Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation
[Display omitted] •The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit voltage (VOC) up to 360 mV has been observed after introduction of NiOx HTL.•The influence of key defect parameters of the CsBi3I10 absorber an...
Uloženo v:
| Vydáno v: | Solar energy Ročník 226; s. 54 - 63 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
15.09.2021
Pergamon Press Inc |
| Témata: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit voltage (VOC) up to 360 mV has been observed after introduction of NiOx HTL.•The influence of key defect parameters of the CsBi3I10 absorber and CeOx/CsBi3I10 interface layer have been extensively studied.•Exploration of energy band alignment impact on the device performance.
Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this research, the performance of the CsBi3I10-based PSCs with different hole transport layers (HTLs) has been numerically analyzed. The open circuit voltage (VOC) has enhanced up to 360 mV after the addition of NiOx HTL in the heterostructure of the CsBi3I10-based PSC. A comprehensive numerical study of the role of band alignment, key defect parameters of the CsBi3I10 absorber layer, and CeOx/CsBi3I10 interface on the newly designed heterostructure (ITO/CeOx/CsBi3I10/NiOx/Au) performance of the CsBi3I10-based PSC has been conducted. A massive deterioration of the VOC has been initiated when defect concentration (Nt) of CsBi3I10 crosses above 1014 cm−3. Apart from the Nt, defect energy level within the bandgap (Et), and holes capture cross-section (σp) of the CsBi3I10 layer have also significantly affected the VOC loss. Besides, the investigation indicates that the device performance is almost independent of Et of the CeOx/CsBi3I10 interface and slightly decreases with the increase of Nt and σp. Finally, the photovoltaic performance of the PSC has been explored for various thickness and carrier concentration of the CsBi3I10, cerium oxide (CeOx), and nickel oxide (NiOx). Therefore, this research provides efficient guidelines for the fabrication of eco-friendly high-performance CsBi3I10-based PSCs. |
|---|---|
| AbstractList | Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this research, the performance of the CsBi3I10-based PSCs with different hole transport layers (HTLs) has been numerically analyzed. The open circuit voltage (VOC) has enhanced up to 360 mV after the addition of NiOx HTL in the heterostructure of the CsBi3I10-based PSC. A comprehensive numerical study of the role of band alignment, key defect parameters of the CsBi3I10 absorber layer, and CeOx/CsBi3I10 interface on the newly designed heterostructure (ITO/CeOx/CsBi3I10/NiOx/Au) performance of the CsBi3I10-based PSC has been conducted. A massive deterioration of the VOC has been initiated when defect concentration (Nt) of CsBi3I10 crosses above 1014 cm−3. Apart from the Nt, defect energy level within the bandgap (Et), and holes capture cross-section (σp) of the CsBi3I10 layer have also significantly affected the VOC loss. Besides, the investigation indicates that the device performance is almost independent of Et of the CeOx/CsBi3I10 interface and slightly decreases with the increase of Nt and σp. Finally, the photovoltaic performance of the PSC has been explored for various thickness and carrier concentration of the CsBi3I10, cerium oxide (CeOx), and nickel oxide (NiOx). Therefore, this research provides efficient guidelines for the fabrication of eco-friendly high-performance CsBi3I10-based PSCs. [Display omitted] •The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit voltage (VOC) up to 360 mV has been observed after introduction of NiOx HTL.•The influence of key defect parameters of the CsBi3I10 absorber and CeOx/CsBi3I10 interface layer have been extensively studied.•Exploration of energy band alignment impact on the device performance. Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this research, the performance of the CsBi3I10-based PSCs with different hole transport layers (HTLs) has been numerically analyzed. The open circuit voltage (VOC) has enhanced up to 360 mV after the addition of NiOx HTL in the heterostructure of the CsBi3I10-based PSC. A comprehensive numerical study of the role of band alignment, key defect parameters of the CsBi3I10 absorber layer, and CeOx/CsBi3I10 interface on the newly designed heterostructure (ITO/CeOx/CsBi3I10/NiOx/Au) performance of the CsBi3I10-based PSC has been conducted. A massive deterioration of the VOC has been initiated when defect concentration (Nt) of CsBi3I10 crosses above 1014 cm−3. Apart from the Nt, defect energy level within the bandgap (Et), and holes capture cross-section (σp) of the CsBi3I10 layer have also significantly affected the VOC loss. Besides, the investigation indicates that the device performance is almost independent of Et of the CeOx/CsBi3I10 interface and slightly decreases with the increase of Nt and σp. Finally, the photovoltaic performance of the PSC has been explored for various thickness and carrier concentration of the CsBi3I10, cerium oxide (CeOx), and nickel oxide (NiOx). Therefore, this research provides efficient guidelines for the fabrication of eco-friendly high-performance CsBi3I10-based PSCs. |
| Author | Aktar, Asma Islam, Ashraful Bakar Md. Ismail, Abu Ahmmed, Shamim Karim, Md. Abdul Rahman, Md. Hafijur Islam, Md. Rasidul |
| Author_xml | – sequence: 1 givenname: Shamim orcidid: 0000-0001-5847-2893 surname: Ahmmed fullname: Ahmmed, Shamim email: shamim.apee.ru@gmail.com organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh – sequence: 2 givenname: Md. Abdul surname: Karim fullname: Karim, Md. Abdul organization: Photovoltaic Materials Group, Center for Green Research on Energy and Environment Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan – sequence: 3 givenname: Md. Hafijur surname: Rahman fullname: Rahman, Md. Hafijur organization: Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh – sequence: 4 givenname: Asma orcidid: 0000-0002-7391-9849 surname: Aktar fullname: Aktar, Asma organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh – sequence: 5 givenname: Md. Rasidul surname: Islam fullname: Islam, Md. Rasidul organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China – sequence: 6 givenname: Ashraful surname: Islam fullname: Islam, Ashraful email: islam.ashraful@nims.go.jp organization: Photovoltaic Materials Group, Center for Green Research on Energy and Environment Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan – sequence: 7 givenname: Abu surname: Bakar Md. Ismail fullname: Bakar Md. Ismail, Abu email: ismail@ru.ac.bd organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh |
| BookMark | eNqFkE1LAzEQhoMoWD9-ghDwvDXZJM0uHkSLXyDoQcFbyCYTm5puarJb8N8brScvwgxzmPedj-cA7faxB4ROKJlSQmdny2mOAXpI05rUdEpkidkOmlAuaUVrIXfRhBDWVKStX_fRQc5LQqikjZygxRMkF9NK9waw7nX4zD7j6HAAbSuXAPA8X3l2T0nV6QwWryHFTX73A-CyVidsIAQ8LFIc3xalAu7HFSRvdMAlzRj04GN_hPacDhmOf-sherm5fp7fVQ-Pt_fzy4fKcMKGqhOSicZZaEXNO8NazjrLuGYUGie4pZ2UTnNeG8ptK1tpjCWmdhQ4M0JwdohOt3PXKX6MkAe1jGMqj2VVi4ZLKWeNLKrzrcqkmHMCp4wffu4ckvZBUaK-0aql-kWrvtEqIkvMilv8ca-TX-n0-a_vYuuDAmDjSzcbD4W89QnMoGz0_0z4Am7hmeQ |
| CitedBy_id | crossref_primary_10_1016_j_mtcomm_2025_112841 crossref_primary_10_35848_1347_4065_ad0ef3 crossref_primary_10_1002_chem_202300513 crossref_primary_10_1002_solr_202300984 crossref_primary_10_1016_j_solmat_2023_112426 crossref_primary_10_3390_photonics9010023 crossref_primary_10_1088_1402_4896_accb13 crossref_primary_10_1039_D2RA05957F crossref_primary_10_1016_j_jphotochem_2024_115763 crossref_primary_10_1016_j_jpcs_2025_112953 crossref_primary_10_1016_j_jpcs_2025_113008 crossref_primary_10_1016_j_optmat_2022_112678 crossref_primary_10_1039_D3RA06722J crossref_primary_10_1088_1402_4896_ad2824 crossref_primary_10_1016_j_optlastec_2024_111828 crossref_primary_10_3390_en16010236 crossref_primary_10_1007_s10800_023_02013_8 crossref_primary_10_1016_j_solener_2024_112761 crossref_primary_10_1016_j_electacta_2024_145559 crossref_primary_10_1002_solr_202500017 crossref_primary_10_1088_2053_1591_ad4fe0 crossref_primary_10_1088_1402_4896_ac9e25 crossref_primary_10_1016_j_solener_2025_113539 crossref_primary_10_1016_j_inoche_2025_114707 crossref_primary_10_1016_j_solmat_2025_113915 crossref_primary_10_1016_j_solener_2024_112843 crossref_primary_10_1002_bbb_70004 crossref_primary_10_1002_slct_202500573 crossref_primary_10_1002_adts_202401504 crossref_primary_10_1002_nano_70026 crossref_primary_10_1039_D5SE00296F crossref_primary_10_1088_1402_4896_ad0a27 |
| Cites_doi | 10.1016/j.matchemphys.2017.01.048 10.1021/acsomega.7b00538 10.1039/C9SE01041F 10.1016/j.solener.2020.12.020 10.1016/j.joule.2018.04.026 10.1038/s41563-018-0115-4 10.1021/jp412407j 10.1016/j.ijleo.2016.10.122 10.1021/acsenergylett.7b00236 10.1039/C6TA09493G 10.1016/j.solmat.2016.08.025 10.1039/D0NA00367K 10.1039/D0RA02583F 10.3390/app10093061 10.1016/j.nanoen.2018.08.031 10.1021/acs.jpcc.9b09617 10.1039/C6TA07541J 10.1016/j.spmi.2021.106830 10.1186/1556-276X-8-33 10.1088/1361-6439/ab1512 10.1016/j.solmat.2014.10.036 10.1016/j.vacuum.2018.10.033 10.1021/jz500370k 10.1039/D0TA02237C 10.1039/C7CC08657A 10.1016/j.solener.2020.07.003 10.1039/D0TA03511D 10.3938/jkps.57.1856 10.1002/adma.201803019 10.1021/acsnano.7b07754 10.1016/S0040-6090(99)00825-1 10.1007/s12034-007-0052-3 10.1038/s41598-021-82817-w 10.1063/1.4984320 10.1016/j.spmi.2017.04.007 10.1016/j.aca.2012.03.027 10.1039/C7TA03331A 10.3390/su12030788 10.1016/j.nanoen.2019.104186 10.1002/tcr.201600117 10.1039/D0SE00786B 10.1021/acsomega.1c00678 10.1021/jz500645n 10.1039/C9NJ03902C 10.3390/coatings9100622 10.1039/C9NR08441J 10.1038/s41598-019-41049-9 10.1038/s41598-019-56164-w 10.1021/acs.jpclett.6b01452 10.1021/acsaem.9b00856 10.1039/C7EE02415K 10.1002/advs.201700811 10.1039/C9TC02181G 10.1039/C6TA04949D 10.1016/j.solener.2015.07.040 10.1038/srep35705 10.1016/j.ijleo.2020.165625 |
| ContentType | Journal Article |
| Copyright | 2021 International Solar Energy Society Copyright Pergamon Press Inc. Sep 15, 2021 |
| Copyright_xml | – notice: 2021 International Solar Energy Society – notice: Copyright Pergamon Press Inc. Sep 15, 2021 |
| DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
| DOI | 10.1016/j.solener.2021.07.076 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 63 |
| ExternalDocumentID | 10_1016_j_solener_2021_07_076 S0038092X21006538 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC SEW UKR VOH WUQ XOL ZY4 ~A~ ~HD 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c403t-b57358fde9524bc3943bd34a31e8f54d1b77fa442c14d9797ccd0c2f1e43c5543 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696932800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Wed Nov 19 07:43:59 EST 2025 Tue Nov 18 22:42:15 EST 2025 Sat Nov 29 07:29:16 EST 2025 Fri Feb 23 02:37:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Defect energy level Defect concentration Perovskite solar cell Band offset Holes capture cross-section CsBi3I10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c403t-b57358fde9524bc3943bd34a31e8f54d1b77fa442c14d9797ccd0c2f1e43c5543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5847-2893 0000-0002-7391-9849 |
| PQID | 2584777687 |
| PQPubID | 9393 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2584777687 crossref_citationtrail_10_1016_j_solener_2021_07_076 crossref_primary_10_1016_j_solener_2021_07_076 elsevier_sciencedirect_doi_10_1016_j_solener_2021_07_076 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-15 |
| PublicationDateYYYYMMDD | 2021-09-15 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Solar energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Liu, Fan, Li, Zhang, Mai (b0170) 2016; 6 Tyagi, Tomar, Gupta (b0270) 2012; 726 Islam, Yanagida, Shirai, Nabetani, Miyano (b0110) 2017; 2 Shahiduzzaman, Sakuma, Kaneko, Tomita, Isomura, Taima, Umezu, Iwamori (b0240) 2019; 9 Song, Liu, Wang, Chen, Tian, Miyasaka (b0255) 2017; 5 Huang, Sun, Li, Xu, Xu, Du, Wu, Ni, Cai, Li, Hu, Zhang (b0105) 2016; 157 Casas, G.A., Cappelletti, M.A., Cédola, A.P., Soucase, B.M., Peltzer y Blancá, E.L., 2017. Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices Microstruct. 107, 136–143. Kim, Lee, Lee, Hong (b0140) 2014; 5 Fang, Wu, Chen, Liu, Zhang, Chen, Yue, Deng, Cheng, Han, Chen (b0075) 2018; 12 Mariyappan, Chowdhury, Subashchandran, Bedja, Ghaithan, Islam (b0180) 2020; 4 Tress, Yavari, Domanski, Yadav, Niesen, Correa Baena, Hagfeldt, Graetzel (b0265) 2018; 11 Xu, Yuan, Zhou, Liao, Chen, Chen (b0285) 2020; 8 Kanevce, Reese, Barnes, Jensen, Metzger (b0125) 2017; 121 Debnath, Islam, Khan (b0060) 2007; 30 Ganesan, Vinodhini, Balasubramani, Parthipan, Sridhar, Arulmozhi, Muralidharan (b0080) 2019; 43 Subbiah, Halder, Ghosh, Mahuli, Hodes, Sarkar (b0260) 2014; 5 Ahmmed, Aktar, Rahman, Hossain, Ismail (b0015) 2020; 223 Khadka, Shirai, Yanagida, Miyano (b0135) 2019; 7 Atowar Rahman (b0025) 2021; 215 Mani Menaka, Umadevi, Manickam (b0175) 2017; 191 Pandey, Saini, Chaujar (b0200) 2019; 159 Ahmmed, Aktar, Ismail (b0010) 2021; 6 Rajeswari, Mrinalini, Prasanthkumar, Giribabu (b0220) 2017; 17 Le Corre, Stolterfoht, Perdigón Toro, Feuerstein, Wolff, Gil-Escrig, Bolink, Neher, Koster (b0150) 2019; 2 Meloni, Palermo, Ashari-Astani, Grätzel, Rothlisberger (b0185) 2016; 4 Karimi, Ghorashi (b0130) 2017; 130 Ahmmed, Aktar, Hossain, Ismail (b0005) 2020; 207 Ding, Zhang, Liu, Kitabatake, Hayase, Toyoda, Yoshino, Minemoto, Katayama, Shen (b0065) 2018; 53 Li, He, Xu, Lu, Jiang, Zhu, Kan, Zhu, Wu (b0160) 2020; 12 Huang, Zhang, Zhang (b0100) 2019; 9 Johansson, Zhu, Johansson (b0115) 2016; 7 Chia-Ching, Cheng-Fu (b0050) 2013; 8 Minemoto, Murata (b0190) 2015; 133 Hu, Xiao, Yang, Chen, Chen (b0095) 2018; 54 Sahli, Werner, Kamino, Bräuninger, Monnard, Paviet-Salomon, Barraud, Ding, Diaz Leon, Sacchetto, Cattaneo, Despeisse, Boccard, Nicolay, Jeangros, Niesen, Ballif (b0225) 2018; 17 Son, Im, Kim, Park (b0250) 2014; 118 Głowienka, Zhang, Di Giacomo, Najafi, Veenstra, Szmytkowski, Galagan (b0085) 2020; 67 Ju, Chen, Zhou, Dai, Ma, Padture, Zeng (b0120) 2018; 2 Pandey, Singla, Madan, Sharma, Chaujar (b0205) 2019; 29 Hossain, Alharbi, Tabet (b0090) 2015; 120 Chen, Park (b0045) 2019; 31 Lee, Sarwar, Park, Asmat, Thuy, Han, Ahn, Jeong, Hong (b0155) 2020; 4 Wang, Deng, Wang, Dai, Xing, Zhan, Lu, Xie, Huang, Zheng (b0280) 2017; 5 Kurnia, Hadiyawarman, Jung, Liu, Lee, Yang, Park, Song, Hwang (b0145) 2010; 57 Yang, Xu, Zhang, Xue, Liu, Qin, Zhai, Yuan (b0290) 2020; 10 Pang, Li, Wei, Ruan, Yang, Chen (b0210) 2020; 2 Sebastia-Luna, Gélvez-Rueda, Dreessen, Sessolo, Grozema, Palazon, Bolink (b0230) 2020; 8 Wang, Bai, Tress, Hagfeldt, Gao (b0275) 2018; 2 Brakkee, Williams (b0030) 2020; 10 Sherkar, Momblona, Gil-Escrig, Ávila, Sessolo, Bolink, Koster (b0245) 2017; 2 Liang, Chen, Chen, Lan, Zheng, Fan, Tian, Duan, Wei, Su (b0165) 2019; 123 Nikolskaia, Vildanova, Kozlov, Tsvetkov, Larina, Shevaleevskiy (b0195) 2020; 12 Patel (b0215) 2021; 11 Eom, Kwon, Kalanur, Park, Seo (b0070) 2017; 5 Daškevičiū tė, Š., Sakai, N., Franckevičius, M., Daškevičienė, M., Magomedov, A., Jankauskas, V., Snaith, H.J., Getautis, V., 2018. Nonspiro, Fluorene-Based, Amorphous Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Adv. Sci. 5, 1700811. Ahmmed, S., Aktar, A., Tabassum, S., Rahman, M.H., Rahman, M.F., Md. Ismail, A.B., 2021b. CuO based solar cell with V2O5 BSF layer: Theoretical validation of experimental data. Superlattices Microstruct. 151, 106830. Seo, Tayal, Kim, Song, Chen, Hiroi, Katsuya, Ina, Sakata, Ikeya, Takano, Matsuda, Yoshimoto (b0235) 2019; 9 Burgelman, Nollet, Degrave (b0035) 2000; 361–362 Li (10.1016/j.solener.2021.07.076_b0160) 2020; 12 10.1016/j.solener.2021.07.076_b0055 Brakkee (10.1016/j.solener.2021.07.076_b0030) 2020; 10 Seo (10.1016/j.solener.2021.07.076_b0235) 2019; 9 Atowar Rahman (10.1016/j.solener.2021.07.076_b0025) 2021; 215 Wang (10.1016/j.solener.2021.07.076_b0275) 2018; 2 Huang (10.1016/j.solener.2021.07.076_b0105) 2016; 157 Khadka (10.1016/j.solener.2021.07.076_b0135) 2019; 7 Song (10.1016/j.solener.2021.07.076_b0255) 2017; 5 Głowienka (10.1016/j.solener.2021.07.076_b0085) 2020; 67 Hu (10.1016/j.solener.2021.07.076_b0095) 2018; 54 Islam (10.1016/j.solener.2021.07.076_b0110) 2017; 2 Fang (10.1016/j.solener.2021.07.076_b0075) 2018; 12 Sahli (10.1016/j.solener.2021.07.076_b0225) 2018; 17 Debnath (10.1016/j.solener.2021.07.076_b0060) 2007; 30 Ding (10.1016/j.solener.2021.07.076_b0065) 2018; 53 10.1016/j.solener.2021.07.076_b0020 Mariyappan (10.1016/j.solener.2021.07.076_b0180) 2020; 4 Tress (10.1016/j.solener.2021.07.076_b0265) 2018; 11 Liang (10.1016/j.solener.2021.07.076_b0165) 2019; 123 Le Corre (10.1016/j.solener.2021.07.076_b0150) 2019; 2 Ahmmed (10.1016/j.solener.2021.07.076_b0015) 2020; 223 Kim (10.1016/j.solener.2021.07.076_b0140) 2014; 5 Rajeswari (10.1016/j.solener.2021.07.076_b0220) 2017; 17 Chia-Ching (10.1016/j.solener.2021.07.076_b0050) 2013; 8 Hossain (10.1016/j.solener.2021.07.076_b0090) 2015; 120 Shahiduzzaman (10.1016/j.solener.2021.07.076_b0240) 2019; 9 Johansson (10.1016/j.solener.2021.07.076_b0115) 2016; 7 Ju (10.1016/j.solener.2021.07.076_b0120) 2018; 2 Ahmmed (10.1016/j.solener.2021.07.076_b0010) 2021; 6 Burgelman (10.1016/j.solener.2021.07.076_b0035) 2000; 361–362 Karimi (10.1016/j.solener.2021.07.076_b0130) 2017; 130 Subbiah (10.1016/j.solener.2021.07.076_b0260) 2014; 5 Wang (10.1016/j.solener.2021.07.076_b0280) 2017; 5 Minemoto (10.1016/j.solener.2021.07.076_b0190) 2015; 133 Liu (10.1016/j.solener.2021.07.076_b0170) 2016; 6 Kanevce (10.1016/j.solener.2021.07.076_b0125) 2017; 121 Lee (10.1016/j.solener.2021.07.076_b0155) 2020; 4 Eom (10.1016/j.solener.2021.07.076_b0070) 2017; 5 Ganesan (10.1016/j.solener.2021.07.076_b0080) 2019; 43 10.1016/j.solener.2021.07.076_b0040 Huang (10.1016/j.solener.2021.07.076_b0100) 2019; 9 Kurnia (10.1016/j.solener.2021.07.076_b0145) 2010; 57 Tyagi (10.1016/j.solener.2021.07.076_b0270) 2012; 726 Chen (10.1016/j.solener.2021.07.076_b0045) 2019; 31 Patel (10.1016/j.solener.2021.07.076_b0215) 2021; 11 Sebastia-Luna (10.1016/j.solener.2021.07.076_b0230) 2020; 8 Xu (10.1016/j.solener.2021.07.076_b0285) 2020; 8 Mani Menaka (10.1016/j.solener.2021.07.076_b0175) 2017; 191 Yang (10.1016/j.solener.2021.07.076_b0290) 2020; 10 Pandey (10.1016/j.solener.2021.07.076_b0205) 2019; 29 Meloni (10.1016/j.solener.2021.07.076_b0185) 2016; 4 Nikolskaia (10.1016/j.solener.2021.07.076_b0195) 2020; 12 Ahmmed (10.1016/j.solener.2021.07.076_b0005) 2020; 207 Son (10.1016/j.solener.2021.07.076_b0250) 2014; 118 Pandey (10.1016/j.solener.2021.07.076_b0200) 2019; 159 Sherkar (10.1016/j.solener.2021.07.076_b0245) 2017; 2 Pang (10.1016/j.solener.2021.07.076_b0210) 2020; 2 |
| References_xml | – volume: 31 start-page: 1803019 year: 2019 ident: b0045 article-title: Causes and solutions of recombination in perovskite solar cells publication-title: Adv. Mater. – reference: Casas, G.A., Cappelletti, M.A., Cédola, A.P., Soucase, B.M., Peltzer y Blancá, E.L., 2017. Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices Microstruct. 107, 136–143. – volume: 120 start-page: 370 year: 2015 end-page: 380 ident: b0090 article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells publication-title: Sol. Energy – volume: 726 start-page: 93 year: 2012 end-page: 101 ident: b0270 article-title: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor publication-title: Anal. Chim. Acta – volume: 2 start-page: 22 year: 2018 ident: b0275 article-title: Defects engineering for high-performance perovskite solar cells. npj Flex publication-title: Electron. – volume: 4 start-page: 3318 year: 2020 end-page: 3325 ident: b0155 article-title: Efficient defect passivation of perovskite solar cells via stitching of an organic bidentate molecule publication-title: Sustain. Energy Fuels – volume: 29 start-page: 64001 year: 2019 ident: b0205 article-title: Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study publication-title: J. Micromechanics Microengineering – volume: 9 start-page: 622 year: 2019 ident: b0100 article-title: Influence of film quality on power conversion efficiency in perovskite solar cells publication-title: Coatings – volume: 4 start-page: 5042 year: 2020 end-page: 5049 ident: b0180 article-title: Fabrication of lead-free CsBi publication-title: Sustain. Energy Fuels – volume: 30 start-page: 315 year: 2007 end-page: 319 ident: b0060 article-title: Optical properties of CeO publication-title: Bull. Mater. Sci. – volume: 10 start-page: 3061 year: 2020 ident: b0030 article-title: Minimizing defect states in lead halide perovskite solar cell materials publication-title: Appl. Sci. – volume: 12 start-page: 788 year: 2020 ident: b0195 article-title: Charge transfer in mixed-phase TiO publication-title: Sustainability – volume: 121 year: 2017 ident: b0125 article-title: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells publication-title: J. Appl. Phys. – volume: 57 start-page: 1856 year: 2010 end-page: 1861 ident: b0145 article-title: Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure publication-title: J. Korean Phys. Soc. – reference: Ahmmed, S., Aktar, A., Tabassum, S., Rahman, M.H., Rahman, M.F., Md. Ismail, A.B., 2021b. CuO based solar cell with V2O5 BSF layer: Theoretical validation of experimental data. Superlattices Microstruct. 151, 106830. – volume: 223 year: 2020 ident: b0015 article-title: A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO publication-title: Optik – volume: 361–362 start-page: 527 year: 2000 end-page: 532 ident: b0035 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films – volume: 9 start-page: 19494 year: 2019 ident: b0240 article-title: Oblique electrostatic inkjet-deposited TiO publication-title: Sci. Rep. – volume: 11 start-page: 3082 year: 2021 ident: b0215 article-title: Device simulation of highly efficient eco-friendly CH publication-title: Sci. Rep. – volume: 12 start-page: 2403 year: 2018 end-page: 2414 ident: b0075 article-title: [6,6]-phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells publication-title: ACS Nano – volume: 9 start-page: 4304 year: 2019 ident: b0235 article-title: Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe publication-title: Sci. Rep. – volume: 43 start-page: 15258 year: 2019 end-page: 15266 ident: b0080 article-title: Tuning the band gap of hybrid lead free defect perovskite nano crystals for solar cell applications publication-title: New J. Chem. – volume: 2 start-page: 4062 year: 2020 end-page: 4069 ident: b0210 article-title: UV–O publication-title: Nanoscale Adv. – volume: 6 start-page: 35705 year: 2016 ident: b0170 article-title: Highly efficient perovskite solar cells with substantial reduction of lead content publication-title: Sci. Rep. – volume: 8 start-page: 11478 year: 2020 end-page: 11492 ident: b0285 article-title: Hole transport layers for organic solar cells: recent progress and prospects publication-title: J. Mater. Chem. A – volume: 130 start-page: 650 year: 2017 end-page: 658 ident: b0130 article-title: Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells publication-title: Optik – volume: 53 start-page: 17 year: 2018 end-page: 26 ident: b0065 article-title: Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells publication-title: Nano Energy – volume: 123 start-page: 27423 year: 2019 end-page: 27428 ident: b0165 article-title: Inorganic and Pb-free CsBi publication-title: J. Phys. Chem. C – volume: 157 start-page: 1038 year: 2016 end-page: 1047 ident: b0105 article-title: Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 15670 year: 2020 end-page: 15674 ident: b0230 article-title: Potential and limitations of CsBi publication-title: J. Mater. Chem. A – volume: 54 start-page: 471 year: 2018 end-page: 474 ident: b0095 article-title: Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells publication-title: Chem. Commun. – volume: 5 start-page: 1748 year: 2014 end-page: 1753 ident: b0260 article-title: Inorganic hole conducting layers for perovskite-based solar cells publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 6280 year: 2019 end-page: 6287 ident: b0150 article-title: Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness publication-title: ACS Appl. Energy Mater. – volume: 215 start-page: 64 year: 2021 end-page: 76 ident: b0025 article-title: Enhancing the photovoltaic performance of Cd-free Cu publication-title: Sol. Energy – volume: 133 start-page: 8 year: 2015 end-page: 14 ident: b0190 article-title: Theoretical analysis on effect of band offsets in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 5 start-page: 1706 year: 2017 end-page: 1712 ident: b0280 article-title: Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature publication-title: J. Mater. Chem. A – volume: 118 start-page: 16567 year: 2014 end-page: 16573 ident: b0250 article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system publication-title: J. Phys. Chem. C – volume: 17 start-page: 820 year: 2018 end-page: 826 ident: b0225 article-title: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency publication-title: Nat. Mater. – volume: 12 start-page: 3686 year: 2020 end-page: 3691 ident: b0160 article-title: Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V publication-title: Nanoscale – volume: 191 start-page: 181 year: 2017 end-page: 187 ident: b0175 article-title: Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis publication-title: Mater. Chem. Phys. – volume: 11 start-page: 151 year: 2018 end-page: 165 ident: b0265 article-title: Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells publication-title: Energy Environ. Sci. – volume: 8 start-page: 1 year: 2013 end-page: 5 ident: b0050 article-title: Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method publication-title: Nanoscale Res. Lett. – volume: 159 start-page: 173 year: 2019 end-page: 181 ident: b0200 article-title: Numerical simulations: Toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL publication-title: Vacuum – volume: 207 start-page: 693 year: 2020 end-page: 702 ident: b0005 article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL publication-title: Sol. Energy – volume: 2 start-page: 2291 year: 2017 end-page: 2299 ident: b0110 article-title: NiO publication-title: ACS Omega – volume: 7 start-page: 3467 year: 2016 end-page: 3471 ident: b0115 article-title: Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 8335 year: 2019 end-page: 8343 ident: b0135 article-title: Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells publication-title: J. Mater. Chem. C – volume: 5 start-page: 2563 year: 2017 end-page: 2571 ident: b0070 article-title: Depth-resolved band alignments of perovskite solar cells with significant interfacial effects publication-title: J. Mater. Chem. A – volume: 4 start-page: 15997 year: 2016 end-page: 16002 ident: b0185 article-title: Valence and conduction band tuning in halide perovskites for solar cell applications publication-title: J. Mater. Chem. A – volume: 6 start-page: 12631 year: 2021 end-page: 12639 ident: b0010 article-title: Role of a solution-processed V publication-title: ACS Omega – volume: 5 start-page: 1312 year: 2014 end-page: 1317 ident: b0140 article-title: The role of intrinsic defects in methylammonium lead iodide perovskite publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 1214 year: 2017 end-page: 1222 ident: b0245 article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions publication-title: ACS Energy Lett. – volume: 67 year: 2020 ident: b0085 article-title: Role of surface recombination in perovskite solar cells at the interface of HTL/CH publication-title: Nano Energy – reference: Daškevičiū tė, Š., Sakai, N., Franckevičius, M., Daškevičienė, M., Magomedov, A., Jankauskas, V., Snaith, H.J., Getautis, V., 2018. Nonspiro, Fluorene-Based, Amorphous Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Adv. Sci. 5, 1700811. – volume: 2 start-page: 1231 year: 2018 end-page: 1241 ident: b0120 article-title: Toward eco-friendly and stable perovskite materials for photovoltaics publication-title: Joule – volume: 5 start-page: 13439 year: 2017 end-page: 13447 ident: b0255 article-title: Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber publication-title: J. Mater. Chem. A – volume: 17 start-page: 681 year: 2017 end-page: 699 ident: b0220 article-title: Emerging of inorganic hole transporting materials for perovskite solar cells publication-title: Chem. Rec. – volume: 10 start-page: 18608 year: 2020 end-page: 18613 ident: b0290 article-title: An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure publication-title: RSC Adv. – volume: 191 start-page: 181 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0175 article-title: Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.01.048 – volume: 2 start-page: 2291 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0110 article-title: NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility publication-title: ACS Omega doi: 10.1021/acsomega.7b00538 – volume: 4 start-page: 3318 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0155 article-title: Efficient defect passivation of perovskite solar cells via stitching of an organic bidentate molecule publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE01041F – volume: 215 start-page: 64 year: 2021 ident: 10.1016/j.solener.2021.07.076_b0025 article-title: Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL publication-title: Sol. Energy doi: 10.1016/j.solener.2020.12.020 – volume: 2 start-page: 1231 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0120 article-title: Toward eco-friendly and stable perovskite materials for photovoltaics publication-title: Joule doi: 10.1016/j.joule.2018.04.026 – volume: 17 start-page: 820 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0225 article-title: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency publication-title: Nat. Mater. doi: 10.1038/s41563-018-0115-4 – volume: 118 start-page: 16567 year: 2014 ident: 10.1016/j.solener.2021.07.076_b0250 article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system publication-title: J. Phys. Chem. C doi: 10.1021/jp412407j – volume: 130 start-page: 650 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0130 article-title: Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells publication-title: Optik doi: 10.1016/j.ijleo.2016.10.122 – volume: 2 start-page: 1214 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0245 article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00236 – volume: 5 start-page: 2563 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0070 article-title: Depth-resolved band alignments of perovskite solar cells with significant interfacial effects publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09493G – volume: 157 start-page: 1038 year: 2016 ident: 10.1016/j.solener.2021.07.076_b0105 article-title: Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.08.025 – volume: 2 start-page: 4062 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0210 article-title: UV–O3 treated annealing-free cerium oxide as electron transport layers in flexible planar perovskite solar cells publication-title: Nanoscale Adv. doi: 10.1039/D0NA00367K – volume: 10 start-page: 18608 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0290 article-title: An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure publication-title: RSC Adv. doi: 10.1039/D0RA02583F – volume: 10 start-page: 3061 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0030 article-title: Minimizing defect states in lead halide perovskite solar cell materials publication-title: Appl. Sci. doi: 10.3390/app10093061 – volume: 53 start-page: 17 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0065 article-title: Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.031 – volume: 123 start-page: 27423 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0165 article-title: Inorganic and Pb-free CsBi3I10 thin film for photovoltaic applications publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09617 – volume: 5 start-page: 1706 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0280 article-title: Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07541J – ident: 10.1016/j.solener.2021.07.076_b0020 doi: 10.1016/j.spmi.2021.106830 – volume: 8 start-page: 1 year: 2013 ident: 10.1016/j.solener.2021.07.076_b0050 article-title: Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-33 – volume: 29 start-page: 64001 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0205 article-title: Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study publication-title: J. Micromechanics Microengineering doi: 10.1088/1361-6439/ab1512 – volume: 133 start-page: 8 year: 2015 ident: 10.1016/j.solener.2021.07.076_b0190 article-title: Theoretical analysis on effect of band offsets in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.036 – volume: 159 start-page: 173 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0200 article-title: Numerical simulations: Toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL publication-title: Vacuum doi: 10.1016/j.vacuum.2018.10.033 – volume: 5 start-page: 1312 year: 2014 ident: 10.1016/j.solener.2021.07.076_b0140 article-title: The role of intrinsic defects in methylammonium lead iodide perovskite publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500370k – volume: 8 start-page: 15670 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0230 article-title: Potential and limitations of CsBi3I10 as a photovoltaic material publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02237C – volume: 54 start-page: 471 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0095 article-title: Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells publication-title: Chem. Commun. doi: 10.1039/C7CC08657A – volume: 207 start-page: 693 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0005 article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.003 – volume: 8 start-page: 11478 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0285 article-title: Hole transport layers for organic solar cells: recent progress and prospects publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03511D – volume: 57 start-page: 1856 year: 2010 ident: 10.1016/j.solener.2021.07.076_b0145 article-title: Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.57.1856 – volume: 31 start-page: 1803019 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0045 article-title: Causes and solutions of recombination in perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201803019 – volume: 12 start-page: 2403 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0075 article-title: [6,6]-phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells publication-title: ACS Nano doi: 10.1021/acsnano.7b07754 – volume: 361–362 start-page: 527 year: 2000 ident: 10.1016/j.solener.2021.07.076_b0035 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 30 start-page: 315 year: 2007 ident: 10.1016/j.solener.2021.07.076_b0060 article-title: Optical properties of CeO2 thin films publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-007-0052-3 – volume: 11 start-page: 3082 year: 2021 ident: 10.1016/j.solener.2021.07.076_b0215 article-title: Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell publication-title: Sci. Rep. doi: 10.1038/s41598-021-82817-w – volume: 121 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0125 article-title: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.4984320 – ident: 10.1016/j.solener.2021.07.076_b0040 doi: 10.1016/j.spmi.2017.04.007 – volume: 726 start-page: 93 year: 2012 ident: 10.1016/j.solener.2021.07.076_b0270 article-title: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.03.027 – volume: 5 start-page: 13439 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0255 article-title: Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03331A – volume: 12 start-page: 788 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0195 article-title: Charge transfer in mixed-phase TiO2 photoelectrodes for perovskite solar cells publication-title: Sustainability doi: 10.3390/su12030788 – volume: 67 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0085 article-title: Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104186 – volume: 17 start-page: 681 year: 2017 ident: 10.1016/j.solener.2021.07.076_b0220 article-title: Emerging of inorganic hole transporting materials for perovskite solar cells publication-title: Chem. Rec. doi: 10.1002/tcr.201600117 – volume: 4 start-page: 5042 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0180 article-title: Fabrication of lead-free CsBi3I10 based compact perovskite thin films by employing solvent engineering and anti-solvent treatment techniques: an efficient photo-conversion efficiency up to 740 nm publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00786B – volume: 6 start-page: 12631 year: 2021 ident: 10.1016/j.solener.2021.07.076_b0010 article-title: Role of a solution-processed V2O5 hole extracting layer on the performance of CuO-ZnO-based solar cells publication-title: ACS Omega doi: 10.1021/acsomega.1c00678 – volume: 5 start-page: 1748 year: 2014 ident: 10.1016/j.solener.2021.07.076_b0260 article-title: Inorganic hole conducting layers for perovskite-based solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500645n – volume: 43 start-page: 15258 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0080 article-title: Tuning the band gap of hybrid lead free defect perovskite nano crystals for solar cell applications publication-title: New J. Chem. doi: 10.1039/C9NJ03902C – volume: 9 start-page: 622 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0100 article-title: Influence of film quality on power conversion efficiency in perovskite solar cells publication-title: Coatings doi: 10.3390/coatings9100622 – volume: 2 start-page: 22 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0275 article-title: Defects engineering for high-performance perovskite solar cells. npj Flex publication-title: Electron. – volume: 12 start-page: 3686 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0160 article-title: Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V publication-title: Nanoscale doi: 10.1039/C9NR08441J – volume: 9 start-page: 4304 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0235 article-title: Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe2O3:NiO ratio publication-title: Sci. Rep. doi: 10.1038/s41598-019-41049-9 – volume: 9 start-page: 19494 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0240 article-title: Oblique electrostatic inkjet-deposited TiO2 electron transport layers for efficient planar perovskite solar cells publication-title: Sci. Rep. doi: 10.1038/s41598-019-56164-w – volume: 7 start-page: 3467 year: 2016 ident: 10.1016/j.solener.2021.07.076_b0115 article-title: Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01452 – volume: 2 start-page: 6280 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0150 article-title: Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00856 – volume: 11 start-page: 151 year: 2018 ident: 10.1016/j.solener.2021.07.076_b0265 article-title: Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02415K – ident: 10.1016/j.solener.2021.07.076_b0055 doi: 10.1002/advs.201700811 – volume: 7 start-page: 8335 year: 2019 ident: 10.1016/j.solener.2021.07.076_b0135 article-title: Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02181G – volume: 4 start-page: 15997 year: 2016 ident: 10.1016/j.solener.2021.07.076_b0185 article-title: Valence and conduction band tuning in halide perovskites for solar cell applications publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04949D – volume: 120 start-page: 370 year: 2015 ident: 10.1016/j.solener.2021.07.076_b0090 article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2015.07.040 – volume: 6 start-page: 35705 year: 2016 ident: 10.1016/j.solener.2021.07.076_b0170 article-title: Highly efficient perovskite solar cells with substantial reduction of lead content publication-title: Sci. Rep. doi: 10.1038/srep35705 – volume: 223 year: 2020 ident: 10.1016/j.solener.2021.07.076_b0015 article-title: A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO publication-title: Optik doi: 10.1016/j.ijleo.2020.165625 |
| SSID | ssj0017187 |
| Score | 2.5275025 |
| Snippet | [Display omitted]
•The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit... Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 54 |
| SubjectTerms | Absorbers (materials) Absorption cross sections Band offset Bismuth Carrier density Cerium Cerium oxides CsBi3I10 Defect concentration Defect energy level Energy levels Fabrication Heterostructures Holes capture cross-section Lead free Nickel Open circuit voltage Perovskite solar cell Perovskites Photovoltaic cells Photovoltaics Solar cells Solar energy |
| Title | Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation |
| URI | https://dx.doi.org/10.1016/j.solener.2021.07.076 https://www.proquest.com/docview/2584777687 |
| Volume | 226 |
| WOSCitedRecordID | wos000696932800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RKGgP3CyH2Lv2eo-mKmo5VBUpUm6WvQ8laeJUcRL1j_B_mfWuHy2gAhJS4kROdrPyfJmZHc98g9CHkFAhFA98LrX2aREQv4iTsZ9EkeRJLEjORd1sgp2fJ9MpvxgMvje1MPslK8vk5oZf_1dRwzkQtimd_Qtxt5PCCXgPQocjiB2OfyT4i1ulAB3lyBKk6euNUt5x9WlOzkAzGhMmDXPxel-ZKK5XmY2uZ4L5bQMf45iWO3tfZ-nBU7iGX323dlKPU3UdYQuh2WplI6mTWb6ar1rVDrtzG4eVIy8tZJeZ-DWfuXis-eg01_PFrs0dTq-2Nhc8rZwpcbGKMDCJFbZa0wbQmiKaLmOpVsrEZGDUXdXBJFk9DDbTB9-L9RV1GPZVreWedkbbKsmfzIGNTCxGlclxUIb-NQxqrlZ2h367NugTsxKzENgGG8re5AE6CFnEkyE6SM9Opl_a21Ng0C0Zq1t5Vxr28Zc_9jun5475r32ay6foiduM4NSC6BkaqPI5etyjqHyBZj044QZOeK1xCyd8G064gxOu4YQNnLCDE7wq3MIJ9-D0En37fHJ5fOq77hy-oGOy9YuIkSjRUvEopIUgnJJCEpqTQCU6ojIoGNM5paEIqOSMMyHkWIQ6UJQIcGLJKzQs16V6jbBUmrEihnWziHKaF_B9mNeQO44LEstDRJvLlwlHXW86qCyzJkdxkbmrnpmrno0ZPOJDNGqHXVvulvsGJI1sMueAWscyA0DdN_SokWXmlEGVhSYHgcGGnr3595nfokfdX-kIDbebnXqHHor9dl5t3jtk_gDix7n3 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+lead-free+CsBi3I10-based+perovskite+solar+cell+through+the+numerical+calculation&rft.jtitle=Solar+energy&rft.au=Ahmmed%2C+Shamim&rft.au=Karim%2C+Md.+Abdul&rft.au=Rahman%2C+Md.+Hafijur&rft.au=Aktar%2C+Asma&rft.date=2021-09-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=226&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.solener.2021.07.076&rft.externalDocID=S0038092X21006538 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |