Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation

[Display omitted] •The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit voltage (VOC) up to 360 mV has been observed after introduction of NiOx HTL.•The influence of key defect parameters of the CsBi3I10 absorber an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Solar energy Ročník 226; s. 54 - 63
Hlavní autoři: Ahmmed, Shamim, Karim, Md. Abdul, Rahman, Md. Hafijur, Aktar, Asma, Islam, Md. Rasidul, Islam, Ashraful, Bakar Md. Ismail, Abu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 15.09.2021
Pergamon Press Inc
Témata:
ISSN:0038-092X, 1471-1257
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit voltage (VOC) up to 360 mV has been observed after introduction of NiOx HTL.•The influence of key defect parameters of the CsBi3I10 absorber and CeOx/CsBi3I10 interface layer have been extensively studied.•Exploration of energy band alignment impact on the device performance. Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this research, the performance of the CsBi3I10-based PSCs with different hole transport layers (HTLs) has been numerically analyzed. The open circuit voltage (VOC) has enhanced up to 360 mV after the addition of NiOx HTL in the heterostructure of the CsBi3I10-based PSC. A comprehensive numerical study of the role of band alignment, key defect parameters of the CsBi3I10 absorber layer, and CeOx/CsBi3I10 interface on the newly designed heterostructure (ITO/CeOx/CsBi3I10/NiOx/Au) performance of the CsBi3I10-based PSC has been conducted. A massive deterioration of the VOC has been initiated when defect concentration (Nt) of CsBi3I10 crosses above 1014 cm−3. Apart from the Nt, defect energy level within the bandgap (Et), and holes capture cross-section (σp) of the CsBi3I10 layer have also significantly affected the VOC loss. Besides, the investigation indicates that the device performance is almost independent of Et of the CeOx/CsBi3I10 interface and slightly decreases with the increase of Nt and σp. Finally, the photovoltaic performance of the PSC has been explored for various thickness and carrier concentration of the CsBi3I10, cerium oxide (CeOx), and nickel oxide (NiOx). Therefore, this research provides efficient guidelines for the fabrication of eco-friendly high-performance CsBi3I10-based PSCs.
AbstractList Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this research, the performance of the CsBi3I10-based PSCs with different hole transport layers (HTLs) has been numerically analyzed. The open circuit voltage (VOC) has enhanced up to 360 mV after the addition of NiOx HTL in the heterostructure of the CsBi3I10-based PSC. A comprehensive numerical study of the role of band alignment, key defect parameters of the CsBi3I10 absorber layer, and CeOx/CsBi3I10 interface on the newly designed heterostructure (ITO/CeOx/CsBi3I10/NiOx/Au) performance of the CsBi3I10-based PSC has been conducted. A massive deterioration of the VOC has been initiated when defect concentration (Nt) of CsBi3I10 crosses above 1014 cm−3. Apart from the Nt, defect energy level within the bandgap (Et), and holes capture cross-section (σp) of the CsBi3I10 layer have also significantly affected the VOC loss. Besides, the investigation indicates that the device performance is almost independent of Et of the CeOx/CsBi3I10 interface and slightly decreases with the increase of Nt and σp. Finally, the photovoltaic performance of the PSC has been explored for various thickness and carrier concentration of the CsBi3I10, cerium oxide (CeOx), and nickel oxide (NiOx). Therefore, this research provides efficient guidelines for the fabrication of eco-friendly high-performance CsBi3I10-based PSCs.
[Display omitted] •The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit voltage (VOC) up to 360 mV has been observed after introduction of NiOx HTL.•The influence of key defect parameters of the CsBi3I10 absorber and CeOx/CsBi3I10 interface layer have been extensively studied.•Exploration of energy band alignment impact on the device performance. Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this research, the performance of the CsBi3I10-based PSCs with different hole transport layers (HTLs) has been numerically analyzed. The open circuit voltage (VOC) has enhanced up to 360 mV after the addition of NiOx HTL in the heterostructure of the CsBi3I10-based PSC. A comprehensive numerical study of the role of band alignment, key defect parameters of the CsBi3I10 absorber layer, and CeOx/CsBi3I10 interface on the newly designed heterostructure (ITO/CeOx/CsBi3I10/NiOx/Au) performance of the CsBi3I10-based PSC has been conducted. A massive deterioration of the VOC has been initiated when defect concentration (Nt) of CsBi3I10 crosses above 1014 cm−3. Apart from the Nt, defect energy level within the bandgap (Et), and holes capture cross-section (σp) of the CsBi3I10 layer have also significantly affected the VOC loss. Besides, the investigation indicates that the device performance is almost independent of Et of the CeOx/CsBi3I10 interface and slightly decreases with the increase of Nt and σp. Finally, the photovoltaic performance of the PSC has been explored for various thickness and carrier concentration of the CsBi3I10, cerium oxide (CeOx), and nickel oxide (NiOx). Therefore, this research provides efficient guidelines for the fabrication of eco-friendly high-performance CsBi3I10-based PSCs.
Author Aktar, Asma
Islam, Ashraful
Bakar Md. Ismail, Abu
Ahmmed, Shamim
Karim, Md. Abdul
Rahman, Md. Hafijur
Islam, Md. Rasidul
Author_xml – sequence: 1
  givenname: Shamim
  orcidid: 0000-0001-5847-2893
  surname: Ahmmed
  fullname: Ahmmed, Shamim
  email: shamim.apee.ru@gmail.com
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
– sequence: 2
  givenname: Md. Abdul
  surname: Karim
  fullname: Karim, Md. Abdul
  organization: Photovoltaic Materials Group, Center for Green Research on Energy and Environment Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
– sequence: 3
  givenname: Md. Hafijur
  surname: Rahman
  fullname: Rahman, Md. Hafijur
  organization: Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh
– sequence: 4
  givenname: Asma
  orcidid: 0000-0002-7391-9849
  surname: Aktar
  fullname: Aktar, Asma
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
– sequence: 5
  givenname: Md. Rasidul
  surname: Islam
  fullname: Islam, Md. Rasidul
  organization: Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
– sequence: 6
  givenname: Ashraful
  surname: Islam
  fullname: Islam, Ashraful
  email: islam.ashraful@nims.go.jp
  organization: Photovoltaic Materials Group, Center for Green Research on Energy and Environment Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
– sequence: 7
  givenname: Abu
  surname: Bakar Md. Ismail
  fullname: Bakar Md. Ismail, Abu
  email: ismail@ru.ac.bd
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
BookMark eNqFkE1LAzEQhoMoWD9-ghDwvDXZJM0uHkSLXyDoQcFbyCYTm5puarJb8N8brScvwgxzmPedj-cA7faxB4ROKJlSQmdny2mOAXpI05rUdEpkidkOmlAuaUVrIXfRhBDWVKStX_fRQc5LQqikjZygxRMkF9NK9waw7nX4zD7j6HAAbSuXAPA8X3l2T0nV6QwWryHFTX73A-CyVidsIAQ8LFIc3xalAu7HFSRvdMAlzRj04GN_hPacDhmOf-sherm5fp7fVQ-Pt_fzy4fKcMKGqhOSicZZaEXNO8NazjrLuGYUGie4pZ2UTnNeG8ptK1tpjCWmdhQ4M0JwdohOt3PXKX6MkAe1jGMqj2VVi4ZLKWeNLKrzrcqkmHMCp4wffu4ckvZBUaK-0aql-kWrvtEqIkvMilv8ca-TX-n0-a_vYuuDAmDjSzcbD4W89QnMoGz0_0z4Am7hmeQ
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_112841
crossref_primary_10_35848_1347_4065_ad0ef3
crossref_primary_10_1002_chem_202300513
crossref_primary_10_1002_solr_202300984
crossref_primary_10_1016_j_solmat_2023_112426
crossref_primary_10_3390_photonics9010023
crossref_primary_10_1088_1402_4896_accb13
crossref_primary_10_1039_D2RA05957F
crossref_primary_10_1016_j_jphotochem_2024_115763
crossref_primary_10_1016_j_jpcs_2025_112953
crossref_primary_10_1016_j_jpcs_2025_113008
crossref_primary_10_1016_j_optmat_2022_112678
crossref_primary_10_1039_D3RA06722J
crossref_primary_10_1088_1402_4896_ad2824
crossref_primary_10_1016_j_optlastec_2024_111828
crossref_primary_10_3390_en16010236
crossref_primary_10_1007_s10800_023_02013_8
crossref_primary_10_1016_j_solener_2024_112761
crossref_primary_10_1016_j_electacta_2024_145559
crossref_primary_10_1002_solr_202500017
crossref_primary_10_1088_2053_1591_ad4fe0
crossref_primary_10_1088_1402_4896_ac9e25
crossref_primary_10_1016_j_solener_2025_113539
crossref_primary_10_1016_j_inoche_2025_114707
crossref_primary_10_1016_j_solmat_2025_113915
crossref_primary_10_1016_j_solener_2024_112843
crossref_primary_10_1002_bbb_70004
crossref_primary_10_1002_slct_202500573
crossref_primary_10_1002_adts_202401504
crossref_primary_10_1002_nano_70026
crossref_primary_10_1039_D5SE00296F
crossref_primary_10_1088_1402_4896_ad0a27
Cites_doi 10.1016/j.matchemphys.2017.01.048
10.1021/acsomega.7b00538
10.1039/C9SE01041F
10.1016/j.solener.2020.12.020
10.1016/j.joule.2018.04.026
10.1038/s41563-018-0115-4
10.1021/jp412407j
10.1016/j.ijleo.2016.10.122
10.1021/acsenergylett.7b00236
10.1039/C6TA09493G
10.1016/j.solmat.2016.08.025
10.1039/D0NA00367K
10.1039/D0RA02583F
10.3390/app10093061
10.1016/j.nanoen.2018.08.031
10.1021/acs.jpcc.9b09617
10.1039/C6TA07541J
10.1016/j.spmi.2021.106830
10.1186/1556-276X-8-33
10.1088/1361-6439/ab1512
10.1016/j.solmat.2014.10.036
10.1016/j.vacuum.2018.10.033
10.1021/jz500370k
10.1039/D0TA02237C
10.1039/C7CC08657A
10.1016/j.solener.2020.07.003
10.1039/D0TA03511D
10.3938/jkps.57.1856
10.1002/adma.201803019
10.1021/acsnano.7b07754
10.1016/S0040-6090(99)00825-1
10.1007/s12034-007-0052-3
10.1038/s41598-021-82817-w
10.1063/1.4984320
10.1016/j.spmi.2017.04.007
10.1016/j.aca.2012.03.027
10.1039/C7TA03331A
10.3390/su12030788
10.1016/j.nanoen.2019.104186
10.1002/tcr.201600117
10.1039/D0SE00786B
10.1021/acsomega.1c00678
10.1021/jz500645n
10.1039/C9NJ03902C
10.3390/coatings9100622
10.1039/C9NR08441J
10.1038/s41598-019-41049-9
10.1038/s41598-019-56164-w
10.1021/acs.jpclett.6b01452
10.1021/acsaem.9b00856
10.1039/C7EE02415K
10.1002/advs.201700811
10.1039/C9TC02181G
10.1039/C6TA04949D
10.1016/j.solener.2015.07.040
10.1038/srep35705
10.1016/j.ijleo.2020.165625
ContentType Journal Article
Copyright 2021 International Solar Energy Society
Copyright Pergamon Press Inc. Sep 15, 2021
Copyright_xml – notice: 2021 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Sep 15, 2021
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2021.07.076
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 63
ExternalDocumentID 10_1016_j_solener_2021_07_076
S0038092X21006538
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
UKR
VOH
WUQ
XOL
ZY4
~A~
~HD
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c403t-b57358fde9524bc3943bd34a31e8f54d1b77fa442c14d9797ccd0c2f1e43c5543
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696932800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Wed Nov 19 07:43:59 EST 2025
Tue Nov 18 22:42:15 EST 2025
Sat Nov 29 07:29:16 EST 2025
Fri Feb 23 02:37:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Defect energy level
Defect concentration
Perovskite solar cell
Band offset
Holes capture cross-section
CsBi3I10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-b57358fde9524bc3943bd34a31e8f54d1b77fa442c14d9797ccd0c2f1e43c5543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5847-2893
0000-0002-7391-9849
PQID 2584777687
PQPubID 9393
PageCount 10
ParticipantIDs proquest_journals_2584777687
crossref_citationtrail_10_1016_j_solener_2021_07_076
crossref_primary_10_1016_j_solener_2021_07_076
elsevier_sciencedirect_doi_10_1016_j_solener_2021_07_076
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2021
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Liu, Fan, Li, Zhang, Mai (b0170) 2016; 6
Tyagi, Tomar, Gupta (b0270) 2012; 726
Islam, Yanagida, Shirai, Nabetani, Miyano (b0110) 2017; 2
Shahiduzzaman, Sakuma, Kaneko, Tomita, Isomura, Taima, Umezu, Iwamori (b0240) 2019; 9
Song, Liu, Wang, Chen, Tian, Miyasaka (b0255) 2017; 5
Huang, Sun, Li, Xu, Xu, Du, Wu, Ni, Cai, Li, Hu, Zhang (b0105) 2016; 157
Casas, G.A., Cappelletti, M.A., Cédola, A.P., Soucase, B.M., Peltzer y Blancá, E.L., 2017. Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices Microstruct. 107, 136–143.
Kim, Lee, Lee, Hong (b0140) 2014; 5
Fang, Wu, Chen, Liu, Zhang, Chen, Yue, Deng, Cheng, Han, Chen (b0075) 2018; 12
Mariyappan, Chowdhury, Subashchandran, Bedja, Ghaithan, Islam (b0180) 2020; 4
Tress, Yavari, Domanski, Yadav, Niesen, Correa Baena, Hagfeldt, Graetzel (b0265) 2018; 11
Xu, Yuan, Zhou, Liao, Chen, Chen (b0285) 2020; 8
Kanevce, Reese, Barnes, Jensen, Metzger (b0125) 2017; 121
Debnath, Islam, Khan (b0060) 2007; 30
Ganesan, Vinodhini, Balasubramani, Parthipan, Sridhar, Arulmozhi, Muralidharan (b0080) 2019; 43
Subbiah, Halder, Ghosh, Mahuli, Hodes, Sarkar (b0260) 2014; 5
Ahmmed, Aktar, Rahman, Hossain, Ismail (b0015) 2020; 223
Khadka, Shirai, Yanagida, Miyano (b0135) 2019; 7
Atowar Rahman (b0025) 2021; 215
Mani Menaka, Umadevi, Manickam (b0175) 2017; 191
Pandey, Saini, Chaujar (b0200) 2019; 159
Ahmmed, Aktar, Ismail (b0010) 2021; 6
Rajeswari, Mrinalini, Prasanthkumar, Giribabu (b0220) 2017; 17
Le Corre, Stolterfoht, Perdigón Toro, Feuerstein, Wolff, Gil-Escrig, Bolink, Neher, Koster (b0150) 2019; 2
Meloni, Palermo, Ashari-Astani, Grätzel, Rothlisberger (b0185) 2016; 4
Karimi, Ghorashi (b0130) 2017; 130
Ahmmed, Aktar, Hossain, Ismail (b0005) 2020; 207
Ding, Zhang, Liu, Kitabatake, Hayase, Toyoda, Yoshino, Minemoto, Katayama, Shen (b0065) 2018; 53
Li, He, Xu, Lu, Jiang, Zhu, Kan, Zhu, Wu (b0160) 2020; 12
Huang, Zhang, Zhang (b0100) 2019; 9
Johansson, Zhu, Johansson (b0115) 2016; 7
Chia-Ching, Cheng-Fu (b0050) 2013; 8
Minemoto, Murata (b0190) 2015; 133
Hu, Xiao, Yang, Chen, Chen (b0095) 2018; 54
Sahli, Werner, Kamino, Bräuninger, Monnard, Paviet-Salomon, Barraud, Ding, Diaz Leon, Sacchetto, Cattaneo, Despeisse, Boccard, Nicolay, Jeangros, Niesen, Ballif (b0225) 2018; 17
Son, Im, Kim, Park (b0250) 2014; 118
Głowienka, Zhang, Di Giacomo, Najafi, Veenstra, Szmytkowski, Galagan (b0085) 2020; 67
Ju, Chen, Zhou, Dai, Ma, Padture, Zeng (b0120) 2018; 2
Pandey, Singla, Madan, Sharma, Chaujar (b0205) 2019; 29
Hossain, Alharbi, Tabet (b0090) 2015; 120
Chen, Park (b0045) 2019; 31
Lee, Sarwar, Park, Asmat, Thuy, Han, Ahn, Jeong, Hong (b0155) 2020; 4
Wang, Deng, Wang, Dai, Xing, Zhan, Lu, Xie, Huang, Zheng (b0280) 2017; 5
Kurnia, Hadiyawarman, Jung, Liu, Lee, Yang, Park, Song, Hwang (b0145) 2010; 57
Yang, Xu, Zhang, Xue, Liu, Qin, Zhai, Yuan (b0290) 2020; 10
Pang, Li, Wei, Ruan, Yang, Chen (b0210) 2020; 2
Sebastia-Luna, Gélvez-Rueda, Dreessen, Sessolo, Grozema, Palazon, Bolink (b0230) 2020; 8
Wang, Bai, Tress, Hagfeldt, Gao (b0275) 2018; 2
Brakkee, Williams (b0030) 2020; 10
Sherkar, Momblona, Gil-Escrig, Ávila, Sessolo, Bolink, Koster (b0245) 2017; 2
Liang, Chen, Chen, Lan, Zheng, Fan, Tian, Duan, Wei, Su (b0165) 2019; 123
Nikolskaia, Vildanova, Kozlov, Tsvetkov, Larina, Shevaleevskiy (b0195) 2020; 12
Patel (b0215) 2021; 11
Eom, Kwon, Kalanur, Park, Seo (b0070) 2017; 5
Daškevičiū tė, Š., Sakai, N., Franckevičius, M., Daškevičienė, M., Magomedov, A., Jankauskas, V., Snaith, H.J., Getautis, V., 2018. Nonspiro, Fluorene-Based, Amorphous Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Adv. Sci. 5, 1700811.
Ahmmed, S., Aktar, A., Tabassum, S., Rahman, M.H., Rahman, M.F., Md. Ismail, A.B., 2021b. CuO based solar cell with V2O5 BSF layer: Theoretical validation of experimental data. Superlattices Microstruct. 151, 106830.
Seo, Tayal, Kim, Song, Chen, Hiroi, Katsuya, Ina, Sakata, Ikeya, Takano, Matsuda, Yoshimoto (b0235) 2019; 9
Burgelman, Nollet, Degrave (b0035) 2000; 361–362
Li (10.1016/j.solener.2021.07.076_b0160) 2020; 12
10.1016/j.solener.2021.07.076_b0055
Brakkee (10.1016/j.solener.2021.07.076_b0030) 2020; 10
Seo (10.1016/j.solener.2021.07.076_b0235) 2019; 9
Atowar Rahman (10.1016/j.solener.2021.07.076_b0025) 2021; 215
Wang (10.1016/j.solener.2021.07.076_b0275) 2018; 2
Huang (10.1016/j.solener.2021.07.076_b0105) 2016; 157
Khadka (10.1016/j.solener.2021.07.076_b0135) 2019; 7
Song (10.1016/j.solener.2021.07.076_b0255) 2017; 5
Głowienka (10.1016/j.solener.2021.07.076_b0085) 2020; 67
Hu (10.1016/j.solener.2021.07.076_b0095) 2018; 54
Islam (10.1016/j.solener.2021.07.076_b0110) 2017; 2
Fang (10.1016/j.solener.2021.07.076_b0075) 2018; 12
Sahli (10.1016/j.solener.2021.07.076_b0225) 2018; 17
Debnath (10.1016/j.solener.2021.07.076_b0060) 2007; 30
Ding (10.1016/j.solener.2021.07.076_b0065) 2018; 53
10.1016/j.solener.2021.07.076_b0020
Mariyappan (10.1016/j.solener.2021.07.076_b0180) 2020; 4
Tress (10.1016/j.solener.2021.07.076_b0265) 2018; 11
Liang (10.1016/j.solener.2021.07.076_b0165) 2019; 123
Le Corre (10.1016/j.solener.2021.07.076_b0150) 2019; 2
Ahmmed (10.1016/j.solener.2021.07.076_b0015) 2020; 223
Kim (10.1016/j.solener.2021.07.076_b0140) 2014; 5
Rajeswari (10.1016/j.solener.2021.07.076_b0220) 2017; 17
Chia-Ching (10.1016/j.solener.2021.07.076_b0050) 2013; 8
Hossain (10.1016/j.solener.2021.07.076_b0090) 2015; 120
Shahiduzzaman (10.1016/j.solener.2021.07.076_b0240) 2019; 9
Johansson (10.1016/j.solener.2021.07.076_b0115) 2016; 7
Ju (10.1016/j.solener.2021.07.076_b0120) 2018; 2
Ahmmed (10.1016/j.solener.2021.07.076_b0010) 2021; 6
Burgelman (10.1016/j.solener.2021.07.076_b0035) 2000; 361–362
Karimi (10.1016/j.solener.2021.07.076_b0130) 2017; 130
Subbiah (10.1016/j.solener.2021.07.076_b0260) 2014; 5
Wang (10.1016/j.solener.2021.07.076_b0280) 2017; 5
Minemoto (10.1016/j.solener.2021.07.076_b0190) 2015; 133
Liu (10.1016/j.solener.2021.07.076_b0170) 2016; 6
Kanevce (10.1016/j.solener.2021.07.076_b0125) 2017; 121
Lee (10.1016/j.solener.2021.07.076_b0155) 2020; 4
Eom (10.1016/j.solener.2021.07.076_b0070) 2017; 5
Ganesan (10.1016/j.solener.2021.07.076_b0080) 2019; 43
10.1016/j.solener.2021.07.076_b0040
Huang (10.1016/j.solener.2021.07.076_b0100) 2019; 9
Kurnia (10.1016/j.solener.2021.07.076_b0145) 2010; 57
Tyagi (10.1016/j.solener.2021.07.076_b0270) 2012; 726
Chen (10.1016/j.solener.2021.07.076_b0045) 2019; 31
Patel (10.1016/j.solener.2021.07.076_b0215) 2021; 11
Sebastia-Luna (10.1016/j.solener.2021.07.076_b0230) 2020; 8
Xu (10.1016/j.solener.2021.07.076_b0285) 2020; 8
Mani Menaka (10.1016/j.solener.2021.07.076_b0175) 2017; 191
Yang (10.1016/j.solener.2021.07.076_b0290) 2020; 10
Pandey (10.1016/j.solener.2021.07.076_b0205) 2019; 29
Meloni (10.1016/j.solener.2021.07.076_b0185) 2016; 4
Nikolskaia (10.1016/j.solener.2021.07.076_b0195) 2020; 12
Ahmmed (10.1016/j.solener.2021.07.076_b0005) 2020; 207
Son (10.1016/j.solener.2021.07.076_b0250) 2014; 118
Pandey (10.1016/j.solener.2021.07.076_b0200) 2019; 159
Sherkar (10.1016/j.solener.2021.07.076_b0245) 2017; 2
Pang (10.1016/j.solener.2021.07.076_b0210) 2020; 2
References_xml – volume: 31
  start-page: 1803019
  year: 2019
  ident: b0045
  article-title: Causes and solutions of recombination in perovskite solar cells
  publication-title: Adv. Mater.
– reference: Casas, G.A., Cappelletti, M.A., Cédola, A.P., Soucase, B.M., Peltzer y Blancá, E.L., 2017. Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices Microstruct. 107, 136–143.
– volume: 120
  start-page: 370
  year: 2015
  end-page: 380
  ident: b0090
  article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells
  publication-title: Sol. Energy
– volume: 726
  start-page: 93
  year: 2012
  end-page: 101
  ident: b0270
  article-title: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor
  publication-title: Anal. Chim. Acta
– volume: 2
  start-page: 22
  year: 2018
  ident: b0275
  article-title: Defects engineering for high-performance perovskite solar cells. npj Flex
  publication-title: Electron.
– volume: 4
  start-page: 3318
  year: 2020
  end-page: 3325
  ident: b0155
  article-title: Efficient defect passivation of perovskite solar cells via stitching of an organic bidentate molecule
  publication-title: Sustain. Energy Fuels
– volume: 29
  start-page: 64001
  year: 2019
  ident: b0205
  article-title: Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study
  publication-title: J. Micromechanics Microengineering
– volume: 9
  start-page: 622
  year: 2019
  ident: b0100
  article-title: Influence of film quality on power conversion efficiency in perovskite solar cells
  publication-title: Coatings
– volume: 4
  start-page: 5042
  year: 2020
  end-page: 5049
  ident: b0180
  article-title: Fabrication of lead-free CsBi
  publication-title: Sustain. Energy Fuels
– volume: 30
  start-page: 315
  year: 2007
  end-page: 319
  ident: b0060
  article-title: Optical properties of CeO
  publication-title: Bull. Mater. Sci.
– volume: 10
  start-page: 3061
  year: 2020
  ident: b0030
  article-title: Minimizing defect states in lead halide perovskite solar cell materials
  publication-title: Appl. Sci.
– volume: 12
  start-page: 788
  year: 2020
  ident: b0195
  article-title: Charge transfer in mixed-phase TiO
  publication-title: Sustainability
– volume: 121
  year: 2017
  ident: b0125
  article-title: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells
  publication-title: J. Appl. Phys.
– volume: 57
  start-page: 1856
  year: 2010
  end-page: 1861
  ident: b0145
  article-title: Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure
  publication-title: J. Korean Phys. Soc.
– reference: Ahmmed, S., Aktar, A., Tabassum, S., Rahman, M.H., Rahman, M.F., Md. Ismail, A.B., 2021b. CuO based solar cell with V2O5 BSF layer: Theoretical validation of experimental data. Superlattices Microstruct. 151, 106830.
– volume: 223
  year: 2020
  ident: b0015
  article-title: A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO
  publication-title: Optik
– volume: 361–362
  start-page: 527
  year: 2000
  end-page: 532
  ident: b0035
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
– volume: 9
  start-page: 19494
  year: 2019
  ident: b0240
  article-title: Oblique electrostatic inkjet-deposited TiO
  publication-title: Sci. Rep.
– volume: 11
  start-page: 3082
  year: 2021
  ident: b0215
  article-title: Device simulation of highly efficient eco-friendly CH
  publication-title: Sci. Rep.
– volume: 12
  start-page: 2403
  year: 2018
  end-page: 2414
  ident: b0075
  article-title: [6,6]-phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells
  publication-title: ACS Nano
– volume: 9
  start-page: 4304
  year: 2019
  ident: b0235
  article-title: Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe
  publication-title: Sci. Rep.
– volume: 43
  start-page: 15258
  year: 2019
  end-page: 15266
  ident: b0080
  article-title: Tuning the band gap of hybrid lead free defect perovskite nano crystals for solar cell applications
  publication-title: New J. Chem.
– volume: 2
  start-page: 4062
  year: 2020
  end-page: 4069
  ident: b0210
  article-title: UV–O
  publication-title: Nanoscale Adv.
– volume: 6
  start-page: 35705
  year: 2016
  ident: b0170
  article-title: Highly efficient perovskite solar cells with substantial reduction of lead content
  publication-title: Sci. Rep.
– volume: 8
  start-page: 11478
  year: 2020
  end-page: 11492
  ident: b0285
  article-title: Hole transport layers for organic solar cells: recent progress and prospects
  publication-title: J. Mater. Chem. A
– volume: 130
  start-page: 650
  year: 2017
  end-page: 658
  ident: b0130
  article-title: Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells
  publication-title: Optik
– volume: 53
  start-page: 17
  year: 2018
  end-page: 26
  ident: b0065
  article-title: Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells
  publication-title: Nano Energy
– volume: 123
  start-page: 27423
  year: 2019
  end-page: 27428
  ident: b0165
  article-title: Inorganic and Pb-free CsBi
  publication-title: J. Phys. Chem. C
– volume: 157
  start-page: 1038
  year: 2016
  end-page: 1047
  ident: b0105
  article-title: Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  start-page: 15670
  year: 2020
  end-page: 15674
  ident: b0230
  article-title: Potential and limitations of CsBi
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 471
  year: 2018
  end-page: 474
  ident: b0095
  article-title: Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells
  publication-title: Chem. Commun.
– volume: 5
  start-page: 1748
  year: 2014
  end-page: 1753
  ident: b0260
  article-title: Inorganic hole conducting layers for perovskite-based solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 6280
  year: 2019
  end-page: 6287
  ident: b0150
  article-title: Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness
  publication-title: ACS Appl. Energy Mater.
– volume: 215
  start-page: 64
  year: 2021
  end-page: 76
  ident: b0025
  article-title: Enhancing the photovoltaic performance of Cd-free Cu
  publication-title: Sol. Energy
– volume: 133
  start-page: 8
  year: 2015
  end-page: 14
  ident: b0190
  article-title: Theoretical analysis on effect of band offsets in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 5
  start-page: 1706
  year: 2017
  end-page: 1712
  ident: b0280
  article-title: Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature
  publication-title: J. Mater. Chem. A
– volume: 118
  start-page: 16567
  year: 2014
  end-page: 16573
  ident: b0250
  article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system
  publication-title: J. Phys. Chem. C
– volume: 17
  start-page: 820
  year: 2018
  end-page: 826
  ident: b0225
  article-title: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3686
  year: 2020
  end-page: 3691
  ident: b0160
  article-title: Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V
  publication-title: Nanoscale
– volume: 191
  start-page: 181
  year: 2017
  end-page: 187
  ident: b0175
  article-title: Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis
  publication-title: Mater. Chem. Phys.
– volume: 11
  start-page: 151
  year: 2018
  end-page: 165
  ident: b0265
  article-title: Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0050
  article-title: Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method
  publication-title: Nanoscale Res. Lett.
– volume: 159
  start-page: 173
  year: 2019
  end-page: 181
  ident: b0200
  article-title: Numerical simulations: Toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL
  publication-title: Vacuum
– volume: 207
  start-page: 693
  year: 2020
  end-page: 702
  ident: b0005
  article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL
  publication-title: Sol. Energy
– volume: 2
  start-page: 2291
  year: 2017
  end-page: 2299
  ident: b0110
  article-title: NiO
  publication-title: ACS Omega
– volume: 7
  start-page: 3467
  year: 2016
  end-page: 3471
  ident: b0115
  article-title: Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 8335
  year: 2019
  end-page: 8343
  ident: b0135
  article-title: Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 2563
  year: 2017
  end-page: 2571
  ident: b0070
  article-title: Depth-resolved band alignments of perovskite solar cells with significant interfacial effects
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 15997
  year: 2016
  end-page: 16002
  ident: b0185
  article-title: Valence and conduction band tuning in halide perovskites for solar cell applications
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 12631
  year: 2021
  end-page: 12639
  ident: b0010
  article-title: Role of a solution-processed V
  publication-title: ACS Omega
– volume: 5
  start-page: 1312
  year: 2014
  end-page: 1317
  ident: b0140
  article-title: The role of intrinsic defects in methylammonium lead iodide perovskite
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1214
  year: 2017
  end-page: 1222
  ident: b0245
  article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions
  publication-title: ACS Energy Lett.
– volume: 67
  year: 2020
  ident: b0085
  article-title: Role of surface recombination in perovskite solar cells at the interface of HTL/CH
  publication-title: Nano Energy
– reference: Daškevičiū tė, Š., Sakai, N., Franckevičius, M., Daškevičienė, M., Magomedov, A., Jankauskas, V., Snaith, H.J., Getautis, V., 2018. Nonspiro, Fluorene-Based, Amorphous Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Adv. Sci. 5, 1700811.
– volume: 2
  start-page: 1231
  year: 2018
  end-page: 1241
  ident: b0120
  article-title: Toward eco-friendly and stable perovskite materials for photovoltaics
  publication-title: Joule
– volume: 5
  start-page: 13439
  year: 2017
  end-page: 13447
  ident: b0255
  article-title: Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 681
  year: 2017
  end-page: 699
  ident: b0220
  article-title: Emerging of inorganic hole transporting materials for perovskite solar cells
  publication-title: Chem. Rec.
– volume: 10
  start-page: 18608
  year: 2020
  end-page: 18613
  ident: b0290
  article-title: An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure
  publication-title: RSC Adv.
– volume: 191
  start-page: 181
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0175
  article-title: Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.01.048
– volume: 2
  start-page: 2291
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0110
  article-title: NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00538
– volume: 4
  start-page: 3318
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0155
  article-title: Efficient defect passivation of perovskite solar cells via stitching of an organic bidentate molecule
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C9SE01041F
– volume: 215
  start-page: 64
  year: 2021
  ident: 10.1016/j.solener.2021.07.076_b0025
  article-title: Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.12.020
– volume: 2
  start-page: 1231
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0120
  article-title: Toward eco-friendly and stable perovskite materials for photovoltaics
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.026
– volume: 17
  start-page: 820
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0225
  article-title: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0115-4
– volume: 118
  start-page: 16567
  year: 2014
  ident: 10.1016/j.solener.2021.07.076_b0250
  article-title: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp412407j
– volume: 130
  start-page: 650
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0130
  article-title: Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.122
– volume: 2
  start-page: 1214
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0245
  article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00236
– volume: 5
  start-page: 2563
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0070
  article-title: Depth-resolved band alignments of perovskite solar cells with significant interfacial effects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09493G
– volume: 157
  start-page: 1038
  year: 2016
  ident: 10.1016/j.solener.2021.07.076_b0105
  article-title: Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.08.025
– volume: 2
  start-page: 4062
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0210
  article-title: UV–O3 treated annealing-free cerium oxide as electron transport layers in flexible planar perovskite solar cells
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00367K
– volume: 10
  start-page: 18608
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0290
  article-title: An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure
  publication-title: RSC Adv.
  doi: 10.1039/D0RA02583F
– volume: 10
  start-page: 3061
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0030
  article-title: Minimizing defect states in lead halide perovskite solar cell materials
  publication-title: Appl. Sci.
  doi: 10.3390/app10093061
– volume: 53
  start-page: 17
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0065
  article-title: Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.031
– volume: 123
  start-page: 27423
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0165
  article-title: Inorganic and Pb-free CsBi3I10 thin film for photovoltaic applications
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09617
– volume: 5
  start-page: 1706
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0280
  article-title: Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07541J
– ident: 10.1016/j.solener.2021.07.076_b0020
  doi: 10.1016/j.spmi.2021.106830
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.solener.2021.07.076_b0050
  article-title: Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-33
– volume: 29
  start-page: 64001
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0205
  article-title: Toward the design of monolithic 23.1% efficient hysteresis and moisture free perovskite/c-Si HJ tandem solar cell: a numerical simulation study
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/1361-6439/ab1512
– volume: 133
  start-page: 8
  year: 2015
  ident: 10.1016/j.solener.2021.07.076_b0190
  article-title: Theoretical analysis on effect of band offsets in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.10.036
– volume: 159
  start-page: 173
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0200
  article-title: Numerical simulations: Toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2018.10.033
– volume: 5
  start-page: 1312
  year: 2014
  ident: 10.1016/j.solener.2021.07.076_b0140
  article-title: The role of intrinsic defects in methylammonium lead iodide perovskite
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500370k
– volume: 8
  start-page: 15670
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0230
  article-title: Potential and limitations of CsBi3I10 as a photovoltaic material
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02237C
– volume: 54
  start-page: 471
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0095
  article-title: Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08657A
– volume: 207
  start-page: 693
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0005
  article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.003
– volume: 8
  start-page: 11478
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0285
  article-title: Hole transport layers for organic solar cells: recent progress and prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03511D
– volume: 57
  start-page: 1856
  year: 2010
  ident: 10.1016/j.solener.2021.07.076_b0145
  article-title: Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.57.1856
– volume: 31
  start-page: 1803019
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0045
  article-title: Causes and solutions of recombination in perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803019
– volume: 12
  start-page: 2403
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0075
  article-title: [6,6]-phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07754
– volume: 361–362
  start-page: 527
  year: 2000
  ident: 10.1016/j.solener.2021.07.076_b0035
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00825-1
– volume: 30
  start-page: 315
  year: 2007
  ident: 10.1016/j.solener.2021.07.076_b0060
  article-title: Optical properties of CeO2 thin films
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-007-0052-3
– volume: 11
  start-page: 3082
  year: 2021
  ident: 10.1016/j.solener.2021.07.076_b0215
  article-title: Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82817-w
– volume: 121
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0125
  article-title: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4984320
– ident: 10.1016/j.solener.2021.07.076_b0040
  doi: 10.1016/j.spmi.2017.04.007
– volume: 726
  start-page: 93
  year: 2012
  ident: 10.1016/j.solener.2021.07.076_b0270
  article-title: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.03.027
– volume: 5
  start-page: 13439
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0255
  article-title: Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03331A
– volume: 12
  start-page: 788
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0195
  article-title: Charge transfer in mixed-phase TiO2 photoelectrodes for perovskite solar cells
  publication-title: Sustainability
  doi: 10.3390/su12030788
– volume: 67
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0085
  article-title: Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104186
– volume: 17
  start-page: 681
  year: 2017
  ident: 10.1016/j.solener.2021.07.076_b0220
  article-title: Emerging of inorganic hole transporting materials for perovskite solar cells
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201600117
– volume: 4
  start-page: 5042
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0180
  article-title: Fabrication of lead-free CsBi3I10 based compact perovskite thin films by employing solvent engineering and anti-solvent treatment techniques: an efficient photo-conversion efficiency up to 740 nm
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE00786B
– volume: 6
  start-page: 12631
  year: 2021
  ident: 10.1016/j.solener.2021.07.076_b0010
  article-title: Role of a solution-processed V2O5 hole extracting layer on the performance of CuO-ZnO-based solar cells
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00678
– volume: 5
  start-page: 1748
  year: 2014
  ident: 10.1016/j.solener.2021.07.076_b0260
  article-title: Inorganic hole conducting layers for perovskite-based solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500645n
– volume: 43
  start-page: 15258
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0080
  article-title: Tuning the band gap of hybrid lead free defect perovskite nano crystals for solar cell applications
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ03902C
– volume: 9
  start-page: 622
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0100
  article-title: Influence of film quality on power conversion efficiency in perovskite solar cells
  publication-title: Coatings
  doi: 10.3390/coatings9100622
– volume: 2
  start-page: 22
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0275
  article-title: Defects engineering for high-performance perovskite solar cells. npj Flex
  publication-title: Electron.
– volume: 12
  start-page: 3686
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0160
  article-title: Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V
  publication-title: Nanoscale
  doi: 10.1039/C9NR08441J
– volume: 9
  start-page: 4304
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0235
  article-title: Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe2O3:NiO ratio
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41049-9
– volume: 9
  start-page: 19494
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0240
  article-title: Oblique electrostatic inkjet-deposited TiO2 electron transport layers for efficient planar perovskite solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56164-w
– volume: 7
  start-page: 3467
  year: 2016
  ident: 10.1016/j.solener.2021.07.076_b0115
  article-title: Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01452
– volume: 2
  start-page: 6280
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0150
  article-title: Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00856
– volume: 11
  start-page: 151
  year: 2018
  ident: 10.1016/j.solener.2021.07.076_b0265
  article-title: Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02415K
– ident: 10.1016/j.solener.2021.07.076_b0055
  doi: 10.1002/advs.201700811
– volume: 7
  start-page: 8335
  year: 2019
  ident: 10.1016/j.solener.2021.07.076_b0135
  article-title: Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02181G
– volume: 4
  start-page: 15997
  year: 2016
  ident: 10.1016/j.solener.2021.07.076_b0185
  article-title: Valence and conduction band tuning in halide perovskites for solar cell applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04949D
– volume: 120
  start-page: 370
  year: 2015
  ident: 10.1016/j.solener.2021.07.076_b0090
  article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.07.040
– volume: 6
  start-page: 35705
  year: 2016
  ident: 10.1016/j.solener.2021.07.076_b0170
  article-title: Highly efficient perovskite solar cells with substantial reduction of lead content
  publication-title: Sci. Rep.
  doi: 10.1038/srep35705
– volume: 223
  year: 2020
  ident: 10.1016/j.solener.2021.07.076_b0015
  article-title: A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165625
SSID ssj0017187
Score 2.5275025
Snippet [Display omitted] •The performance of eco-friendly lead-free CsBi3I10-based perovskite solar cell has been numerically analyzed.•Enhancement of open circuit...
Bismuth-based halide perovskite (CsBi3I10) is a promising absorber material for the fabrication of eco-friendly perovskite solar cells (PSCs). In this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms Absorbers (materials)
Absorption cross sections
Band offset
Bismuth
Carrier density
Cerium
Cerium oxides
CsBi3I10
Defect concentration
Defect energy level
Energy levels
Fabrication
Heterostructures
Holes capture cross-section
Lead free
Nickel
Open circuit voltage
Perovskite solar cell
Perovskites
Photovoltaic cells
Photovoltaics
Solar cells
Solar energy
Title Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation
URI https://dx.doi.org/10.1016/j.solener.2021.07.076
https://www.proquest.com/docview/2584777687
Volume 226
WOSCitedRecordID wos000696932800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RKGgP3CyH2Lv2eo-mKmo5VBUpUm6WvQ8laeJUcRL1j_B_mfWuHy2gAhJS4kROdrPyfJmZHc98g9CHkFAhFA98LrX2aREQv4iTsZ9EkeRJLEjORd1sgp2fJ9MpvxgMvje1MPslK8vk5oZf_1dRwzkQtimd_Qtxt5PCCXgPQocjiB2OfyT4i1ulAB3lyBKk6euNUt5x9WlOzkAzGhMmDXPxel-ZKK5XmY2uZ4L5bQMf45iWO3tfZ-nBU7iGX323dlKPU3UdYQuh2WplI6mTWb6ar1rVDrtzG4eVIy8tZJeZ-DWfuXis-eg01_PFrs0dTq-2Nhc8rZwpcbGKMDCJFbZa0wbQmiKaLmOpVsrEZGDUXdXBJFk9DDbTB9-L9RV1GPZVreWedkbbKsmfzIGNTCxGlclxUIb-NQxqrlZ2h367NugTsxKzENgGG8re5AE6CFnEkyE6SM9Opl_a21Ng0C0Zq1t5Vxr28Zc_9jun5475r32ay6foiduM4NSC6BkaqPI5etyjqHyBZj044QZOeK1xCyd8G064gxOu4YQNnLCDE7wq3MIJ9-D0En37fHJ5fOq77hy-oGOy9YuIkSjRUvEopIUgnJJCEpqTQCU6ojIoGNM5paEIqOSMMyHkWIQ6UJQIcGLJKzQs16V6jbBUmrEihnWziHKaF_B9mNeQO44LEstDRJvLlwlHXW86qCyzJkdxkbmrnpmrno0ZPOJDNGqHXVvulvsGJI1sMueAWscyA0DdN_SokWXmlEGVhSYHgcGGnr3595nfokfdX-kIDbebnXqHHor9dl5t3jtk_gDix7n3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+lead-free+CsBi3I10-based+perovskite+solar+cell+through+the+numerical+calculation&rft.jtitle=Solar+energy&rft.au=Ahmmed%2C+Shamim&rft.au=Karim%2C+Md.+Abdul&rft.au=Rahman%2C+Md.+Hafijur&rft.au=Aktar%2C+Asma&rft.date=2021-09-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=226&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.solener.2021.07.076&rft.externalDocID=S0038092X21006538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon