Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning

In many domains of our daily life (e.g., agriculture, forestry, health, etc.), both laymen and experts need to classify entities into two binary classes (yes/no, good/bad, sufficient/insufficient, benign/malign, etc.). For many entities, this decision is difficult and we need another class called “m...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning and knowledge extraction Vol. 4; no. 4; pp. 924 - 953
Main Authors: Saranti, Anna, Hudec, Miroslav, Mináriková, Erika, Takáč, Zdenko, Großschedl, Udo, Koch, Christoph, Pfeifer, Bastian, Angerschmid, Alessa, Holzinger, Andreas
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2022
Subjects:
ISSN:2504-4990, 2504-4990
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In many domains of our daily life (e.g., agriculture, forestry, health, etc.), both laymen and experts need to classify entities into two binary classes (yes/no, good/bad, sufficient/insufficient, benign/malign, etc.). For many entities, this decision is difficult and we need another class called “maybe”, which contains a corresponding quantifiable tendency toward one of these two opposites. Human domain experts are often able to mark any entity, place it in a different class and adjust the position of the slope in the class. Moreover, they can often explain the classification space linguistically—depending on their individual domain experience and previous knowledge. We consider this human-in-the-loop extremely important and call our approach actionable explainable AI. Consequently, the parameters of the functions are adapted to these requirements and the solution is explained to the domain experts accordingly. Specifically, this paper contains three novelties going beyond the state-of-the-art: (1) A novel method for detecting the appropriate parameter range for the averaging function to treat the slope in the “maybe” class, along with a proposal for a better generalisation than the existing solution. (2) the insight that for a given problem, the family of t-norms and t-conorms covering the whole range of nilpotency is suitable because we need a clear “no” or “yes” not only for the borderline cases. Consequently, we adopted the Schweizer–Sklar family of t-norms or t-conorms in ordinal sums. (3) A new fuzzy quasi-dissimilarity function for classification into three classes: Main difference, irrelevant difference and partial difference. We conducted all of our experiments with real-world datasets.
AbstractList In many domains of our daily life (e.g., agriculture, forestry, health, etc.), both laymen and experts need to classify entities into two binary classes (yes/no, good/bad, sufficient/insufficient, benign/malign, etc.). For many entities, this decision is difficult and we need another class called “maybe”, which contains a corresponding quantifiable tendency toward one of these two opposites. Human domain experts are often able to mark any entity, place it in a different class and adjust the position of the slope in the class. Moreover, they can often explain the classification space linguistically—depending on their individual domain experience and previous knowledge. We consider this human-in-the-loop extremely important and call our approach actionable explainable AI. Consequently, the parameters of the functions are adapted to these requirements and the solution is explained to the domain experts accordingly. Specifically, this paper contains three novelties going beyond the state-of-the-art: (1) A novel method for detecting the appropriate parameter range for the averaging function to treat the slope in the “maybe” class, along with a proposal for a better generalisation than the existing solution. (2) the insight that for a given problem, the family of t-norms and t-conorms covering the whole range of nilpotency is suitable because we need a clear “no” or “yes” not only for the borderline cases. Consequently, we adopted the Schweizer–Sklar family of t-norms or t-conorms in ordinal sums. (3) A new fuzzy quasi-dissimilarity function for classification into three classes: Main difference, irrelevant difference and partial difference. We conducted all of our experiments with real-world datasets.
Audience Academic
Author Saranti, Anna
Mináriková, Erika
Holzinger, Andreas
Pfeifer, Bastian
Angerschmid, Alessa
Großschedl, Udo
Hudec, Miroslav
Koch, Christoph
Takáč, Zdenko
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0002-1085-8428
  surname: Saranti
  fullname: Saranti, Anna
– sequence: 2
  givenname: Miroslav
  orcidid: 0000-0002-2868-0322
  surname: Hudec
  fullname: Hudec, Miroslav
– sequence: 3
  givenname: Erika
  orcidid: 0000-0002-4230-2109
  surname: Mináriková
  fullname: Mináriková, Erika
– sequence: 4
  givenname: Zdenko
  orcidid: 0000-0003-0767-4756
  surname: Takáč
  fullname: Takáč, Zdenko
– sequence: 5
  givenname: Udo
  surname: Großschedl
  fullname: Großschedl, Udo
– sequence: 6
  givenname: Christoph
  surname: Koch
  fullname: Koch, Christoph
– sequence: 7
  givenname: Bastian
  orcidid: 0000-0001-7035-9535
  surname: Pfeifer
  fullname: Pfeifer, Bastian
– sequence: 8
  givenname: Alessa
  orcidid: 0000-0001-9209-6676
  surname: Angerschmid
  fullname: Angerschmid, Alessa
– sequence: 9
  givenname: Andreas
  orcidid: 0000-0002-6786-5194
  surname: Holzinger
  fullname: Holzinger, Andreas
BookMark eNptUs1u1DAQjlCRKKUnXsASFxDaYif2OuYWrVqItAgO5RxNnHHqJWsHxwvLG_Ux600QVAj54NH4-xl9nufZmfMOs-wlo1dFoei7PXxDTjmlXD7JznNB-YorRc8e1c-yy2naUUpzqTij_Dy7r3S03kE7ILk-jgPYpa5q8ro6VvWb96QiXwIklIYhQWA_puefNt6Rqu8D9nDik5uDm4UmYnwgVQdjtD-QbAaYJmsSd0aB68gtHuNhlkpuDv6SahcxjAHjPMAn0HfWIdkiBGdd_yJ7amCY8PL3fZF9vbm-3XxcbT9_qDfVdqU5LeKqVUJoLdYpBSZVq5lAgWtDUxcUa1HK3HQGTKlaBakULevKQhjBdStNmRcXWb3odh52zRjsHsKvxoNt5oYPfQMhhTFgg5p2WEjDS5Vz5Los1hw0YK5MXq4LmrReLVpj8N8POMVm5w_BpfGbXIq1LBRTJ8erBdVDErXO-JjyTqfDvdXpj41N_UoKlkvO2InwdiHo4KcpoPkzJqPNaRWaR6uQ0OwftLZxjj3Z2OG_nAf-cLqf
CitedBy_id crossref_primary_10_1016_j_ijhcs_2025_103444
crossref_primary_10_1016_j_ins_2023_119898
crossref_primary_10_3390_info14030164
crossref_primary_10_3390_s23073518
crossref_primary_10_1016_j_knosys_2023_110866
crossref_primary_10_1038_s41598_023_31807_1
crossref_primary_10_1002_widm_1554
crossref_primary_10_1145_3670685
crossref_primary_10_1016_j_ins_2023_119418
crossref_primary_10_3390_app14093911
crossref_primary_10_1007_s10044_025_01532_8
crossref_primary_10_1016_j_cogsys_2024_101243
crossref_primary_10_1080_00140139_2023_2243404
crossref_primary_10_1016_j_ijhcs_2023_103029
crossref_primary_10_1016_j_foreco_2023_121530
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_3389_fsysb_2023_1136999
crossref_primary_10_1016_j_artmed_2024_102770
Cites_doi 10.1109/ISCC.2017.8024530
10.1093/oso/9780198538493.001.0001
10.1109/CVPR.2016.90
10.1038/nature14236
10.1002/9781119256489
10.1007/BF00337288
10.1016/j.knosys.2021.107427
10.1038/nature21056
10.1007/s10489-018-1361-5
10.1371/journal.pone.0177544
10.1109/35.41401
10.1016/j.eswa.2012.07.032
10.1007/978-3-7908-1850-5
10.1109/MC.2021.3092610
10.1161/01.CIR.69.3.541
10.1016/j.inffus.2019.12.012
10.1259/bjr.20170545
10.1007/978-3-662-43505-2
10.3390/s22083043
10.1016/0002-9149(89)90524-9
10.1016/j.ins.2012.11.012
10.2140/pjm.1960.10.313
10.1109/FUZZ45933.2021.9494563
10.1016/j.patcog.2021.107899
10.1016/j.entcs.2009.07.045
10.1007/978-3-319-94463-0
10.1016/j.fss.2021.09.013
10.1016/j.clsr.2021.105587
10.1016/j.knosys.2021.106916
10.1145/3458652
10.3390/electronics10050593
10.1109/91.493904
10.1016/j.compbiomed.2022.105458
10.1145/3065386
10.1371/journal.pone.0130140
10.1007/978-3-031-04083-2_2
10.1016/0002-9149(72)90624-8
10.1016/j.inffus.2021.01.008
10.1186/s12859-015-0615-z
10.1016/0165-0114(92)90239-Z
10.1016/S1364-6613(99)01294-2
10.1007/978-3-7908-1796-6_11
10.1016/j.fss.2020.03.019
10.4018/jssci.2009010107
10.1016/j.patcog.2017.10.013
10.1007/978-3-031-14463-9_23
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/make4040047
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 953
ExternalDocumentID oai_doaj_org_article_ec0de37f48924e4c8364acae29f28630
A751274112
10_3390_make4040047
GeographicLocations Austria
GeographicLocations_xml – name: Austria
GroupedDBID AADQD
AAFWJ
AAYXX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-b955cc56004179bc15e5e6f055ca91be772fdfaf89b9a2fd5b1d835f54cb7f823
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902726900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-4990
IngestDate Fri Oct 03 12:50:34 EDT 2025
Fri Jul 25 22:05:20 EDT 2025
Tue Nov 04 18:08:05 EST 2025
Tue Nov 18 22:21:45 EST 2025
Sat Nov 29 07:17:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-b955cc56004179bc15e5e6f055ca91be772fdfaf89b9a2fd5b1d835f54cb7f823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9209-6676
0000-0002-6786-5194
0000-0001-7035-9535
0000-0002-1085-8428
0000-0002-2868-0322
0000-0002-4230-2109
0000-0003-0767-4756
OpenAccessLink https://doaj.org/article/ec0de37f48924e4c8364acae29f28630
PQID 2756739192
PQPubID 5046881
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_ec0de37f48924e4c8364acae29f28630
proquest_journals_2756739192
gale_infotracacademiconefile_A751274112
crossref_primary_10_3390_make4040047
crossref_citationtrail_10_3390_make4040047
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Shehab (ref_11) 2022; 145
Hudec (ref_3) 2021; 220
ref_58
ref_13
Burt (ref_19) 2018; 91
Holzinger (ref_30) 2019; 49
ref_12
ref_56
ref_55
Patricia (ref_2) 2021; 17
ref_10
ref_54
Kohonen (ref_32) 1982; 43
ref_53
ref_52
ref_51
Esteva (ref_18) 2017; 542
Bartoszuk (ref_1) 2021; 231
ref_17
ref_15
ref_59
Detrano (ref_62) 1989; 64
Detrano (ref_64) 1984; 69
Wei (ref_6) 2021; 52
Uriz (ref_49) 2022; 441
Haq (ref_60) 2018; 2018
Stoeger (ref_23) 2021; 64
Holzinger (ref_24) 2021; 54
Nahar (ref_61) 2013; 40
ref_67
ref_22
French (ref_21) 1999; 3
Holzinger (ref_71) 2021; 71
ref_29
Yeom (ref_42) 2021; 115
ref_26
Holzinger (ref_14) 2022; 130
ref_72
Durante (ref_44) 2005; 41
ref_70
Couso (ref_27) 2013; 229
Lippmann (ref_31) 1989; 27
Bustince (ref_28) 2021; 414
ref_36
Mnih (ref_57) 2015; 518
ref_35
ref_34
Krizhevsky (ref_16) 2017; 60
ref_33
Abdar (ref_66) 2015; 8
Bedregal (ref_25) 2009; 247
ref_73
Schweizer (ref_46) 1960; 10
ref_39
Kannel (ref_63) 1972; 29
Arrieta (ref_7) 2020; 58
ref_37
Alber (ref_41) 2019; 20
Sojka (ref_68) 2020; 31
Kacprzyk (ref_69) 2009; 1
ref_47
ref_45
Mesquita (ref_65) 1996; 15
ref_43
ref_40
Gu (ref_38) 2018; 77
Liu (ref_48) 1992; 52
ref_9
ref_8
Zadeh (ref_4) 1996; 4
ref_5
Stoeger (ref_20) 2021; 42
References_xml – ident: ref_59
  doi: 10.1109/ISCC.2017.8024530
– ident: ref_33
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref_37
  doi: 10.1109/CVPR.2016.90
– ident: ref_5
– ident: ref_55
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_57
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref_51
– ident: ref_45
  doi: 10.1002/9781119256489
– volume: 43
  start-page: 59
  year: 1982
  ident: ref_32
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00337288
– volume: 231
  start-page: 107427
  year: 2021
  ident: ref_1
  article-title: T-norms or t-conorms? How to aggregate similarity degrees for plagiarism detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107427
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_18
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 49
  start-page: 2401
  year: 2019
  ident: ref_30
  article-title: Interactive machine learning: Experimental evidence for the human in the algorithmic loop
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1361-5
– ident: ref_39
– ident: ref_17
  doi: 10.1371/journal.pone.0177544
– volume: 27
  start-page: 47
  year: 1989
  ident: ref_31
  article-title: Pattern classification using neural networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/35.41401
– volume: 40
  start-page: 96
  year: 2013
  ident: ref_61
  article-title: Computational intelligence for heart disease diagnosis: A medical knowledge driven approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.032
– ident: ref_35
– ident: ref_29
  doi: 10.1007/978-3-7908-1850-5
– volume: 54
  start-page: 78
  year: 2021
  ident: ref_24
  article-title: Toward Human-AI Interfaces to Support Explainability and Causability in Medical AI
  publication-title: IEEE Comput.
  doi: 10.1109/MC.2021.3092610
– volume: 17
  start-page: 15
  year: 2021
  ident: ref_2
  article-title: Optimal design of type-2 fuzzy systems for diabetes classification based on genetic algorithms
  publication-title: Int. J. Hybrid Intell. Syst.
– ident: ref_58
– volume: 69
  start-page: 541
  year: 1984
  ident: ref_64
  article-title: Bayesian probability analysis: A prospective demonstration of its clinical utility in diagnosing coronary disease
  publication-title: Circulation
  doi: 10.1161/01.CIR.69.3.541
– volume: 58
  start-page: 82
  year: 2020
  ident: ref_7
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 91
  start-page: 20170545
  year: 2018
  ident: ref_19
  article-title: Deep learning beyond cats and dogs: Recent advances in diagnosing breast cancer with deep neural networks
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20170545
– ident: ref_26
  doi: 10.1007/978-3-662-43505-2
– ident: ref_12
  doi: 10.3390/s22083043
– ident: ref_56
– volume: 64
  start-page: 304
  year: 1989
  ident: ref_62
  article-title: International application of a new probability algorithm for the diagnosis of coronary artery disease
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(89)90524-9
– ident: ref_52
– volume: 229
  start-page: 122
  year: 2013
  ident: ref_27
  article-title: Similarity and dissimilarity measures between fuzzy sets: A formal relational study
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.11.012
– volume: 15
  start-page: 139
  year: 1996
  ident: ref_65
  article-title: The maximum heart rate in the exercise test: The 220-age formula or Sheffield’s table?
  publication-title: Rev. Port. Cardiol. Orgao Of. Soc. Port. Cardiol. Port. J. Cardiol. Off. J. Port. Soc. Cardiol.
– volume: 52
  start-page: 6866
  year: 2021
  ident: ref_6
  article-title: Global fusion of multiple order relations and hesitant fuzzy decision analysis
  publication-title: Appl. Intell.
– ident: ref_72
– volume: 10
  start-page: 313
  year: 1960
  ident: ref_46
  article-title: Statistical metric spaces
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1960.10.313
– volume: 130
  start-page: 40
  year: 2022
  ident: ref_14
  article-title: Challenges in Artificial Intelligence for Smart Forestry
  publication-title: Eur. Res. Consort. Informatics Math. (ERCIM) News
– ident: ref_8
  doi: 10.1109/FUZZ45933.2021.9494563
– volume: 115
  start-page: 107899
  year: 2021
  ident: ref_42
  article-title: Pruning by explaining: A novel criterion for deep neural network pruning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107899
– volume: 247
  start-page: 5
  year: 2009
  ident: ref_25
  article-title: Xor-implications and E-implications: Classes of fuzzy implications based on fuzzy Xor
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2009.07.045
– ident: ref_53
– ident: ref_36
  doi: 10.1007/978-3-319-94463-0
– volume: 441
  start-page: 169
  year: 2022
  ident: ref_49
  article-title: Discrete IV dG-Choquet integrals with respect to admissible orders
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2021.09.013
– volume: 42
  start-page: 105587
  year: 2021
  ident: ref_20
  article-title: Legal aspects of data cleansing in medical AI
  publication-title: Comput. Law Secur. Rev.
  doi: 10.1016/j.clsr.2021.105587
– ident: ref_34
– ident: ref_47
– volume: 8
  start-page: 31
  year: 2015
  ident: ref_66
  article-title: Using decision trees in data mining for predicting factors influencing of heart disease
  publication-title: Carpathian J. Electron. Comput. Eng.
– volume: 220
  start-page: 106916
  year: 2021
  ident: ref_3
  article-title: Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106916
– volume: 64
  start-page: 34
  year: 2021
  ident: ref_23
  article-title: Medical Artificial Intelligence: The European Legal Perspective
  publication-title: Commun. ACM
  doi: 10.1145/3458652
– ident: ref_67
– ident: ref_9
  doi: 10.3390/electronics10050593
– volume: 4
  start-page: 103
  year: 1996
  ident: ref_4
  article-title: Fuzzy logic = computing with words
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.493904
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_41
  article-title: iNNvestigate neural networks!
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: 41
  start-page: 315
  year: 2005
  ident: ref_44
  article-title: Semicopulae
  publication-title: Kybernetika
– ident: ref_73
– volume: 145
  start-page: 105458
  year: 2022
  ident: ref_11
  article-title: Machine learning in medical applications: A review of state-of-the-art methods
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105458
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_16
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_40
  doi: 10.1371/journal.pone.0130140
– ident: ref_10
  doi: 10.1007/978-3-031-04083-2_2
– ident: ref_50
– volume: 29
  start-page: 154
  year: 1972
  ident: ref_63
  article-title: Natural history of angina pectoris in the Framingham study: Prognosis and survival
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(72)90624-8
– ident: ref_54
– volume: 31
  start-page: 841
  year: 2020
  ident: ref_68
  article-title: Linguistic Summaries in Evaluating Elementary Conditions, Summarizing Data and Managing Nested Queries
  publication-title: Informatica
– volume: 71
  start-page: 28
  year: 2021
  ident: ref_71
  article-title: Towards Multi-Modal Causability with Graph Neural Networks enabling Information Fusion for explainable AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.01.008
– ident: ref_70
  doi: 10.1186/s12859-015-0615-z
– volume: 52
  start-page: 305
  year: 1992
  ident: ref_48
  article-title: Entropy, distance measure and similarity measure of fuzzy sets and their relations
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(92)90239-Z
– ident: ref_15
– volume: 3
  start-page: 128
  year: 1999
  ident: ref_21
  article-title: Catastrophic forgetting in connectionist networks
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(99)01294-2
– volume: 2018
  start-page: 3860146
  year: 2018
  ident: ref_60
  article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms
  publication-title: Mob. Inf. Syst.
– ident: ref_43
  doi: 10.1007/978-3-7908-1796-6_11
– volume: 414
  start-page: 1
  year: 2021
  ident: ref_28
  article-title: d-Choquet integrals: Choquet integrals based on dissimilarities
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2020.03.019
– volume: 1
  start-page: 100
  year: 2009
  ident: ref_69
  article-title: Protoforms of linguistic database summaries as a human consistent tool for using natural language in data mining
  publication-title: Int. J. Softw. Sci. Comput. Intell.
  doi: 10.4018/jssci.2009010107
– ident: ref_22
– volume: 77
  start-page: 354
  year: 2018
  ident: ref_38
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref_13
  doi: 10.1007/978-3-031-14463-9_23
SSID ssj0002794104
Score 2.3447175
Snippet In many domains of our daily life (e.g., agriculture, forestry, health, etc.), both laymen and experts need to classify entities into two binary classes...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 924
SubjectTerms actionable explainable AI
aggregation functions
Artificial intelligence
Classification
continuous XOR-problem
Decision making
Domains
Electronic data processing
Explainable artificial intelligence
Fuzzy algorithms
Fuzzy logic
Fuzzy sets
Fuzzy systems
interpretable machine learning
Linguistics
Machine learning
Methods
Neural networks
Norms
ordinal sums
Parameters
Subject specialists
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LjxMxDI5g4cCFhwBRWFAOK_GQop08ZibDBQVExQpYcVjQ3qI8KwS0pe0ifhI_EzuTdkECLtxGGbeTyl8d22N_JuRAp8CFk5LpmANTMrTM68hZTsGFhsecy_yUD2_642N9ejq8qwm3dS2r3NrEYqjjImCO_BBpyns5gEPybPmV4dQofLtaR2hcJJe4EBxx_rpnuxyLALBBuDG25UmI7g-_uE9JFdz2vx1Eha__b1a5HDXTa_-7yevkanUyqRlRcYNcSPOb5IcpLQzYKkWx8q62TVFzRB-Z7-bo8VNq6EhfBHoDEYfEwRQTtdTMICyfFSXSKZyEBawU_F1qoluixaRluibWHY1Sbh7pCRj-s_JV8LQx6zh-6LzSETfwttRzJlqpXme3yPvpy5MXr1id08CCauSG-aFtQ0DXCceZ-cDb1KYuN7DqBu4TOPA5Zpf14AcHl63nERy_3Krg-6yFvE325ot5ukOoV6kH-eQ7nSBwh_C5cZ1PYvAanuDUhDzZKs2GSmKOszQ-WwhmUMP2Fw1PyMFOeDlyd_xZ7DlqfyeChNtlYbGa2fr_tSk0Mck-Kw0Ba1JBy0654GBnWehONhPyELFj0SzAhgDoY3cD_Cwk2LKmB88KvDcuJmR_ix1b7cXangPn7r9v3yNXBDZglIKafbK3WZ2l--Ry-Lb5uF49KPD_CU2_Evc
  priority: 102
  providerName: ProQuest
Title Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning
URI https://www.proquest.com/docview/2756739192
https://doaj.org/article/ec0de37f48924e4c8364acae29f28630
Volume 4
WOSCitedRecordID wos000902726900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: K7-
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELbQ4IGXCQQThTH5YdIAKVoSO4nDm4dWUY1VEdqmwYtlO-dqA8q0ddN-Ej-TOzvbigTiZS9RlV4b13exvy-9-46xTQW-KK0QmeqDz6TwVeZUX2QBvPV50YcQ-6ccfWqmU3V83HZLrb4oJyzJA6eJ2waf9yCaIBUyBZBeiVpab6FsQ6lqEdk6op4lMnUa_05rJRKNVJAnkNdv_7DfQMaIbf7YgqJS_7_W47jJjJ-w1QEdcp1G9ZQ9gPkz9kvH2gOqceKUMjfUO3E94W_0tZ68fc81T7pDOOFoYknxl9MTVq5nyKdncfb5GLewGGUcgSrXvT2jpY7HtpiUMJSs7LznB7hiX8avwqulx4XpQ3cpijSA_ZiICXzQaJ09Z4fj3YMPH7OhwULmZS4WmWurynvCPNSHzPmiggrqkONZ2xYOEHmHPtigWtdafFm5okfEFirpXRNUKdbYyvznHF4w7iQ0aA-uVoCMG3lvbmuHXnIKr2DliL27mXPjB_VxaoLx3SALIQeZJQeN2Oat8VkS3fi72Q4579aElLLjCYwfM8SP-V_8jNgWud7Q_YwDwghNZQn4s0gZy-gGIRHCrqIcsfWb6DDDjX5hSD2_ES3i5Jf3MZpX7HFJ9RUxX2adrSzOL-E1e-SvFicX5xvs4c7utPu8EWMdj3tNhseu-orvdJP97stvFcsKVg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWCxJceAgQZRfwYREPKdokdhIHCaHwqLZqt-JQ0N6M7YyjFWxb2i6Pf8SJ38iMk3ZBAm574BY5k8RxPs-MnZlvGNtT4JLUCBGp2rtICpdFVtVJ5MEZFye196F-yrtRMR6ro6PyzRb7sc6FobDKtU4MirqeOdoj3yea8kKU6JA8n3-KqGoU_V1dl9BoYTGEb19wybZ8NniF3_dBmvZfT14eRF1VgcjJWKwiW2aZc2ToqfiWdUkGGeQ-xlZTJhbQ3fS1N16VtjR4mNmkRjfFZ9LZwisiOkCVf0EKVRBX_7CINns6KYIblzdtGqAQZbx_Yj6ADPOk-M3whfoAf7MCwbT1r_5vg3KNXemcaF61qL_OtmB6g32vQooGpYJxiizs0sJ4NeCPqq_V4PFTXvGWnglxiSKGiJE5bUTzqmkW0ASQ8j5a-jAZOfrzvKrNnCwCD9VDKa6qlTLTmk_QsJ2GW-HT2l3V9qKzSE7qwGGIVwXeUdk2N9nbcxmcW2x7OpvCbcathALlweYKZF4KJWKTW0hLq_AJRvbYkzVItOtI2qlWyEeNizVClP4FUT22txGet9wkfxZ7QWjbiBCheGiYLRrd6ScNLq5BFF4qXJCDdErk0jiDPfOpykXcYw8Jq5rUHnYIJ3KbvYGvRQRiuirQc0TvNEl7bHeNVd3pw6U-A-qdf5--zy4dTA5HejQYD3fY5ZSSTULw0C7bXi1O4S676D6vjpeLe2Hqcfb-vGH9E-zdcXg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWC0JceAgQhQV8WMRDiprETuIgIRRYKqou1R4WtDdjO-NoBbSl7fL4R_wGfh0zTtIFCbjtgVuVThLH-eZhZ-YbxnYVuCQ1QkSq9i6SwmWRVXUSeXDGxUntfeif8na_mE7V0VF5sMV-9LUwlFbZ28RgqOu5oz3yIdGUF6LEgGTou7SIg73Rs8WniDpI0ZfWvp1GC5EJfPuCy7fV0_Eevuv7aTp6efjiVdR1GIicjMU6smWWOUdOnxpxWZdkkEHuYzxqysQChp6-9sar0pYGf2Y2qTFk8Zl0tvCKSA_Q_J9DL5yRjk2KaLO_kyLQcanTlgQKUcbDj-Y9yKAzxW9OMPQK-JtHCG5udPl_nqAr7FIXXPOq1YarbAtm19j3KpRuUIkYp4zDrlyMV2P-sPpajR894RVvaZsQryhiiDCZ0wY1r5pmCU0ALx9hBBCUlGOcz6vaLMhT8NBVlPKtWikzq_khTspJuBTerd1tbU86zfCkAbwOeazAO4rb5jp7cyaTc4Ntz-YzuMm4lVCgPNhcgcxLoURscgtpaRXewcgBe9wDRruOvJ16iHzQuIgjdOlf0DVguxvhRctZ8mex54S8jQgRjYcD82WjO7ulwcU1iMJLhQt1kE6JXBpncGQ-VbmIB-wB4VaTOcQBoYK3VR34WEQspqsCI0qMWpN0wHZ63OrOTq70KWhv_fvve-wColnvj6eT2-xiSjUoIadoh22vlydwh513n9fHq-XdoIWcvTtrVP8EgP56Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actionable+Explainable+AI+%28AxAI%29%3A+A+Practical+Example+with+Aggregation+Functions+for+Adaptive+Classification+and+Textual+Explanations+for+Interpretable+Machine+Learning&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Anna+Saranti&rft.au=Miroslav+Hudec&rft.au=Erika+Min%C3%A1rikov%C3%A1&rft.au=Zdenko+Tak%C3%A1%C4%8D&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=4&rft.issue=4&rft.spage=924&rft.epage=953&rft_id=info:doi/10.3390%2Fmake4040047&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ec0de37f48924e4c8364acae29f28630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon