A superposition approach to study slip-flow forced convection in straight microchannels of uniform but arbitrary cross-section

This work presents a superposition approach to investigate forced convection in microducts of arbitrary cross-section, subject to H1 and H2 boundary conditions, in the slip-flow regime with further complication of a temperature jump condition assumption. It is shown that applying an average slip vel...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 51; no. 15-16; pp. 3753 - 3762
Main Author: Hooman, K.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15.07.2008
Elsevier
Subjects:
ISSN:0017-9310, 1879-2189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents a superposition approach to investigate forced convection in microducts of arbitrary cross-section, subject to H1 and H2 boundary conditions, in the slip-flow regime with further complication of a temperature jump condition assumption. It is shown that applying an average slip velocity and temperature jump definition, one can still use the no-slip/no-jump results with some minor modifications. Present results for slip-flow in microchannels of parallel plate, circular, and rectangular cross-sections are found to be in complete agreement with those in the literature. Application of this methodology to microchannels of triangular cross-section is also verified by comparing the present results with those obtained numerically by undertaking the commercially available software CFD-ACE.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2007.12.014