Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance
•2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D interface by electron holography.•The synergistic effects between two different 2D materials is detailed analyzed.•The MXene-MoS2 composites ex...
Uloženo v:
| Vydáno v: | Journal of alloys and compounds Ročník 869; s. 159365 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
15.07.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0925-8388, 1873-4669 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D interface by electron holography.•The synergistic effects between two different 2D materials is detailed analyzed.•The MXene-MoS2 composites exhibit the excellent MA performance (RL= -46.72 dB, EAB =4.32 GHz).
The MXene-MoS2 composite with massive 2D/2D heterostructures holds the excellent microwave absorption performance accompanied by the superior RL (−46.72 dB) and the distinct EAB (4.32 GHz) at only 2 mm thickness. [Display omitted]
The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how to effectively introduce other foreign 2D materials on the 2D MXene substrate, as well as research on their detailed synergistic effects, is still in lack. Herein, 3D conductive interconnected network with massive 2D/2D heterostructures in MXene-MoS2 composites are constructed by a facile hydrothermal reaction, and the microwave absorption mechanism accompanying the synergistic effect is detailed analyzed. Impressively, the unique off-axis electron holography is firstly used to visually characterize the distribution of charge density at the 2D interface, which constructs an effective relationship between the charge density distribution at the 2D/2D heterostructures and the strength of the microwave absorption performance. In addition, the confined space provided by each independent accordion-like multilayered MXene facilitates the heterogeneous coupling between the layers to increase its dielectric loss capability. Accordingly, the MXene-MoS2 composite holds the excellent microwave absorption performance accompanied by the superior reflection loss (RL) (−46.72 dB) and the distinct effective absorption bandwidth (EAB) (4.32 GHz) at only 2 mm thickness. This work refers an archetype for studying the synergistic effect between 2D/2D heterostructures. |
|---|---|
| AbstractList | The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how to effectively introduce other foreign 2D materials on the 2D MXene substrate, as well as research on their detailed synergistic effects, is still in lack. Herein, 3D conductive interconnected network with massive 2D/2D heterostructures in MXene-MoS2 composites are constructed by a facile hydrothermal reaction, and the microwave absorption mechanism accompanying the synergistic effect is detailed analyzed. Impressively, the unique off-axis electron holography is firstly used to visually characterize the distribution of charge density at the 2D interface, which constructs an effective relationship between the charge density distribution at the 2D/2D heterostructures and the strength of the microwave absorption performance. In addition, the confined space provided by each independent accordion-like multilayered MXene facilitates the heterogeneous coupling between the layers to increase its dielectric loss capability. Accordingly, the MXene-MoS2 composite holds the excellent microwave absorption performance accompanied by the superior reflection loss (RL) (−46.72 dB) and the distinct effective absorption bandwidth (EAB) (4.32 GHz) at only 2 mm thickness. This work refers an archetype for studying the synergistic effect between 2D/2D heterostructures. •2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D interface by electron holography.•The synergistic effects between two different 2D materials is detailed analyzed.•The MXene-MoS2 composites exhibit the excellent MA performance (RL= -46.72 dB, EAB =4.32 GHz). The MXene-MoS2 composite with massive 2D/2D heterostructures holds the excellent microwave absorption performance accompanied by the superior RL (−46.72 dB) and the distinct EAB (4.32 GHz) at only 2 mm thickness. [Display omitted] The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how to effectively introduce other foreign 2D materials on the 2D MXene substrate, as well as research on their detailed synergistic effects, is still in lack. Herein, 3D conductive interconnected network with massive 2D/2D heterostructures in MXene-MoS2 composites are constructed by a facile hydrothermal reaction, and the microwave absorption mechanism accompanying the synergistic effect is detailed analyzed. Impressively, the unique off-axis electron holography is firstly used to visually characterize the distribution of charge density at the 2D interface, which constructs an effective relationship between the charge density distribution at the 2D/2D heterostructures and the strength of the microwave absorption performance. In addition, the confined space provided by each independent accordion-like multilayered MXene facilitates the heterogeneous coupling between the layers to increase its dielectric loss capability. Accordingly, the MXene-MoS2 composite holds the excellent microwave absorption performance accompanied by the superior reflection loss (RL) (−46.72 dB) and the distinct effective absorption bandwidth (EAB) (4.32 GHz) at only 2 mm thickness. This work refers an archetype for studying the synergistic effect between 2D/2D heterostructures. |
| ArticleNumber | 159365 |
| Author | Wen, Caiyue Li, Xiao Li, Yuesheng Yang, Liting Zhang, Ruixuan Che, Renchao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Li fullname: Li, Xiao organization: Department of Materials Science, Fudan University, Shanghai 200433, PR China – sequence: 2 givenname: Caiyue surname: Wen fullname: Wen, Caiyue organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China – sequence: 3 givenname: Liting surname: Yang fullname: Yang, Liting organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China – sequence: 4 givenname: Ruixuan surname: Zhang fullname: Zhang, Ruixuan organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China – sequence: 5 givenname: Yuesheng surname: Li fullname: Li, Yuesheng organization: Department of Materials Science, Fudan University, Shanghai 200433, PR China – sequence: 6 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Department of Materials Science, Fudan University, Shanghai 200433, PR China |
| BookMark | eNqFkTtv2zAQx4nCBeq4_QgFCGSWzYdEiegQBI6TFnDQoQnQjaCoU0xBJh2Sch798pXqTF0y3Q3_x-F3Z2jmvAOEvlKypISKVbfsdN8bv18ywuiSFpKL4gOa06rkWS6EnKE5kazIKl5Vn9BZjB0hhEpO5-jPxu20M9Dgo42D7u2rdQ_Y7HR4ANzYmIKth2S9w77F7GrFrvDtb3CwuvW_GN5BguBH0WDSEAC3PmB4NtD34BLeWxP8kz4C1nX04fAv5gBhVO2nzs_oY6v7CF_e5gLdX2_u1t-z7c-bH-vLbWZywlNWN7SUAgiQUuaUS1aKHIRgmslKGi4r4K2Urc7LgtZNrYtxA9EUFWWMkcrwBTo_5R6CfxwgJtX5IbixUrGCcSpyItio-nZSjUfHGKBVxiY93ZyCtr2iRE20VafeaKuJtjrRHt3Ff-5DsHsdXt71XZx8MAI4WggqGgvTQ2wAk1Tj7TsJfwGJH5_w |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_162343 crossref_primary_10_1007_s12613_022_2546_9 crossref_primary_10_1039_D1QM00364J crossref_primary_10_1016_j_mser_2024_100838 crossref_primary_10_1016_j_synthmet_2022_117188 crossref_primary_10_1007_s40820_023_01247_7 crossref_primary_10_1016_j_carbon_2023_03_044 crossref_primary_10_1016_j_jallcom_2022_166349 crossref_primary_10_1016_j_jallcom_2025_183164 crossref_primary_10_1002_adfm_202513762 crossref_primary_10_1016_j_jallcom_2023_169733 crossref_primary_10_1016_j_cej_2024_152041 crossref_primary_10_1016_j_ceramint_2021_10_049 crossref_primary_10_1016_j_jcis_2023_06_041 crossref_primary_10_1016_j_cap_2022_01_002 crossref_primary_10_1016_j_mtphys_2023_101291 crossref_primary_10_1016_j_ijhydene_2025_06_043 crossref_primary_10_1016_j_jallcom_2024_173768 crossref_primary_10_1016_j_carbon_2022_12_050 crossref_primary_10_1007_s10853_021_06394_z crossref_primary_10_1016_j_jcis_2024_07_255 crossref_primary_10_1007_s12598_024_03013_z crossref_primary_10_1002_pssa_202300903 crossref_primary_10_1088_1674_4926_43_4_041103 crossref_primary_10_1002_smll_202205853 crossref_primary_10_1016_j_foodchem_2024_140939 crossref_primary_10_1016_j_jallcom_2022_164974 crossref_primary_10_1002_gch2_202100120 crossref_primary_10_1007_s42114_023_00643_2 crossref_primary_10_3390_mi13111837 crossref_primary_10_1002_smll_202306233 crossref_primary_10_1016_j_surfin_2023_103237 crossref_primary_10_1039_D5TC02357B crossref_primary_10_1016_j_jallcom_2022_165740 crossref_primary_10_1002_adfm_202409923 crossref_primary_10_1002_adfm_202420702 crossref_primary_10_1016_j_cej_2023_143518 crossref_primary_10_1002_smll_202306915 crossref_primary_10_1016_j_cej_2024_155785 crossref_primary_10_1007_s10853_022_07202_y crossref_primary_10_1016_j_colsurfa_2024_135964 crossref_primary_10_1016_j_carbon_2022_03_029 crossref_primary_10_1016_j_mtsust_2025_101190 crossref_primary_10_1002_adma_202106195 crossref_primary_10_1088_1402_4896_acbdc4 crossref_primary_10_1016_j_apsusc_2024_160959 crossref_primary_10_1088_2515_7655_ac9f6b crossref_primary_10_1016_j_cej_2022_137260 crossref_primary_10_1002_smll_202407563 crossref_primary_10_1039_D2NR06162G crossref_primary_10_1016_j_jallcom_2022_166088 crossref_primary_10_1016_j_coco_2024_101954 crossref_primary_10_1016_j_jcis_2023_06_061 crossref_primary_10_1016_j_jallcom_2022_167250 crossref_primary_10_1016_j_mtcomm_2023_107862 crossref_primary_10_26599_JAC_2024_9220977 crossref_primary_10_1016_j_materresbull_2024_112829 crossref_primary_10_1016_j_apsusc_2023_157355 crossref_primary_10_1007_s12613_023_2707_5 crossref_primary_10_1080_10408436_2021_1965954 crossref_primary_10_1016_j_bioactmat_2023_08_005 crossref_primary_10_1016_j_jallcom_2022_166253 crossref_primary_10_1016_j_jcis_2023_06_151 crossref_primary_10_1016_j_cej_2022_135855 crossref_primary_10_26599_NR_2025_94907594 crossref_primary_10_1007_s12274_023_6231_z crossref_primary_10_1002_cey2_502 crossref_primary_10_1016_j_carbon_2023_118450 crossref_primary_10_1016_j_cej_2022_136903 crossref_primary_10_1016_j_jcis_2024_11_205 crossref_primary_10_1007_s12274_023_5509_1 crossref_primary_10_1016_j_compscitech_2021_109143 crossref_primary_10_1016_j_diamond_2023_110724 |
| Cites_doi | 10.1016/j.pnsc.2020.06.001 10.1039/C7RA03260A 10.1016/j.cej.2019.122625 10.1021/am508527s 10.1016/j.jallcom.2020.154251 10.1016/j.cej.2019.123099 10.1021/acsami.9b11861 10.1021/acsami.9b07294 10.1021/nl402278y 10.1021/acsami.8b00709 10.1021/acsami.5b08410 10.1039/C8TC02900H 10.1021/acsnano.0c03013 10.1088/1361-6528/aa9a2a 10.1021/acsami.0c00935 10.1016/j.apsusc.2019.05.058 10.1016/j.jallcom.2018.04.111 10.1002/adma.201702367 10.1039/C6TC05226F 10.1002/adma.201102306 10.1016/j.carbon.2019.07.049 10.1016/j.apsusc.2018.08.152 10.1021/acsami.8b03610 10.1021/nn304630h 10.1007/s10853-020-04739-8 10.1016/j.electacta.2020.136211 10.1016/j.compositesb.2019.107577 10.1016/j.ceramint.2017.05.082 10.1016/j.carbon.2019.10.009 10.1039/C9NR07331K 10.1021/acsami.7b04602 10.1039/D0NR03528A 10.1039/C6TC02006B 10.1016/j.compositesa.2018.10.014 10.1021/acsami.0c01998 10.1016/j.compositesb.2020.108263 10.1039/C5NR04670J 10.1039/C8QM00436F 10.1039/C9NR02667C 10.1016/j.jmmm.2019.165639 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jul 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jul 15, 2021 |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1016/j.jallcom.2021.159365 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4669 |
| ExternalDocumentID | 10_1016_j_jallcom_2021_159365 S0925838821007738 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ ~HD 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c403t-bd1796e0e07941392764e662a2989c398e3f99fa4751bdba5a47e6d58122208c3 |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638274800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-8388 |
| IngestDate | Sun Nov 09 08:54:00 EST 2025 Sat Nov 29 07:16:35 EST 2025 Tue Nov 18 22:18:50 EST 2025 Fri Feb 23 02:44:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heterostructure Microwave absorption Synergistic effect 2D materials MXene |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c403t-bd1796e0e07941392764e662a2989c398e3f99fa4751bdba5a47e6d58122208c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2523164062 |
| PQPubID | 2045454 |
| ParticipantIDs | proquest_journals_2523164062 crossref_citationtrail_10_1016_j_jallcom_2021_159365 crossref_primary_10_1016_j_jallcom_2021_159365 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_159365 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-15 |
| PublicationDateYYYYMMDD | 2021-07-15 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of alloys and compounds |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Li, Zhang, You, Pei, Zeng, Han, Li, Cao, Liu, Che (bib8) 2020; 12 Liang, Zhang, Liu, Tang, Zhang, Ji (bib28) 2016; 4 He, Cao, Cai, Shu, Cao, Yuan (bib3) 2020; 157 Deng, Chen, Li, Zhang, Zhang, Yu, Song (bib15) 2019; 488 Wang, Li, Li, Lin, Ding, Zhu, Sheng, Wang, Zhu, Sun (bib27) 2020; 30 Wang, Yu, Li, Zhang, Wang, Che (bib33) 2019; 155 Xie, Jia, Zhuo, Lu, Si, Huang, Zhang, Ma (bib12) 2019; 11 Luo, Zhang, Cheng, Gu, Sun (bib21) 2020; 380 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib10) 2011; 23 Wang, Liu, Lv, Cui, Gu (bib36) 2020; 828 Sreeprasad, Nguyen, Kim, Berry (bib25) 2013; 13 Wang, Chen, Yin, Xu, Wu, He (bib26) 2015; 7 Liu, Cao, Zhao, Bi, Wang, Wu, Che (bib41) 2015; 7 Liu, Zhang, Yan, Li, Zhu, Zhang, Chen (bib22) 2018; 10 Mu, Song, Wang, Zhang, Xiang, Wen, Liu (bib24) 2018; 29 Dai, Wu, Liu, Zhang, Yu (bib37) 2020; 200 Ning, Lu, Li, Chen, Dou, Wang, Rehman, Cao, Jin (bib34) 2015; 7 Jiang, Xie, Chen, Liu, Yang, Sui (bib38) 2018; 6 Li, Wang, You, Xing, Yang, Yu, Zhang, Li, Che (bib30) 2019; 11 Zhang, Zhang, Wu, Yan, Qi (bib35) 2018; 751 Li, Yin, Han, Song, Xu, Hou, Zhang, Cheng (bib16) 2017; 5 Liu, Zhang, Sun, Liu, Liu, Zhou, Yu (bib1) 2017; 29 Liang, Han, Li, Zhao, Zhou, Feng, Ma, Wang, Zhang, Liu (bib9) 2019; 11 Qiu, Wang, Jiang, Zhang, Gu, Wang, Gao, Zhu, Wu (bib2) 2020; 12 Liu, Yao, Ng, Zhou, Kong, Yue (bib14) 2018; 115 Cao, Ren, Xiong, Pan, Wang, Ji, Qiu, Yang, Zhang (bib18) 2020; 348 Li, You, Wang, Liu, Wu, Pei, Li, Che (bib6) 2019; 11 Wang, Li, Zhou, Jiang (bib7) 2020; 14 Zhang, Wang, Wang, Li, Guo, Zhu, Liu, Yin (bib23) 2017; 7 Wang, Yu, Li, Zhang, Wang, Che (bib32) 2020; 383 Qian, Wei, Dong, Du, Fang, Zheng, Sun, Jiang (bib39) 2017; 43 Cui, Wang, Li, Xie, Gu (bib17) 2020; 30 Liu, Zhang, Su, Xu, Li (bib4) 2020; 55 Han, Yin, Li, Anasori, Zhang, Cheng, Gogotsi (bib13) 2017; 9 Guo, Wang, You, Yang, Li, Chen, Wu, Qian, Wang, Che (bib31) 2020; 12 Feng, Luo, Zeng, Chen, Deng, Tan, Zhou, Peng, Zhang (bib11) 2018; 2 Hou, Wang, Ma, Feng, Huang, Zhang, Jia, Tan, Cao, Wu (bib19) 2020; 180 Zhang, Chai, Cheng, Jia, Yang, Wang, Zhao, Han, Shan, Zhang, Zheng, Cao (bib20) 2018; 462 He, Shan, Yan, Luo, Cao, Peng (bib5) 2019; 492 Wang, Gao, Tang, Chen, Duan, Zhao, Lin, Feng, Zhou, Qin (bib29) 2012; 6 You, Che (bib40) 2018; 10 Jiang (10.1016/j.jallcom.2021.159365_bib38) 2018; 6 Liu (10.1016/j.jallcom.2021.159365_bib4) 2020; 55 Cui (10.1016/j.jallcom.2021.159365_bib17) 2020; 30 Dai (10.1016/j.jallcom.2021.159365_bib37) 2020; 200 Zhang (10.1016/j.jallcom.2021.159365_bib23) 2017; 7 He (10.1016/j.jallcom.2021.159365_bib3) 2020; 157 Han (10.1016/j.jallcom.2021.159365_bib13) 2017; 9 Cao (10.1016/j.jallcom.2021.159365_bib18) 2020; 348 Xie (10.1016/j.jallcom.2021.159365_bib12) 2019; 11 Liu (10.1016/j.jallcom.2021.159365_bib14) 2018; 115 Liu (10.1016/j.jallcom.2021.159365_bib1) 2017; 29 Luo (10.1016/j.jallcom.2021.159365_bib21) 2020; 380 Wang (10.1016/j.jallcom.2021.159365_bib26) 2015; 7 Feng (10.1016/j.jallcom.2021.159365_bib11) 2018; 2 Wang (10.1016/j.jallcom.2021.159365_bib27) 2020; 30 Wang (10.1016/j.jallcom.2021.159365_bib36) 2020; 828 Li (10.1016/j.jallcom.2021.159365_bib6) 2019; 11 Guo (10.1016/j.jallcom.2021.159365_bib31) 2020; 12 Wang (10.1016/j.jallcom.2021.159365_bib7) 2020; 14 Li (10.1016/j.jallcom.2021.159365_bib30) 2019; 11 Deng (10.1016/j.jallcom.2021.159365_bib15) 2019; 488 Qiu (10.1016/j.jallcom.2021.159365_bib2) 2020; 12 Liang (10.1016/j.jallcom.2021.159365_bib9) 2019; 11 Li (10.1016/j.jallcom.2021.159365_bib16) 2017; 5 Wang (10.1016/j.jallcom.2021.159365_bib32) 2020; 383 Liu (10.1016/j.jallcom.2021.159365_bib41) 2015; 7 Zhang (10.1016/j.jallcom.2021.159365_bib20) 2018; 462 Sreeprasad (10.1016/j.jallcom.2021.159365_bib25) 2013; 13 Wang (10.1016/j.jallcom.2021.159365_bib33) 2019; 155 Zhang (10.1016/j.jallcom.2021.159365_bib35) 2018; 751 Wang (10.1016/j.jallcom.2021.159365_bib29) 2012; 6 You (10.1016/j.jallcom.2021.159365_bib40) 2018; 10 He (10.1016/j.jallcom.2021.159365_bib5) 2019; 492 Naguib (10.1016/j.jallcom.2021.159365_bib10) 2011; 23 Hou (10.1016/j.jallcom.2021.159365_bib19) 2020; 180 Liang (10.1016/j.jallcom.2021.159365_bib28) 2016; 4 Ning (10.1016/j.jallcom.2021.159365_bib34) 2015; 7 Mu (10.1016/j.jallcom.2021.159365_bib24) 2018; 29 Qian (10.1016/j.jallcom.2021.159365_bib39) 2017; 43 Liu (10.1016/j.jallcom.2021.159365_bib22) 2018; 10 Li (10.1016/j.jallcom.2021.159365_bib8) 2020; 12 |
| References_xml | – volume: 488 start-page: 921 year: 2019 end-page: 930 ident: bib15 article-title: MXene/Co publication-title: Appl. Surf. Sci. – volume: 6 start-page: 11009 year: 2012 end-page: 11017 ident: bib29 article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition publication-title: ACS Nano – volume: 7 start-page: 4233 year: 2015 end-page: 4240 ident: bib41 article-title: Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography publication-title: ACS Appl. Mater. Interfaces – volume: 155 start-page: 298 year: 2019 end-page: 308 ident: bib33 article-title: Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe publication-title: Carbon – volume: 30 year: 2020 ident: bib27 article-title: 2D/2D 1T‐MoS publication-title: Adv. Funct. Mater. – volume: 12 start-page: 16831 year: 2020 end-page: 16840 ident: bib31 article-title: Engineering phase transformation of MoS publication-title: ACS Appl. Mater. Interfaces – volume: 380 year: 2020 ident: bib21 article-title: MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption publication-title: Chem. Eng. J. – volume: 180 year: 2020 ident: bib19 article-title: Preparation of two-dimensional titanium carbide (Ti publication-title: Compos. Part B Eng. – volume: 10 start-page: 14108 year: 2018 end-page: 14115 ident: bib22 article-title: Three-Dimensional hierarchical MoS publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 371 year: 2018 end-page: 382 ident: bib14 article-title: Facile synthesis of ultrasmall Fe publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 200 year: 2020 ident: bib37 article-title: Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption publication-title: Compos. Part B Eng. – volume: 383 year: 2020 ident: bib32 article-title: MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption publication-title: Chem. Eng. J. – volume: 751 start-page: 34 year: 2018 end-page: 42 ident: bib35 article-title: Impact of morphology and dielectric property on the microwave absorbing performance of MoS publication-title: J. Alloy. Compd. – volume: 12 start-page: 18138 year: 2020 end-page: 18147 ident: bib8 article-title: Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method publication-title: ACS Appl. Mater. Interfaces – volume: 348 year: 2020 ident: bib18 article-title: Self-assembly of hierarchical Ti publication-title: Electrochim. Acta – volume: 7 start-page: 26226 year: 2015 end-page: 26234 ident: bib26 article-title: Hybrid of MoS publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 20038 year: 2017 end-page: 20045 ident: bib13 article-title: Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 17023671 year: 2017 end-page: 17023676 ident: bib1 article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding publication-title: Adv. Mater. – volume: 7 start-page: 15734 year: 2015 end-page: 15740 ident: bib34 article-title: Two-dimensional nanosheets of MoS publication-title: Nanoscale – volume: 6 start-page: 8679 year: 2018 end-page: 8687 ident: bib38 article-title: Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties publication-title: J. Mater. Chem. C – volume: 29 year: 2018 ident: bib24 article-title: Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption publication-title: Nanotechnology – volume: 12 start-page: 16678 year: 2020 end-page: 16684 ident: bib2 article-title: Rational design of MXene@TiO publication-title: Nanoscale – volume: 55 start-page: 10339 year: 2020 end-page: 10350 ident: bib4 article-title: Enhanced microwave absorption properties of Ti publication-title: J. Mater. Sci. – volume: 462 start-page: 872 year: 2018 end-page: 882 ident: bib20 article-title: Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS publication-title: Appl. Surf. Sci. – volume: 11 start-page: 13269 year: 2019 end-page: 13281 ident: bib30 article-title: Enhanced polarization from flexible hierarchical MnO publication-title: Nanoscale – volume: 2 start-page: 2320 year: 2018 end-page: 2326 ident: bib11 article-title: Ni-modified Ti publication-title: Mater. Chem. Front. – volume: 11 start-page: 23382 year: 2019 end-page: 23391 ident: bib12 article-title: Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding publication-title: Nanoscale – volume: 7 start-page: 22454 year: 2017 end-page: 22460 ident: bib23 article-title: Facile synthesis of NiS publication-title: RSC Adv. – volume: 828 year: 2020 ident: bib36 article-title: Facile synthesis 3D porous MXene Ti publication-title: J. Alloy. Compd. – volume: 5 start-page: 4068 year: 2017 end-page: 4074 ident: bib16 article-title: Ti publication-title: J. Mater. Chem. C – volume: 157 start-page: 80 year: 2020 end-page: 89 ident: bib3 article-title: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding publication-title: Carbon – volume: 11 start-page: 44536 year: 2019 end-page: 44544 ident: bib6 article-title: Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 4434 year: 2013 end-page: 4441 ident: bib25 article-title: Controlled, defect-guided, metal-nanoparticle incorporation onto MoS publication-title: Nano Lett. – volume: 10 start-page: 15104 year: 2018 end-page: 15111 ident: bib40 article-title: Excellent NiO-Ni Nanoplate Microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 6816 year: 2016 end-page: 6821 ident: bib28 article-title: A simple hydrothermal process to grow MoS publication-title: J. Mater. Chem. C – volume: 492 year: 2019 ident: bib5 article-title: Magnetic FeCo nanoparticles-decorated Ti publication-title: J. Magn. Magn. Mater. – volume: 30 start-page: 343 year: 2020 end-page: 351 ident: bib17 article-title: Synthesis of CuS nanoparticles decorated Ti publication-title: Prog. Nat. Sci. Mater. Int. – volume: 43 start-page: 10757 year: 2017 end-page: 10762 ident: bib39 article-title: Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption publication-title: Ceram. Int. – volume: 11 start-page: 25399 year: 2019 end-page: 25409 ident: bib9 article-title: Promising Ti publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 8634 year: 2020 end-page: 8645 ident: bib7 article-title: Hierarchical Ti publication-title: ACS Nano – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: bib10 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti publication-title: Adv. Mater. – volume: 30 start-page: 343 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib17 article-title: Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/j.pnsc.2020.06.001 – volume: 7 start-page: 22454 year: 2017 ident: 10.1016/j.jallcom.2021.159365_bib23 article-title: Facile synthesis of NiS2@MoS2 core–shell nanospheres for effective enhancement in microwave absorption publication-title: RSC Adv. doi: 10.1039/C7RA03260A – volume: 380 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib21 article-title: MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122625 – volume: 7 start-page: 4233 year: 2015 ident: 10.1016/j.jallcom.2021.159365_bib41 article-title: Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508527s – volume: 828 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib36 article-title: Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154251 – volume: 383 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib32 article-title: MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123099 – volume: 11 start-page: 44536 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib6 article-title: Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11861 – volume: 11 start-page: 25399 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib9 article-title: Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07294 – volume: 13 start-page: 4434 year: 2013 ident: 10.1016/j.jallcom.2021.159365_bib25 article-title: Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties publication-title: Nano Lett. doi: 10.1021/nl402278y – volume: 10 start-page: 14108 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib22 article-title: Three-Dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00709 – volume: 7 start-page: 26226 year: 2015 ident: 10.1016/j.jallcom.2021.159365_bib26 article-title: Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08410 – volume: 6 start-page: 8679 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib38 article-title: Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02900H – volume: 14 start-page: 8634 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib7 article-title: Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption publication-title: ACS Nano doi: 10.1021/acsnano.0c03013 – volume: 29 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib24 article-title: Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption publication-title: Nanotechnology doi: 10.1088/1361-6528/aa9a2a – volume: 12 start-page: 18138 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib8 article-title: Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00935 – volume: 488 start-page: 921 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib15 article-title: MXene/Co3O4 composite material: stable synthesis and its enhanced broadband microwave absorption publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.058 – volume: 751 start-page: 34 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib35 article-title: Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.04.111 – volume: 29 start-page: 17023671 year: 2017 ident: 10.1016/j.jallcom.2021.159365_bib1 article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 5 start-page: 4068 year: 2017 ident: 10.1016/j.jallcom.2021.159365_bib16 article-title: Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05226F – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.jallcom.2021.159365_bib10 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 155 start-page: 298 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib33 article-title: Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2019.07.049 – volume: 462 start-page: 872 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib20 article-title: Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.152 – volume: 10 start-page: 15104 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib40 article-title: Excellent NiO-Ni Nanoplate Microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03610 – volume: 6 start-page: 11009 year: 2012 ident: 10.1016/j.jallcom.2021.159365_bib29 article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition publication-title: ACS Nano doi: 10.1021/nn304630h – volume: 55 start-page: 10339 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib4 article-title: Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04739-8 – volume: 348 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib18 article-title: Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136211 – volume: 180 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib19 article-title: Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107577 – volume: 43 start-page: 10757 year: 2017 ident: 10.1016/j.jallcom.2021.159365_bib39 article-title: Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.082 – volume: 157 start-page: 80 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib3 article-title: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding publication-title: Carbon doi: 10.1016/j.carbon.2019.10.009 – volume: 11 start-page: 23382 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib12 article-title: Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding publication-title: Nanoscale doi: 10.1039/C9NR07331K – volume: 9 start-page: 20038 year: 2017 ident: 10.1016/j.jallcom.2021.159365_bib13 article-title: Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04602 – volume: 12 start-page: 16678 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib2 article-title: Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries publication-title: Nanoscale doi: 10.1039/D0NR03528A – volume: 4 start-page: 6816 year: 2016 ident: 10.1016/j.jallcom.2021.159365_bib28 article-title: A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02006B – volume: 115 start-page: 371 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib14 article-title: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.10.014 – volume: 12 start-page: 16831 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib31 article-title: Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01998 – volume: 200 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib37 article-title: Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2020.108263 – volume: 7 start-page: 15734 year: 2015 ident: 10.1016/j.jallcom.2021.159365_bib34 article-title: Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance publication-title: Nanoscale doi: 10.1039/C5NR04670J – volume: 2 start-page: 2320 year: 2018 ident: 10.1016/j.jallcom.2021.159365_bib11 article-title: Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00436F – volume: 11 start-page: 13269 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib30 article-title: Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption publication-title: Nanoscale doi: 10.1039/C9NR02667C – volume: 30 year: 2020 ident: 10.1016/j.jallcom.2021.159365_bib27 article-title: 2D/2D 1T‐MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance publication-title: Adv. Funct. Mater. – volume: 492 year: 2019 ident: 10.1016/j.jallcom.2021.159365_bib5 article-title: Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165639 |
| SSID | ssj0001931 |
| Score | 2.6072328 |
| Snippet | •2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D... The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 159365 |
| SubjectTerms | 2D materials Charge density Charge distribution Confined spaces Density distribution Dielectric loss Heterostructure Heterostructures Hydrothermal reactions Microwave absorption Molybdenum disulfide MXene MXenes Performance enhancement Substrates Synergistic effect Two dimensional materials |
| Title | Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance |
| URI | https://dx.doi.org/10.1016/j.jallcom.2021.159365 https://www.proquest.com/docview/2523164062 |
| Volume | 869 |
| WOSCitedRecordID | wos000638274800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKBwIOCApog4F84DalTZw4cY7T2gnQNiEYUjlFjutoqUZSLW3Xwa_hn_Ic20mpNsYOXKIoql0376v9-fm99yH0zhUxo8CDHZkGEWxQeOawgAUOTJiRDF3BMypqsYno5ISNx_GnTueXzYVZnkdFwVarePZfTQ3PwNgqdfYO5m46hQdwD0aHK5gdrv9k-FFxpk_1l3mlMiZ_1Gm1qiCSVMcxjcKVoolkqFI1hnvHY6k8m4fH5RcC3BHedakLy6rjhboo-Kr28Bfzve8qgu9SaRbxtCov9Iwza9MPbmC76nz_qrJZdDMl5tSw-aM6omCc87I9J9KxADy_WjTI-2Zc20f53K636x7vz4t8tTBYN24M4in_qE7ktP5IQh3ma40_OzUzLeNiJldPqQ_Sa-d97YKY9qfwa1QUkPqGfvv5P-tsb6x_TVSiDXibJqabRHWT6G7uoS0S0Zh10db-h9H4Y7PcAwOuZRnt-Ns0scG147mJAG1QgZrfnD5FT4yp8L4G1DPUkUUPPTyweoA99HitdGUPPahDh0X1HP20gMNrgMMacHgdcLjMMBkOyBDXcBsosOENsGGAEW7Ahhuw4RZseA1sL9DXw9HpwXvHSHo4InD9uZNOYAEIpStdWAdg80GiMJBhSLgSAhB-zKSfxXHGg4h66STlFO5kOKFAQwlxmfBfom5RFnIb4ZB4PBU0y1jIVHp0LCaMC8pDT7Jg4pMdFNj3nAhT717Jrpwnf7XzDuo3zWa64MttDZg1YmJYq2ajCYDztqa71uiJmUGqhFDYcoXAs8mruw7lNXrU_rV2URdsJ9-g-2I5z6uLtwa4vwGmBciZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+visualizing+charge+distribution+of+2D%2F2D+MXene%2FMoS2+heterostructure+for+excellent+microwave+absorption+performance&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Li%2C+Xiao&rft.au=Wen%2C+Caiyue&rft.au=Yang%2C+Liting&rft.au=Zhang%2C+Ruixuan&rft.date=2021-07-15&rft.issn=0925-8388&rft.volume=869&rft.spage=159365&rft_id=info:doi/10.1016%2Fj.jallcom.2021.159365&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2021_159365 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |