Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance

•2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D interface by electron holography.•The synergistic effects between two different 2D materials is detailed analyzed.•The MXene-MoS2 composites ex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of alloys and compounds Ročník 869; s. 159365
Hlavní autori: Li, Xiao, Wen, Caiyue, Yang, Liting, Zhang, Ruixuan, Li, Yuesheng, Che, Renchao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 15.07.2021
Elsevier BV
Predmet:
ISSN:0925-8388, 1873-4669
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D interface by electron holography.•The synergistic effects between two different 2D materials is detailed analyzed.•The MXene-MoS2 composites exhibit the excellent MA performance (RL= -46.72 dB, EAB =4.32 GHz). The MXene-MoS2 composite with massive 2D/2D heterostructures holds the excellent microwave absorption performance accompanied by the superior RL (−46.72 dB) and the distinct EAB (4.32 GHz) at only 2 mm thickness. [Display omitted] The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how to effectively introduce other foreign 2D materials on the 2D MXene substrate, as well as research on their detailed synergistic effects, is still in lack. Herein, 3D conductive interconnected network with massive 2D/2D heterostructures in MXene-MoS2 composites are constructed by a facile hydrothermal reaction, and the microwave absorption mechanism accompanying the synergistic effect is detailed analyzed. Impressively, the unique off-axis electron holography is firstly used to visually characterize the distribution of charge density at the 2D interface, which constructs an effective relationship between the charge density distribution at the 2D/2D heterostructures and the strength of the microwave absorption performance. In addition, the confined space provided by each independent accordion-like multilayered MXene facilitates the heterogeneous coupling between the layers to increase its dielectric loss capability. Accordingly, the MXene-MoS2 composite holds the excellent microwave absorption performance accompanied by the superior reflection loss (RL) (−46.72 dB) and the distinct effective absorption bandwidth (EAB) (4.32 GHz) at only 2 mm thickness. This work refers an archetype for studying the synergistic effect between 2D/2D heterostructures.
AbstractList The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how to effectively introduce other foreign 2D materials on the 2D MXene substrate, as well as research on their detailed synergistic effects, is still in lack. Herein, 3D conductive interconnected network with massive 2D/2D heterostructures in MXene-MoS2 composites are constructed by a facile hydrothermal reaction, and the microwave absorption mechanism accompanying the synergistic effect is detailed analyzed. Impressively, the unique off-axis electron holography is firstly used to visually characterize the distribution of charge density at the 2D interface, which constructs an effective relationship between the charge density distribution at the 2D/2D heterostructures and the strength of the microwave absorption performance. In addition, the confined space provided by each independent accordion-like multilayered MXene facilitates the heterogeneous coupling between the layers to increase its dielectric loss capability. Accordingly, the MXene-MoS2 composite holds the excellent microwave absorption performance accompanied by the superior reflection loss (RL) (−46.72 dB) and the distinct effective absorption bandwidth (EAB) (4.32 GHz) at only 2 mm thickness. This work refers an archetype for studying the synergistic effect between 2D/2D heterostructures.
•2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D interface by electron holography.•The synergistic effects between two different 2D materials is detailed analyzed.•The MXene-MoS2 composites exhibit the excellent MA performance (RL= -46.72 dB, EAB =4.32 GHz). The MXene-MoS2 composite with massive 2D/2D heterostructures holds the excellent microwave absorption performance accompanied by the superior RL (−46.72 dB) and the distinct EAB (4.32 GHz) at only 2 mm thickness. [Display omitted] The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how to effectively introduce other foreign 2D materials on the 2D MXene substrate, as well as research on their detailed synergistic effects, is still in lack. Herein, 3D conductive interconnected network with massive 2D/2D heterostructures in MXene-MoS2 composites are constructed by a facile hydrothermal reaction, and the microwave absorption mechanism accompanying the synergistic effect is detailed analyzed. Impressively, the unique off-axis electron holography is firstly used to visually characterize the distribution of charge density at the 2D interface, which constructs an effective relationship between the charge density distribution at the 2D/2D heterostructures and the strength of the microwave absorption performance. In addition, the confined space provided by each independent accordion-like multilayered MXene facilitates the heterogeneous coupling between the layers to increase its dielectric loss capability. Accordingly, the MXene-MoS2 composite holds the excellent microwave absorption performance accompanied by the superior reflection loss (RL) (−46.72 dB) and the distinct effective absorption bandwidth (EAB) (4.32 GHz) at only 2 mm thickness. This work refers an archetype for studying the synergistic effect between 2D/2D heterostructures.
ArticleNumber 159365
Author Wen, Caiyue
Li, Xiao
Li, Yuesheng
Yang, Liting
Zhang, Ruixuan
Che, Renchao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Department of Materials Science, Fudan University, Shanghai 200433, PR China
– sequence: 2
  givenname: Caiyue
  surname: Wen
  fullname: Wen, Caiyue
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
– sequence: 3
  givenname: Liting
  surname: Yang
  fullname: Yang, Liting
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
– sequence: 4
  givenname: Ruixuan
  surname: Zhang
  fullname: Zhang, Ruixuan
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
– sequence: 5
  givenname: Yuesheng
  surname: Li
  fullname: Li, Yuesheng
  organization: Department of Materials Science, Fudan University, Shanghai 200433, PR China
– sequence: 6
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Department of Materials Science, Fudan University, Shanghai 200433, PR China
BookMark eNqFkTtv2zAQx4nCBeq4_QgFCGSWzYdEiegQBI6TFnDQoQnQjaCoU0xBJh2Sch798pXqTF0y3Q3_x-F3Z2jmvAOEvlKypISKVbfsdN8bv18ywuiSFpKL4gOa06rkWS6EnKE5kazIKl5Vn9BZjB0hhEpO5-jPxu20M9Dgo42D7u2rdQ_Y7HR4ANzYmIKth2S9w77F7GrFrvDtb3CwuvW_GN5BguBH0WDSEAC3PmB4NtD34BLeWxP8kz4C1nX04fAv5gBhVO2nzs_oY6v7CF_e5gLdX2_u1t-z7c-bH-vLbWZywlNWN7SUAgiQUuaUS1aKHIRgmslKGi4r4K2Urc7LgtZNrYtxA9EUFWWMkcrwBTo_5R6CfxwgJtX5IbixUrGCcSpyItio-nZSjUfHGKBVxiY93ZyCtr2iRE20VafeaKuJtjrRHt3Ff-5DsHsdXt71XZx8MAI4WggqGgvTQ2wAk1Tj7TsJfwGJH5_w
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_162343
crossref_primary_10_1007_s12613_022_2546_9
crossref_primary_10_1039_D1QM00364J
crossref_primary_10_1016_j_mser_2024_100838
crossref_primary_10_1016_j_synthmet_2022_117188
crossref_primary_10_1007_s40820_023_01247_7
crossref_primary_10_1016_j_carbon_2023_03_044
crossref_primary_10_1016_j_jallcom_2022_166349
crossref_primary_10_1016_j_jallcom_2025_183164
crossref_primary_10_1002_adfm_202513762
crossref_primary_10_1016_j_jallcom_2023_169733
crossref_primary_10_1016_j_cej_2024_152041
crossref_primary_10_1016_j_ceramint_2021_10_049
crossref_primary_10_1016_j_jcis_2023_06_041
crossref_primary_10_1016_j_cap_2022_01_002
crossref_primary_10_1016_j_mtphys_2023_101291
crossref_primary_10_1016_j_ijhydene_2025_06_043
crossref_primary_10_1016_j_jallcom_2024_173768
crossref_primary_10_1016_j_carbon_2022_12_050
crossref_primary_10_1007_s10853_021_06394_z
crossref_primary_10_1016_j_jcis_2024_07_255
crossref_primary_10_1007_s12598_024_03013_z
crossref_primary_10_1002_pssa_202300903
crossref_primary_10_1088_1674_4926_43_4_041103
crossref_primary_10_1002_smll_202205853
crossref_primary_10_1016_j_foodchem_2024_140939
crossref_primary_10_1016_j_jallcom_2022_164974
crossref_primary_10_1002_gch2_202100120
crossref_primary_10_1007_s42114_023_00643_2
crossref_primary_10_3390_mi13111837
crossref_primary_10_1002_smll_202306233
crossref_primary_10_1016_j_surfin_2023_103237
crossref_primary_10_1039_D5TC02357B
crossref_primary_10_1016_j_jallcom_2022_165740
crossref_primary_10_1002_adfm_202409923
crossref_primary_10_1002_adfm_202420702
crossref_primary_10_1016_j_cej_2023_143518
crossref_primary_10_1002_smll_202306915
crossref_primary_10_1016_j_cej_2024_155785
crossref_primary_10_1007_s10853_022_07202_y
crossref_primary_10_1016_j_colsurfa_2024_135964
crossref_primary_10_1016_j_carbon_2022_03_029
crossref_primary_10_1016_j_mtsust_2025_101190
crossref_primary_10_1002_adma_202106195
crossref_primary_10_1088_1402_4896_acbdc4
crossref_primary_10_1016_j_apsusc_2024_160959
crossref_primary_10_1088_2515_7655_ac9f6b
crossref_primary_10_1016_j_cej_2022_137260
crossref_primary_10_1002_smll_202407563
crossref_primary_10_1039_D2NR06162G
crossref_primary_10_1016_j_jallcom_2022_166088
crossref_primary_10_1016_j_coco_2024_101954
crossref_primary_10_1016_j_jcis_2023_06_061
crossref_primary_10_1016_j_jallcom_2022_167250
crossref_primary_10_1016_j_mtcomm_2023_107862
crossref_primary_10_26599_JAC_2024_9220977
crossref_primary_10_1016_j_materresbull_2024_112829
crossref_primary_10_1016_j_apsusc_2023_157355
crossref_primary_10_1007_s12613_023_2707_5
crossref_primary_10_1080_10408436_2021_1965954
crossref_primary_10_1016_j_bioactmat_2023_08_005
crossref_primary_10_1016_j_jallcom_2022_166253
crossref_primary_10_1016_j_jcis_2023_06_151
crossref_primary_10_1016_j_cej_2022_135855
crossref_primary_10_26599_NR_2025_94907594
crossref_primary_10_1007_s12274_023_6231_z
crossref_primary_10_1002_cey2_502
crossref_primary_10_1016_j_carbon_2023_118450
crossref_primary_10_1016_j_cej_2022_136903
crossref_primary_10_1016_j_jcis_2024_11_205
crossref_primary_10_1007_s12274_023_5509_1
crossref_primary_10_1016_j_compscitech_2021_109143
crossref_primary_10_1016_j_diamond_2023_110724
Cites_doi 10.1016/j.pnsc.2020.06.001
10.1039/C7RA03260A
10.1016/j.cej.2019.122625
10.1021/am508527s
10.1016/j.jallcom.2020.154251
10.1016/j.cej.2019.123099
10.1021/acsami.9b11861
10.1021/acsami.9b07294
10.1021/nl402278y
10.1021/acsami.8b00709
10.1021/acsami.5b08410
10.1039/C8TC02900H
10.1021/acsnano.0c03013
10.1088/1361-6528/aa9a2a
10.1021/acsami.0c00935
10.1016/j.apsusc.2019.05.058
10.1016/j.jallcom.2018.04.111
10.1002/adma.201702367
10.1039/C6TC05226F
10.1002/adma.201102306
10.1016/j.carbon.2019.07.049
10.1016/j.apsusc.2018.08.152
10.1021/acsami.8b03610
10.1021/nn304630h
10.1007/s10853-020-04739-8
10.1016/j.electacta.2020.136211
10.1016/j.compositesb.2019.107577
10.1016/j.ceramint.2017.05.082
10.1016/j.carbon.2019.10.009
10.1039/C9NR07331K
10.1021/acsami.7b04602
10.1039/D0NR03528A
10.1039/C6TC02006B
10.1016/j.compositesa.2018.10.014
10.1021/acsami.0c01998
10.1016/j.compositesb.2020.108263
10.1039/C5NR04670J
10.1039/C8QM00436F
10.1039/C9NR02667C
10.1016/j.jmmm.2019.165639
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jul 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 15, 2021
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2021.159365
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2021_159365
S0925838821007738
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
T9H
WUQ
~HD
8BQ
8FD
JG9
ID FETCH-LOGICAL-c403t-bd1796e0e07941392764e662a2989c398e3f99fa4751bdba5a47e6d58122208c3
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638274800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-8388
IngestDate Sun Nov 09 08:54:00 EST 2025
Sat Nov 29 07:16:35 EST 2025
Tue Nov 18 22:18:50 EST 2025
Fri Feb 23 02:44:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterostructure
Microwave absorption
Synergistic effect
2D materials
MXene
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-bd1796e0e07941392764e662a2989c398e3f99fa4751bdba5a47e6d58122208c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2523164062
PQPubID 2045454
ParticipantIDs proquest_journals_2523164062
crossref_citationtrail_10_1016_j_jallcom_2021_159365
crossref_primary_10_1016_j_jallcom_2021_159365
elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_159365
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Zhang, You, Pei, Zeng, Han, Li, Cao, Liu, Che (bib8) 2020; 12
Liang, Zhang, Liu, Tang, Zhang, Ji (bib28) 2016; 4
He, Cao, Cai, Shu, Cao, Yuan (bib3) 2020; 157
Deng, Chen, Li, Zhang, Zhang, Yu, Song (bib15) 2019; 488
Wang, Li, Li, Lin, Ding, Zhu, Sheng, Wang, Zhu, Sun (bib27) 2020; 30
Wang, Yu, Li, Zhang, Wang, Che (bib33) 2019; 155
Xie, Jia, Zhuo, Lu, Si, Huang, Zhang, Ma (bib12) 2019; 11
Luo, Zhang, Cheng, Gu, Sun (bib21) 2020; 380
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib10) 2011; 23
Wang, Liu, Lv, Cui, Gu (bib36) 2020; 828
Sreeprasad, Nguyen, Kim, Berry (bib25) 2013; 13
Wang, Chen, Yin, Xu, Wu, He (bib26) 2015; 7
Liu, Cao, Zhao, Bi, Wang, Wu, Che (bib41) 2015; 7
Liu, Zhang, Yan, Li, Zhu, Zhang, Chen (bib22) 2018; 10
Mu, Song, Wang, Zhang, Xiang, Wen, Liu (bib24) 2018; 29
Dai, Wu, Liu, Zhang, Yu (bib37) 2020; 200
Ning, Lu, Li, Chen, Dou, Wang, Rehman, Cao, Jin (bib34) 2015; 7
Jiang, Xie, Chen, Liu, Yang, Sui (bib38) 2018; 6
Li, Wang, You, Xing, Yang, Yu, Zhang, Li, Che (bib30) 2019; 11
Zhang, Zhang, Wu, Yan, Qi (bib35) 2018; 751
Li, Yin, Han, Song, Xu, Hou, Zhang, Cheng (bib16) 2017; 5
Liu, Zhang, Sun, Liu, Liu, Zhou, Yu (bib1) 2017; 29
Liang, Han, Li, Zhao, Zhou, Feng, Ma, Wang, Zhang, Liu (bib9) 2019; 11
Qiu, Wang, Jiang, Zhang, Gu, Wang, Gao, Zhu, Wu (bib2) 2020; 12
Liu, Yao, Ng, Zhou, Kong, Yue (bib14) 2018; 115
Cao, Ren, Xiong, Pan, Wang, Ji, Qiu, Yang, Zhang (bib18) 2020; 348
Li, You, Wang, Liu, Wu, Pei, Li, Che (bib6) 2019; 11
Wang, Li, Zhou, Jiang (bib7) 2020; 14
Zhang, Wang, Wang, Li, Guo, Zhu, Liu, Yin (bib23) 2017; 7
Wang, Yu, Li, Zhang, Wang, Che (bib32) 2020; 383
Qian, Wei, Dong, Du, Fang, Zheng, Sun, Jiang (bib39) 2017; 43
Cui, Wang, Li, Xie, Gu (bib17) 2020; 30
Liu, Zhang, Su, Xu, Li (bib4) 2020; 55
Han, Yin, Li, Anasori, Zhang, Cheng, Gogotsi (bib13) 2017; 9
Guo, Wang, You, Yang, Li, Chen, Wu, Qian, Wang, Che (bib31) 2020; 12
Feng, Luo, Zeng, Chen, Deng, Tan, Zhou, Peng, Zhang (bib11) 2018; 2
Hou, Wang, Ma, Feng, Huang, Zhang, Jia, Tan, Cao, Wu (bib19) 2020; 180
Zhang, Chai, Cheng, Jia, Yang, Wang, Zhao, Han, Shan, Zhang, Zheng, Cao (bib20) 2018; 462
He, Shan, Yan, Luo, Cao, Peng (bib5) 2019; 492
Wang, Gao, Tang, Chen, Duan, Zhao, Lin, Feng, Zhou, Qin (bib29) 2012; 6
You, Che (bib40) 2018; 10
Jiang (10.1016/j.jallcom.2021.159365_bib38) 2018; 6
Liu (10.1016/j.jallcom.2021.159365_bib4) 2020; 55
Cui (10.1016/j.jallcom.2021.159365_bib17) 2020; 30
Dai (10.1016/j.jallcom.2021.159365_bib37) 2020; 200
Zhang (10.1016/j.jallcom.2021.159365_bib23) 2017; 7
He (10.1016/j.jallcom.2021.159365_bib3) 2020; 157
Han (10.1016/j.jallcom.2021.159365_bib13) 2017; 9
Cao (10.1016/j.jallcom.2021.159365_bib18) 2020; 348
Xie (10.1016/j.jallcom.2021.159365_bib12) 2019; 11
Liu (10.1016/j.jallcom.2021.159365_bib14) 2018; 115
Liu (10.1016/j.jallcom.2021.159365_bib1) 2017; 29
Luo (10.1016/j.jallcom.2021.159365_bib21) 2020; 380
Wang (10.1016/j.jallcom.2021.159365_bib26) 2015; 7
Feng (10.1016/j.jallcom.2021.159365_bib11) 2018; 2
Wang (10.1016/j.jallcom.2021.159365_bib27) 2020; 30
Wang (10.1016/j.jallcom.2021.159365_bib36) 2020; 828
Li (10.1016/j.jallcom.2021.159365_bib6) 2019; 11
Guo (10.1016/j.jallcom.2021.159365_bib31) 2020; 12
Wang (10.1016/j.jallcom.2021.159365_bib7) 2020; 14
Li (10.1016/j.jallcom.2021.159365_bib30) 2019; 11
Deng (10.1016/j.jallcom.2021.159365_bib15) 2019; 488
Qiu (10.1016/j.jallcom.2021.159365_bib2) 2020; 12
Liang (10.1016/j.jallcom.2021.159365_bib9) 2019; 11
Li (10.1016/j.jallcom.2021.159365_bib16) 2017; 5
Wang (10.1016/j.jallcom.2021.159365_bib32) 2020; 383
Liu (10.1016/j.jallcom.2021.159365_bib41) 2015; 7
Zhang (10.1016/j.jallcom.2021.159365_bib20) 2018; 462
Sreeprasad (10.1016/j.jallcom.2021.159365_bib25) 2013; 13
Wang (10.1016/j.jallcom.2021.159365_bib33) 2019; 155
Zhang (10.1016/j.jallcom.2021.159365_bib35) 2018; 751
Wang (10.1016/j.jallcom.2021.159365_bib29) 2012; 6
You (10.1016/j.jallcom.2021.159365_bib40) 2018; 10
He (10.1016/j.jallcom.2021.159365_bib5) 2019; 492
Naguib (10.1016/j.jallcom.2021.159365_bib10) 2011; 23
Hou (10.1016/j.jallcom.2021.159365_bib19) 2020; 180
Liang (10.1016/j.jallcom.2021.159365_bib28) 2016; 4
Ning (10.1016/j.jallcom.2021.159365_bib34) 2015; 7
Mu (10.1016/j.jallcom.2021.159365_bib24) 2018; 29
Qian (10.1016/j.jallcom.2021.159365_bib39) 2017; 43
Liu (10.1016/j.jallcom.2021.159365_bib22) 2018; 10
Li (10.1016/j.jallcom.2021.159365_bib8) 2020; 12
References_xml – volume: 488
  start-page: 921
  year: 2019
  end-page: 930
  ident: bib15
  article-title: MXene/Co
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 11009
  year: 2012
  end-page: 11017
  ident: bib29
  article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition
  publication-title: ACS Nano
– volume: 7
  start-page: 4233
  year: 2015
  end-page: 4240
  ident: bib41
  article-title: Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography
  publication-title: ACS Appl. Mater. Interfaces
– volume: 155
  start-page: 298
  year: 2019
  end-page: 308
  ident: bib33
  article-title: Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe
  publication-title: Carbon
– volume: 30
  year: 2020
  ident: bib27
  article-title: 2D/2D 1T‐MoS
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 16831
  year: 2020
  end-page: 16840
  ident: bib31
  article-title: Engineering phase transformation of MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 380
  year: 2020
  ident: bib21
  article-title: MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption
  publication-title: Chem. Eng. J.
– volume: 180
  year: 2020
  ident: bib19
  article-title: Preparation of two-dimensional titanium carbide (Ti
  publication-title: Compos. Part B Eng.
– volume: 10
  start-page: 14108
  year: 2018
  end-page: 14115
  ident: bib22
  article-title: Three-Dimensional hierarchical MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 371
  year: 2018
  end-page: 382
  ident: bib14
  article-title: Facile synthesis of ultrasmall Fe
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 200
  year: 2020
  ident: bib37
  article-title: Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption
  publication-title: Compos. Part B Eng.
– volume: 383
  year: 2020
  ident: bib32
  article-title: MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption
  publication-title: Chem. Eng. J.
– volume: 751
  start-page: 34
  year: 2018
  end-page: 42
  ident: bib35
  article-title: Impact of morphology and dielectric property on the microwave absorbing performance of MoS
  publication-title: J. Alloy. Compd.
– volume: 12
  start-page: 18138
  year: 2020
  end-page: 18147
  ident: bib8
  article-title: Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method
  publication-title: ACS Appl. Mater. Interfaces
– volume: 348
  year: 2020
  ident: bib18
  article-title: Self-assembly of hierarchical Ti
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 26226
  year: 2015
  end-page: 26234
  ident: bib26
  article-title: Hybrid of MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 20038
  year: 2017
  end-page: 20045
  ident: bib13
  article-title: Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 17023671
  year: 2017
  end-page: 17023676
  ident: bib1
  article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding
  publication-title: Adv. Mater.
– volume: 7
  start-page: 15734
  year: 2015
  end-page: 15740
  ident: bib34
  article-title: Two-dimensional nanosheets of MoS
  publication-title: Nanoscale
– volume: 6
  start-page: 8679
  year: 2018
  end-page: 8687
  ident: bib38
  article-title: Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties
  publication-title: J. Mater. Chem. C
– volume: 29
  year: 2018
  ident: bib24
  article-title: Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption
  publication-title: Nanotechnology
– volume: 12
  start-page: 16678
  year: 2020
  end-page: 16684
  ident: bib2
  article-title: Rational design of MXene@TiO
  publication-title: Nanoscale
– volume: 55
  start-page: 10339
  year: 2020
  end-page: 10350
  ident: bib4
  article-title: Enhanced microwave absorption properties of Ti
  publication-title: J. Mater. Sci.
– volume: 462
  start-page: 872
  year: 2018
  end-page: 882
  ident: bib20
  article-title: Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 13269
  year: 2019
  end-page: 13281
  ident: bib30
  article-title: Enhanced polarization from flexible hierarchical MnO
  publication-title: Nanoscale
– volume: 2
  start-page: 2320
  year: 2018
  end-page: 2326
  ident: bib11
  article-title: Ni-modified Ti
  publication-title: Mater. Chem. Front.
– volume: 11
  start-page: 23382
  year: 2019
  end-page: 23391
  ident: bib12
  article-title: Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding
  publication-title: Nanoscale
– volume: 7
  start-page: 22454
  year: 2017
  end-page: 22460
  ident: bib23
  article-title: Facile synthesis of NiS
  publication-title: RSC Adv.
– volume: 828
  year: 2020
  ident: bib36
  article-title: Facile synthesis 3D porous MXene Ti
  publication-title: J. Alloy. Compd.
– volume: 5
  start-page: 4068
  year: 2017
  end-page: 4074
  ident: bib16
  article-title: Ti
  publication-title: J. Mater. Chem. C
– volume: 157
  start-page: 80
  year: 2020
  end-page: 89
  ident: bib3
  article-title: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding
  publication-title: Carbon
– volume: 11
  start-page: 44536
  year: 2019
  end-page: 44544
  ident: bib6
  article-title: Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 4434
  year: 2013
  end-page: 4441
  ident: bib25
  article-title: Controlled, defect-guided, metal-nanoparticle incorporation onto MoS
  publication-title: Nano Lett.
– volume: 10
  start-page: 15104
  year: 2018
  end-page: 15111
  ident: bib40
  article-title: Excellent NiO-Ni Nanoplate Microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 6816
  year: 2016
  end-page: 6821
  ident: bib28
  article-title: A simple hydrothermal process to grow MoS
  publication-title: J. Mater. Chem. C
– volume: 492
  year: 2019
  ident: bib5
  article-title: Magnetic FeCo nanoparticles-decorated Ti
  publication-title: J. Magn. Magn. Mater.
– volume: 30
  start-page: 343
  year: 2020
  end-page: 351
  ident: bib17
  article-title: Synthesis of CuS nanoparticles decorated Ti
  publication-title: Prog. Nat. Sci. Mater. Int.
– volume: 43
  start-page: 10757
  year: 2017
  end-page: 10762
  ident: bib39
  article-title: Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption
  publication-title: Ceram. Int.
– volume: 11
  start-page: 25399
  year: 2019
  end-page: 25409
  ident: bib9
  article-title: Promising Ti
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 8634
  year: 2020
  end-page: 8645
  ident: bib7
  article-title: Hierarchical Ti
  publication-title: ACS Nano
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: bib10
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti
  publication-title: Adv. Mater.
– volume: 30
  start-page: 343
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib17
  article-title: Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2020.06.001
– volume: 7
  start-page: 22454
  year: 2017
  ident: 10.1016/j.jallcom.2021.159365_bib23
  article-title: Facile synthesis of NiS2@MoS2 core–shell nanospheres for effective enhancement in microwave absorption
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03260A
– volume: 380
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib21
  article-title: MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122625
– volume: 7
  start-page: 4233
  year: 2015
  ident: 10.1016/j.jallcom.2021.159365_bib41
  article-title: Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508527s
– volume: 828
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib36
  article-title: Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.154251
– volume: 383
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib32
  article-title: MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123099
– volume: 11
  start-page: 44536
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib6
  article-title: Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11861
– volume: 11
  start-page: 25399
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib9
  article-title: Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07294
– volume: 13
  start-page: 4434
  year: 2013
  ident: 10.1016/j.jallcom.2021.159365_bib25
  article-title: Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties
  publication-title: Nano Lett.
  doi: 10.1021/nl402278y
– volume: 10
  start-page: 14108
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib22
  article-title: Three-Dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00709
– volume: 7
  start-page: 26226
  year: 2015
  ident: 10.1016/j.jallcom.2021.159365_bib26
  article-title: Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08410
– volume: 6
  start-page: 8679
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib38
  article-title: Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02900H
– volume: 14
  start-page: 8634
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib7
  article-title: Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03013
– volume: 29
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib24
  article-title: Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa9a2a
– volume: 12
  start-page: 18138
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib8
  article-title: Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00935
– volume: 488
  start-page: 921
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib15
  article-title: MXene/Co3O4 composite material: stable synthesis and its enhanced broadband microwave absorption
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.058
– volume: 751
  start-page: 34
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib35
  article-title: Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.04.111
– volume: 29
  start-page: 17023671
  year: 2017
  ident: 10.1016/j.jallcom.2021.159365_bib1
  article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702367
– volume: 5
  start-page: 4068
  year: 2017
  ident: 10.1016/j.jallcom.2021.159365_bib16
  article-title: Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05226F
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.jallcom.2021.159365_bib10
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 155
  start-page: 298
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib33
  article-title: Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.049
– volume: 462
  start-page: 872
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib20
  article-title: Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.152
– volume: 10
  start-page: 15104
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib40
  article-title: Excellent NiO-Ni Nanoplate Microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03610
– volume: 6
  start-page: 11009
  year: 2012
  ident: 10.1016/j.jallcom.2021.159365_bib29
  article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition
  publication-title: ACS Nano
  doi: 10.1021/nn304630h
– volume: 55
  start-page: 10339
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib4
  article-title: Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04739-8
– volume: 348
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib18
  article-title: Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136211
– volume: 180
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib19
  article-title: Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.107577
– volume: 43
  start-page: 10757
  year: 2017
  ident: 10.1016/j.jallcom.2021.159365_bib39
  article-title: Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.082
– volume: 157
  start-page: 80
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib3
  article-title: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.009
– volume: 11
  start-page: 23382
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib12
  article-title: Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding
  publication-title: Nanoscale
  doi: 10.1039/C9NR07331K
– volume: 9
  start-page: 20038
  year: 2017
  ident: 10.1016/j.jallcom.2021.159365_bib13
  article-title: Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04602
– volume: 12
  start-page: 16678
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib2
  article-title: Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries
  publication-title: Nanoscale
  doi: 10.1039/D0NR03528A
– volume: 4
  start-page: 6816
  year: 2016
  ident: 10.1016/j.jallcom.2021.159365_bib28
  article-title: A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02006B
– volume: 115
  start-page: 371
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib14
  article-title: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.10.014
– volume: 12
  start-page: 16831
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib31
  article-title: Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01998
– volume: 200
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib37
  article-title: Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2020.108263
– volume: 7
  start-page: 15734
  year: 2015
  ident: 10.1016/j.jallcom.2021.159365_bib34
  article-title: Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance
  publication-title: Nanoscale
  doi: 10.1039/C5NR04670J
– volume: 2
  start-page: 2320
  year: 2018
  ident: 10.1016/j.jallcom.2021.159365_bib11
  article-title: Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00436F
– volume: 11
  start-page: 13269
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib30
  article-title: Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption
  publication-title: Nanoscale
  doi: 10.1039/C9NR02667C
– volume: 30
  year: 2020
  ident: 10.1016/j.jallcom.2021.159365_bib27
  article-title: 2D/2D 1T‐MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance
  publication-title: Adv. Funct. Mater.
– volume: 492
  year: 2019
  ident: 10.1016/j.jallcom.2021.159365_bib5
  article-title: Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165639
SSID ssj0001931
Score 2.6072328
Snippet •2D/2D MXene/MoS2 heterostructure was successfully prepared by a facile hydrothermal method.•Visualizing charge distribution was firstly characterized at 2D...
The unique 2D/2D heterostructures can fully combine their respective 2D properties and exhibit enhanced performance due to its synergistic effect. However, how...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159365
SubjectTerms 2D materials
Charge density
Charge distribution
Confined spaces
Density distribution
Dielectric loss
Heterostructure
Heterostructures
Hydrothermal reactions
Microwave absorption
Molybdenum disulfide
MXene
MXenes
Performance enhancement
Substrates
Synergistic effect
Two dimensional materials
Title Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance
URI https://dx.doi.org/10.1016/j.jallcom.2021.159365
https://www.proquest.com/docview/2523164062
Volume 869
WOSCitedRecordID wos000638274800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKBwIeEBQQg4H8gHiZ0iXOl_M4ra0AdQVBh8KTlQ9HpBpJWdrSwX_iN3Id20k0bQweeInSVG7TnFP7-F5fH4RemnEWm1FqGYGbpIZDLW7EoAwMQjhNeWTD_C2rzSb82YyGYfC-1_ula2E2p35R0O02WP5XqOEagC1KZ_8B7uZD4QKcA-hwBNjh-FfAj4svMqu_yStRMfmjLqsVGyJxkY5pHK6ETCQjUaox2j8OuYhsTo7LjwS0IzzrUm4sK9IL9abg2zrCX6z2v4oVfN-FZ1EUV-WZ7HGWbfnBFWpX5PfPK11FtxRmTo2an9YrCsI8Kts8kVwLEOXn64Z5n1Voe5qv9HjbjXh_WOfbteK6CmMQS8RHZSGnjK019TWfujFK4hrUlr5_Qy57aOrbhuNJfxfdhVP1UnbC1qVDg4xSLIYL-MFioZC4iaElDA3ddizU-f_ZOzY5mU7ZfBzOXy2_GcKlTGTzlWXLDbRDfDegfbRz-GYcvm3GfpDDtUejvvG2Zuzg0m--Sg1d0AW12JnfR_cUbvhQsusB6vFigG4faXPAAbrb2cdygG7V64iT6iH6qdmHO-zDkn24yz5cZpiMDsgI19w7EMzDF5iHgVO4YR5umIdb5uEO8x6hk8l4fvTaUP4eRuKY9sqIUxgNPG5yEwYFmIkQ33O455FIuAIkdkC5nQVBFjm-a8VpHLlwxr3UBU1KiEkT-zHqF2XBnyAcpZwmqW96GczvOU9oQmJCU-JlAYmTLNhFjn7OLFGb3wsPllOmVzkumIKHCXiYhGcXDZtmS7n7y3UNqAaRKQkrpSkDGl7XdE-DzlR3UjHiwvzLA9FNnv757WfoTvuv2kN9QIo_RzeTzSqvzl4omv4GLd_LJQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+visualizing+charge+distribution+of+2D%2F2D+MXene%2FMoS2+heterostructure+for+excellent+microwave+absorption+performance&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Li%2C+Xiao&rft.au=Wen%2C+Caiyue&rft.au=Yang%2C+Liting&rft.au=Zhang%2C+Ruixuan&rft.date=2021-07-15&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=869&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2021.159365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon