vy1n-AV-5udbUsP1am-hdBT-v1
  priority: 102
  providerName: Directory of Open Access Journals
Title CDDO–HS: Child Drawing Development Optimization–Harmony Search Algorithm
URI https://www.proquest.com/docview/2812397590
https://doaj.org/article/21dc99800ac64669b2451ed1f76d42b5
Volume 13
WOSCitedRecordID wos000987240200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHoIWKLaXyoRIPKcKJndjmgrbdVkUq2xUvlZPlVwpSu9tmFxA3_gP_kF_CTOJdFgm4cEwySux4Hp7xzDeE7BR1FYs8uAykgWdC1T7TsqwygUWPzPLSt8mY747kcKhOTvQoBdymKa1yrhNbRR0mHmPkTwuwRGA7S82eX1xm2DUKT1dTC42rZBWRyoDPV3f3h6NXiygLol6qnHWFeRz8ezwXBrWNh1Plb6aoRez_m15ujc3Brf8d5m1yM20zab_jizVyJY7XyY0l8MF1spbEekofJezpx3fI0d5gcPzj2_fD189oi3pMB439AvR0KbuIHoOeOU8FnEhsG_jsV9qlLtP-2SmMaPbh_C55e7D_Zu8wSw0XMi8Yn2Uuyihyb71j0oGhEuB2C1spzmuuQ8FtXRYuFCyC32NBGWgnVAy6ClyKumA13yAr48k43iMUdjY-Km1zWWvhJFfBSQ--nwJn3JWK9ciT-b83PqGRY1OMMwNeCS6UWVqoHtlZEF90IBx_JtvFRVyQIHJ2e2PSnJokiAYY04OLyZj1lagqDTMs8xjyWlZBFA5e8hBZwKB8w4DgZ3RlCjAtRMoyfVnilhhm1CNbcxYwSfCn5tf6b_778X1yHTvXd7mTW2Rl1nyKD8g1_3n2cdpsJz7ebkMEcDV68XL0_ifq7_6t
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VFAk4AC0gAgV8KOJHWtVre9drJIRCQ5WoaRqJFpWTu_Z6C1KblE2g6o134D14KJ6E8f6EIAG3HrgmI2vH-_mbmfX8AKyzPHYszEyAp4EHIsltoGQUB8IXPdKUR7ZMxnw3kMNhcnCgRkvwvamF8WmVDSeWRJ1NrP9GvsHQEqHtjBR9dfop8FOj_O1qM0KjgsW2Oz_DkG36st_F9_uYsa03e5u9oJ4qEFhB-SwwTjoR2tQaKg2yscDYUqRxwnnOVcZ4mkfMZIw6dO5TRLwyInGZijMuRc5oznHdS7AsPNhbsDzq74zez7_q-C6bSUirQkDOFfX30Ggm_GVY9JvpKycE_M0OlMZt68b_ti034XrtRpNOhfsVWHLjVbi20FxxFVZq2pqSp3Vv7We3YLDZ7e7--Pqt9_YFKbs6k26RnqE8WcieIrvIoyd1gaoXTgtU85xUqdmkc3yEOzD7cHIb9i9ExzvQGk_G7i4Q9NysS1QaylwJI3mSGWkxtk0ULh0ltA3Pm3etbd1t3Q_9ONYYdXlg6AVgtGF9LnxaNRn5s9hrD5q5iO8MXv4wKY50TTQaD57FEJrS1MYijhVqGIUuC3MZZ4IZXOSJh5z2_IUPhJtRlWGgWr4TmO7IyLv8qFEb1hrI6ZrYpvoX3u79--9HcKW3tzPQg_5w-z5cZegbVnmia9CaFZ_dA7hsv8w-TouH9RkicHjR-PwJO09ZVg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHULjAdhgojAgD0NcpGiO7cQxEkJlpVq10lXiovFkHMcZSFtb0sK0N_4D_4afwy_hOHFKkYC3PfCaHFk-9udzsc8FYJsWiaVRnoV4GljI08KEUsRJyF3SI9EsNlUw5tuBGA7Tw0M5WoHvTS6MC6tsZGIlqPOJcXfkOxQ1EerOWJKdwodFjLq9Z9NPoesg5V5am3YaNUT27dkpum-zp_0u7vV9SnsvXu_uhb7DQGg4YfMws8LyyGiTEZGhZOboZ3KdpIwVTOaU6SKmWU6JRUNfI_plxlObyyRngheUFAzHvQCraJJz2oLVUf_l6N3ihsdV3EwjUicFMoYT19Mpqgz3MBb_pgarbgF_0wmVoutd_Z-X6Bpc8eZ10KnPwzqs2PEGXF4qurgB616czYKHvub2o-sw2O12D358_bb36klQVXsOuqU-RfpgKaoqOED5euITVx2xLpHNs6AO2Q46x0e4AvMPJzfgzbnwuAmt8WRsb0KAFp2xqdSRKCTPBEvzTBj0eVOJQ8cpacPjZt-V8VXYXTOQY4XemAOJWgJJG7YXxNO6-MifyZ47AC1IXMXw6sOkPFJeACk8kAZda0K0SXiSSOQwjmweFSLJOc1wkAcOfsrJNZwQLkadnoFsuQphqiNi5wogR23YauCnvMCbqV_Yu_Xv3_fgEoJSDfrD_duwRtFkrMNHt6A1Lz_bO3DRfJl_nJV3_XEK4P15w_Mn7s9iFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CDDO%E2%80%93HS%3A+Child+Drawing+Development+Optimization%E2%80%93Harmony+Search+Algorithm&rft.jtitle=Applied+sciences&rft.au=Ameen%2C+Azad+A&rft.au=Rashid%2C+Tarik+A&rft.au=Askar%2C+Shavan&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fapp13095795&rft.externalDocID=A752310738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon