A Novel Chaotic Elite Adaptive Genetic Algorithm for Task Allocation of Intelligent Unmanned Wireless Sensor Networks

In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation algorithms. These efficient techniques serve as robust stochastic optimization methods, aimed at maximizing revenue for the network’s objectives. Howev...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 17; p. 9870
Main Authors: Fei, Hongmei, Zhang, Baitao, Liu, Yan, Yan, Manli, Lu, Yi, Zhou, Jie
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2023
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation algorithms. These efficient techniques serve as robust stochastic optimization methods, aimed at maximizing revenue for the network’s objectives. However, with the increase in sensor numbers, the computation time for addressing the challenge grows exponentially. To tackle the task allocation issue in IUWSNs, this paper introduces a novel approach: the Chaotic Elite Adaptive Genetic Algorithm (CEAGA). The optimization problem is formulated as an NP-complete integer programming challenge. Innovative elite and chaotic operators have been devised to expedite convergence and unveil the overall optimal solution. By merging the strengths of genetic algorithms with these new elite and chaotic operators, the CEAGA optimizes task allocation in IUWSNs. Through simulation experiments, we compare the CEAGA with other methods—Hybrid Genetic Algorithm (HGA), Multi-objective Binary Particle Swarm Optimization (MBPSO), and Improved Simulated Annealing (ISA)—in terms of task allocation performance. The results compellingly demonstrate that the CEAGA outperforms the other approaches in network revenue terms.
AbstractList In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation algorithms. These efficient techniques serve as robust stochastic optimization methods, aimed at maximizing revenue for the network’s objectives. However, with the increase in sensor numbers, the computation time for addressing the challenge grows exponentially. To tackle the task allocation issue in IUWSNs, this paper introduces a novel approach: the Chaotic Elite Adaptive Genetic Algorithm (CEAGA). The optimization problem is formulated as an NP-complete integer programming challenge. Innovative elite and chaotic operators have been devised to expedite convergence and unveil the overall optimal solution. By merging the strengths of genetic algorithms with these new elite and chaotic operators, the CEAGA optimizes task allocation in IUWSNs. Through simulation experiments, we compare the CEAGA with other methods—Hybrid Genetic Algorithm (HGA), Multi-objective Binary Particle Swarm Optimization (MBPSO), and Improved Simulated Annealing (ISA)—in terms of task allocation performance. The results compellingly demonstrate that the CEAGA outperforms the other approaches in network revenue terms.
Audience Academic
Author Liu, Yan
Lu, Yi
Zhou, Jie
Yan, Manli
Zhang, Baitao
Fei, Hongmei
Author_xml – sequence: 1
  givenname: Hongmei
  surname: Fei
  fullname: Fei, Hongmei
– sequence: 2
  givenname: Baitao
  surname: Zhang
  fullname: Zhang, Baitao
– sequence: 3
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
– sequence: 4
  givenname: Manli
  surname: Yan
  fullname: Yan, Manli
– sequence: 5
  givenname: Yi
  surname: Lu
  fullname: Lu, Yi
– sequence: 6
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
BookMark eNptkV9rFDEUxYNUsK598gsEfJSt-Wcm8zgstS6U-mCLj-FO5mab7WyyJtkWv71pV6GIyUPC4fwOuTlvyUlMEQl5z9m5lD37BPs9l7zrTcdekVPBOr2UincnL-5vyFkpW9ZWz6Xh7JQcBnqdHnCmqztINTh6MYeKdJhgX8MD0kuM-CQP8yblUO921KdMb6DcN2lODmpIkSZP17HiPIcNxkpv4w5ixIn-CBlnLIV-x1gad431MeX78o689jAXPPtzLsjtl4ub1dfl1bfL9Wq4WjrFZF2CMRN3PfYanBEM5Gi40dpz7SYzGhy9MXyUHHqhEDWHsQecDOIkpJFMyQVZH3OnBFu7z2EH-ZdNEOyzkPLGQm7jzWiF71UHneAelEKvR2BiHKUC4aUULXBBPhyz9jn9PGCpdpsOObbnW2G0ENxwrpvr_OjaQAsN0aeawbU94S64VpgPTR86rYRWynxuAD8CLqdSMnrrQn3-1QaG2XJmn9q1L9ptzMd_mL-j_c_9G3ugp9k
CitedBy_id crossref_primary_10_32604_cmc_2024_050596
Cites_doi 10.3390/app10238335
10.1109/INISTA.2018.8466307
10.1109/JIOT.2021.3132452
10.1016/j.adhoc.2018.11.008
10.1155/2020/3231864
10.1109/ICISCE.2018.00106
10.1109/ICCA.2019.8900027
10.1109/ACCESS.2019.2940821
10.1109/ELTECH.2019.8839377
10.1109/ACCESS.2020.2983744
10.1109/ACCESS.2021.3137341
10.1109/TIM.2015.2494630
10.1109/ICSCCC.2018.8703319
10.1109/EIConRus.2019.8657131
10.1177/00202940211002235
10.1109/IHMSC.2015.186
10.1177/1550147717735747
10.1109/ACCESS.2018.2882427
10.1049/iet-com.2019.0835
10.1109/TGCN.2021.3118967
10.1109/MDM.2016.85
10.1109/TVT.2015.2465811
10.1109/JSEN.2017.2768659
10.1155/2021/5582646
10.23919/JCC.2020.04.013
10.1109/TVT.2018.2872848
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app13179870
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_2f947a721fa44ef6ba02bb34a2f332d2
A764264485
10_3390_app13179870
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-a88d1c9e96ac820a3b81866f16cd8b8ebf881b31a924ee61ab9aed8eed2383043
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062879100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:42:58 EDT 2025
Sun Nov 09 06:09:49 EST 2025
Tue Nov 04 18:36:49 EST 2025
Tue Nov 18 21:59:59 EST 2025
Sat Nov 29 07:11:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a88d1c9e96ac820a3b81866f16cd8b8ebf881b31a924ee61ab9aed8eed2383043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2862218116?pq-origsite=%requestingapplication%
PQID 2862218116
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_2f947a721fa44ef6ba02bb34a2f332d2
proquest_journals_2862218116
gale_infotracacademiconefile_A764264485
crossref_citationtrail_10_3390_app13179870
crossref_primary_10_3390_app13179870
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yin (ref_6) 2017; 13
Koutsoubelias (ref_20) 2016; 65
Yu (ref_7) 2018; 18
ref_14
Huang (ref_22) 2018; 67
ref_11
Xu (ref_28) 2020; 2020
Nurlan (ref_1) 2022; 10
Arif (ref_9) 2022; 16
ref_19
ref_18
ref_15
Wang (ref_24) 2020; 8
Shao (ref_2) 2018; 6
Yin (ref_5) 2016; Volume 9937
Mukherjee (ref_12) 2019; 7
Faye (ref_3) 2016; 65
ref_25
Mousavi (ref_10) 2019; 87
ref_23
Liu (ref_16) 2020; 17
Baniabdelghany (ref_17) 2021; 9
ref_26
Yang (ref_4) 2020; 14
Raee (ref_21) 2022; 6
ref_8
Zha (ref_27) 2021; 2021
Han (ref_13) 2021; 54
References_xml – ident: ref_14
  doi: 10.3390/app10238335
– ident: ref_15
  doi: 10.1109/INISTA.2018.8466307
– volume: Volume 9937
  start-page: 476
  year: 2016
  ident: ref_5
  article-title: A Task-Oriented Self-Organization Mechanism in Wireless Sensor Networks
  publication-title: IDEAL 2016: Intelligent Data Engineering and Automated Learning—IDEAL 2016
– volume: 9
  start-page: 11974
  year: 2021
  ident: ref_17
  article-title: Reliable task allocation for time-triggered IoT-WSN using discrete particle swarm optimization
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3132452
– volume: 87
  start-page: 26
  year: 2019
  ident: ref_10
  article-title: Use of a Quantum Genetic Algorithm for Coalition Formation in Large-Scale UAV Networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2018.11.008
– volume: 2020
  start-page: 3231864
  year: 2020
  ident: ref_28
  article-title: Elite immune ant colony optimization-based task allocation for maximizing task execution efficiency in agricultural wireless sensor networks
  publication-title: J. Sens.
  doi: 10.1155/2020/3231864
– ident: ref_26
  doi: 10.1109/ICISCE.2018.00106
– ident: ref_25
  doi: 10.1109/ICCA.2019.8900027
– volume: 7
  start-page: 131163
  year: 2019
  ident: ref_12
  article-title: ADAI and adaptive PSO-based resource allocation for wireless sensor networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940821
– ident: ref_18
  doi: 10.1109/ELTECH.2019.8839377
– volume: 8
  start-page: 68311
  year: 2020
  ident: ref_24
  article-title: Method for Spatial Crowdsourcing Task Assignment Based on Integrating of Genetic Algorithm and Ant Colony Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983744
– volume: 10
  start-page: 46
  year: 2022
  ident: ref_1
  article-title: Wireless Sensor Network as a Mesh: Vision and Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137341
– volume: 65
  start-page: 744
  year: 2016
  ident: ref_20
  article-title: System Support for the In Situ Testing of Wireless Sensor Networks via Programmable Virtual Onboard Sensors
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2494630
– ident: ref_19
  doi: 10.1109/ICSCCC.2018.8703319
– ident: ref_8
  doi: 10.1109/EIConRus.2019.8657131
– volume: 54
  start-page: 994
  year: 2021
  ident: ref_13
  article-title: A Modified Genetic Algorithm for Task Assignment of Heterogeneous Unmanned Aerial Vehicle System
  publication-title: Meas. Control
  doi: 10.1177/00202940211002235
– ident: ref_11
  doi: 10.1109/IHMSC.2015.186
– volume: 13
  start-page: 1550147717735747
  year: 2017
  ident: ref_6
  article-title: Cooperative Task Allocation in Heterogeneous Wireless Sensor Networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147717735747
– volume: 6
  start-page: 71767
  year: 2018
  ident: ref_2
  article-title: Traffic Shaped Network Coding Aware Routing for Wireless Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882427
– volume: 14
  start-page: 1902
  year: 2020
  ident: ref_4
  article-title: Task Allocation Based on Node Pair Intimacy in Wireless Sensor Networks
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2019.0835
– volume: 6
  start-page: 613
  year: 2022
  ident: ref_21
  article-title: Ensuring Energy Efficiency When Dynamically Assigning Tasks in Virtualized Wireless Sensor Networks
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2021.3118967
– ident: ref_23
  doi: 10.1109/MDM.2016.85
– volume: 65
  start-page: 5720
  year: 2016
  ident: ref_3
  article-title: Characterizing the Topology of an Urban Wireless Sensor Network for Road Traffic Management
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2465811
– volume: 16
  start-page: 3
  year: 2022
  ident: ref_9
  article-title: A Flexible Framework for Diverse Multi-Robot Task Allocation Scenarios Including Multi-Tasking
  publication-title: ACM Trans. Auton. Adapt. Syst.
– volume: 18
  start-page: 446
  year: 2018
  ident: ref_7
  article-title: Distributed Optimal On-Line Task Allocation Algorithm for Wireless Sensor Networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2768659
– volume: 2021
  start-page: 5582646
  year: 2021
  ident: ref_27
  article-title: An improved adaptive clone genetic algorithm for task allocation optimization in ITWSNs
  publication-title: J. Sens.
  doi: 10.1155/2021/5582646
– volume: 17
  start-page: 140
  year: 2020
  ident: ref_16
  article-title: Enhancing Clustering Stability in VANET: A Spectra Clustering Based Approach
  publication-title: China Commun.
  doi: 10.23919/JCC.2020.04.013
– volume: 67
  start-page: 12109
  year: 2018
  ident: ref_22
  article-title: Intrusion Detection Based on K-Coverage in Mobile Sensor Networks with Empowered Intruders
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2872848
SSID ssj0000913810
Score 2.2795093
Snippet In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9870
SubjectTerms Algorithms
Assignment problem
Efficiency
Energy consumption
genetic algorithm
Genetic algorithms
Genetic research
Internet of Things
Linear programming
Mathematical optimization
Mutation
Optimization algorithms
Particle Swarm Optimization
Research methodology
Sensors
task allocation
Wireless sensor networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF9EerCHUrWlr7VlD4JtITSbXZPdYypKC-UhqMXbMvtVxeeLvET__s4k8ZFDxUuvyyRsdj5_ZPY3jO3H8tBjJgvoaU5nKhqfaaNSpjFchrIKTvXjgH7_quZzfXlpTiejvqgnbKAHHg7uW5GMqgBxSgKlYiod5IVzUkGRpCxCH33zykzAVB-DjSDqquFCnkRcT_-DhSR2LhpLPElBPVP_U_G4TzInr9mrsTrk9bCrbbYRlzvs5YQzcIdtj97Y8s8jZfSXXXZf83nzEBf86AoafJYf09ViXge4o3DGSZKW68WfZnXdXd1yrFX5ObQ3uETpjNTDm8R_rhk6O36xvAWKwpw6ZBcYEfkZYl58bj60jrdv2MXJ8fnRj2wcqJB5lcsuA62D8CaaEjxmfpCu57tLovRBOx1d0ljFSgEIymIsBTgDMWhMo5jYZa7kW7a5bJbxHeMhhSLXqFtpQKUEUNALRRWV0Eb4Ysa-Pp6x9SPbOA29WFhEHaQQO1HIjO2vhe8Gko1_i30nZa1FiBm7X0B7saO92OfsZcYOSNWW_Bc35GG8hoCfRUxYtq7KAbQeztjeozXY0bFbWyACpKpIlO__x24-sC2aXz80re2xzW51Hz-yF_6hu25Xn3qb_gtz8vw9
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Chaotic Elite Adaptive Genetic Algorithm for Task Allocation of Intelligent Unmanned Wireless Sensor Networks
URI https://www.proquest.com/docview/2862218116
https://doaj.org/article/2f947a721fa44ef6ba02bb34a2f332d2
Volume 13
WOSCitedRecordID wos001062879100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHoIWKLaXyoRIPKSKO3cQ-obTaikoQraBF5WQ5frSI7Wa7Sfv7mUm8yx6AC8c4TuJoxt88bH9DyIHPDy1YMgczrZaJ8MomUomQSIBLlxeuFn05oG-fiqqSFxdqEhNubdxWucTEHqhdYzFH_j4D1xvNEcs_zG8SrBqFq6uxhMZ9solMZaDnm0fjavJllWVB1kvJ0uFgHof4HteFGUeWLixPvGaKesb-v-Fyb2xOnvzvMJ-Sx9HNpOWgF1vknp9tk0dr5IPbZCtO65a-idzTb5-R25JWzZ2f0uMr08CzdIxnlGnpzBxxkWJPbC6nl_DV7uqagtNLz0z7E5rQLqKcaRPo6Yrqs6Pns2uDcE5xq-0UoJV-heAZnquGPejtc3J-Mj47_pjEygyJFSnvEiOlY1Z5lRsLLoThdU-cF1hunaylr4MEd5gzA9Gd9zkztTLeSbDH4CHwVPAdsjFrZv4FoS64LJWgJFwZEYIxGb6QFV4wqZjNRuTdUkjaRtpyrJ4x1RC-oET1mkRH5GDVeT6wdfy52xFKe9UFKbb7hmZxqeOM1VlQojAQIAcjhA95bdKsrrkwWeA8czCw16grGoEABmRNPM8Av4WUWros8iH6PRyRvaWu6IgQrf6tKLv_vv2SPMQS98O-tj2y0S1u_SvywN51P9rFflT4_T6XAFeT08-T778AssEN8w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gAgX2UMRDssg-aq8PCIXSqlHTKBItak9mvY8WkcYhTov4U_xGZmwn5ADceuC6Xlu79rfzzax3vgHY9PGWRSZzuNJyHSmf2kinKkQazaWLE5erqhzQp34yGOjj43S4Aj_nuTB0rHJuEytD7QpLe-RvBLreREc8fjf5FlHVKPq7Oi-hUcNi3__4jiFb-bb3Ab_vcyF2dw6396KmqkBkVUfOIqO14zb1aWws0p-ReSX6Fnhsnc61z4NGV05yg5GJ9zE3eWq808glyG4Y_Et87jVYVQT2FqwOewfDk8WuDqlsat6pEwGlTDv0H5pLUgWjcshL1FdVCPgbD1Tktnvnf3std-F240azbo37NVjx43W4tSSuuA5rjdkq2ctGW_vVPbjoskFx6Uds-8wUeC_boRxs1nVmQnafUU9q7o5OcZazs3OGTj07NOVXbCLeJxyzIrDeQsp0xo7G54boitFR4hFSB_voxyXeN6jP2Jf34ehKXsYDaI2LsX8IzAUnOhoXgUyNCsEYQQ_kiVdcp9yKNryegyKzjSw7VQcZZRieEYKyJQS1YXPReVKrkfy523tC16ILSYhXDcX0NGssUiZCqhKTCB6MUj7EuemIPJfKiCClcDiwF4TNjAwdDsiaJl8Dp0WSYVk3ievofqsNG3NsZo0FLLPfwHz078vP4Mbe4UE_6_cG-4_hpkAnsj7DtwGt2fTCP4Hr9nL2pZw-bRYbg89XDeRfcBRp4w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiE4AC0gFgr4UMRDiho_mjgHhELbFauW1Uq0qD0Fx48WsU2WTVrEX-PXMZNklz0Atx64Ok5kO5_nG9vjbwjZdNG2ASazMNNyFUiXmEAl0gcKzKWNYpvLJh3Qp4N4NFLHx8l4hfyc34XBsMq5TWwMtS0N7pFvcXC9kY5YtOW7sIjx7uDt9FuAGaTwpHWeTqOFyL778R2Wb9Wb4S786-ecD_YOd94HXYaBwMhQ1IFWyjKTuCTSBqhQi7wRgPMsMlblyuVegVsnmIZVinMR03minVXAK8B0IpQCvnuNrIJLLnmPrI6HH8Ynix0eVNxULGwvBQqRhHgmzQQqhGFq5CUabLIF_I0TGqIb3Pmfh-guud251zRt58MaWXHFOrm1JLq4TtY6c1bRl53m9qt75CKlo_LSTejOmS7hXbqHd7NpavUU-YBiTSxOJ6fQy_rsnIKzTw919RWK0B9AfNPS0-FC4rSmR8W5RhqjGGI8AUqhH11RwXujNva-uk-OrmQwHpBeURbuIaHWWx4qmBwi0dJ7rTl-kMVOMpUww_vk9Rwgmenk2jFryCSDZRuiKVtCU59sLipPW5WSP1d7h0hbVEFp8aagnJ1mnaXKuE9krGPOvJbS-SjXIc9zITX3QnALDXuBOM3QAEKDjO7ucUC3UEosS-OoXfVv98nGHKdZZxmr7DdIH_378TNyA9CbHQxH-4_JTQ6-ZRvat0F69ezCPSHXzWX9pZo97eYdJZ-vGse_AJf_cqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Chaotic+Elite+Adaptive+Genetic+Algorithm+for+Task+Allocation+of+Intelligent+Unmanned+Wireless+Sensor+Networks&rft.jtitle=Applied+sciences&rft.au=Fei%2C+Hongmei&rft.au=Zhang%2C+Baitao&rft.au=Liu%2C+Yan&rft.au=Manli+Yan&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft.spage=9870&rft_id=info:doi/10.3390%2Fapp13179870&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon