A Novel Chaotic Elite Adaptive Genetic Algorithm for Task Allocation of Intelligent Unmanned Wireless Sensor Networks
In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation algorithms. These efficient techniques serve as robust stochastic optimization methods, aimed at maximizing revenue for the network’s objectives. Howev...
Saved in:
| Published in: | Applied sciences Vol. 13; no. 17; p. 9870 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.09.2023
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation algorithms. These efficient techniques serve as robust stochastic optimization methods, aimed at maximizing revenue for the network’s objectives. However, with the increase in sensor numbers, the computation time for addressing the challenge grows exponentially. To tackle the task allocation issue in IUWSNs, this paper introduces a novel approach: the Chaotic Elite Adaptive Genetic Algorithm (CEAGA). The optimization problem is formulated as an NP-complete integer programming challenge. Innovative elite and chaotic operators have been devised to expedite convergence and unveil the overall optimal solution. By merging the strengths of genetic algorithms with these new elite and chaotic operators, the CEAGA optimizes task allocation in IUWSNs. Through simulation experiments, we compare the CEAGA with other methods—Hybrid Genetic Algorithm (HGA), Multi-objective Binary Particle Swarm Optimization (MBPSO), and Improved Simulated Annealing (ISA)—in terms of task allocation performance. The results compellingly demonstrate that the CEAGA outperforms the other approaches in network revenue terms. |
|---|---|
| AbstractList | In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation algorithms. These efficient techniques serve as robust stochastic optimization methods, aimed at maximizing revenue for the network’s objectives. However, with the increase in sensor numbers, the computation time for addressing the challenge grows exponentially. To tackle the task allocation issue in IUWSNs, this paper introduces a novel approach: the Chaotic Elite Adaptive Genetic Algorithm (CEAGA). The optimization problem is formulated as an NP-complete integer programming challenge. Innovative elite and chaotic operators have been devised to expedite convergence and unveil the overall optimal solution. By merging the strengths of genetic algorithms with these new elite and chaotic operators, the CEAGA optimizes task allocation in IUWSNs. Through simulation experiments, we compare the CEAGA with other methods—Hybrid Genetic Algorithm (HGA), Multi-objective Binary Particle Swarm Optimization (MBPSO), and Improved Simulated Annealing (ISA)—in terms of task allocation performance. The results compellingly demonstrate that the CEAGA outperforms the other approaches in network revenue terms. |
| Audience | Academic |
| Author | Liu, Yan Lu, Yi Zhou, Jie Yan, Manli Zhang, Baitao Fei, Hongmei |
| Author_xml | – sequence: 1 givenname: Hongmei surname: Fei fullname: Fei, Hongmei – sequence: 2 givenname: Baitao surname: Zhang fullname: Zhang, Baitao – sequence: 3 givenname: Yan surname: Liu fullname: Liu, Yan – sequence: 4 givenname: Manli surname: Yan fullname: Yan, Manli – sequence: 5 givenname: Yi surname: Lu fullname: Lu, Yi – sequence: 6 givenname: Jie surname: Zhou fullname: Zhou, Jie |
| BookMark | eNptkV9rFDEUxYNUsK598gsEfJSt-Wcm8zgstS6U-mCLj-FO5mab7WyyJtkWv71pV6GIyUPC4fwOuTlvyUlMEQl5z9m5lD37BPs9l7zrTcdekVPBOr2UincnL-5vyFkpW9ZWz6Xh7JQcBnqdHnCmqztINTh6MYeKdJhgX8MD0kuM-CQP8yblUO921KdMb6DcN2lODmpIkSZP17HiPIcNxkpv4w5ixIn-CBlnLIV-x1gad431MeX78o689jAXPPtzLsjtl4ub1dfl1bfL9Wq4WjrFZF2CMRN3PfYanBEM5Gi40dpz7SYzGhy9MXyUHHqhEDWHsQecDOIkpJFMyQVZH3OnBFu7z2EH-ZdNEOyzkPLGQm7jzWiF71UHneAelEKvR2BiHKUC4aUULXBBPhyz9jn9PGCpdpsOObbnW2G0ENxwrpvr_OjaQAsN0aeawbU94S64VpgPTR86rYRWynxuAD8CLqdSMnrrQn3-1QaG2XJmn9q1L9ptzMd_mL-j_c_9G3ugp9k |
| CitedBy_id | crossref_primary_10_32604_cmc_2024_050596 |
| Cites_doi | 10.3390/app10238335 10.1109/INISTA.2018.8466307 10.1109/JIOT.2021.3132452 10.1016/j.adhoc.2018.11.008 10.1155/2020/3231864 10.1109/ICISCE.2018.00106 10.1109/ICCA.2019.8900027 10.1109/ACCESS.2019.2940821 10.1109/ELTECH.2019.8839377 10.1109/ACCESS.2020.2983744 10.1109/ACCESS.2021.3137341 10.1109/TIM.2015.2494630 10.1109/ICSCCC.2018.8703319 10.1109/EIConRus.2019.8657131 10.1177/00202940211002235 10.1109/IHMSC.2015.186 10.1177/1550147717735747 10.1109/ACCESS.2018.2882427 10.1049/iet-com.2019.0835 10.1109/TGCN.2021.3118967 10.1109/MDM.2016.85 10.1109/TVT.2015.2465811 10.1109/JSEN.2017.2768659 10.1155/2021/5582646 10.23919/JCC.2020.04.013 10.1109/TVT.2018.2872848 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app13179870 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_2f947a721fa44ef6ba02bb34a2f332d2 A764264485 10_3390_app13179870 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c403t-a88d1c9e96ac820a3b81866f16cd8b8ebf881b31a924ee61ab9aed8eed2383043 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062879100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:42:58 EDT 2025 Sun Nov 09 06:09:49 EST 2025 Tue Nov 04 18:36:49 EST 2025 Tue Nov 18 21:59:59 EST 2025 Sat Nov 29 07:11:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-a88d1c9e96ac820a3b81866f16cd8b8ebf881b31a924ee61ab9aed8eed2383043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2862218116?pq-origsite=%requestingapplication% |
| PQID | 2862218116 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f947a721fa44ef6ba02bb34a2f332d2 proquest_journals_2862218116 gale_infotracacademiconefile_A764264485 crossref_citationtrail_10_3390_app13179870 crossref_primary_10_3390_app13179870 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yin (ref_6) 2017; 13 Koutsoubelias (ref_20) 2016; 65 Yu (ref_7) 2018; 18 ref_14 Huang (ref_22) 2018; 67 ref_11 Xu (ref_28) 2020; 2020 Nurlan (ref_1) 2022; 10 Arif (ref_9) 2022; 16 ref_19 ref_18 ref_15 Wang (ref_24) 2020; 8 Shao (ref_2) 2018; 6 Yin (ref_5) 2016; Volume 9937 Mukherjee (ref_12) 2019; 7 Faye (ref_3) 2016; 65 ref_25 Mousavi (ref_10) 2019; 87 ref_23 Liu (ref_16) 2020; 17 Baniabdelghany (ref_17) 2021; 9 ref_26 Yang (ref_4) 2020; 14 Raee (ref_21) 2022; 6 ref_8 Zha (ref_27) 2021; 2021 Han (ref_13) 2021; 54 |
| References_xml | – ident: ref_14 doi: 10.3390/app10238335 – ident: ref_15 doi: 10.1109/INISTA.2018.8466307 – volume: Volume 9937 start-page: 476 year: 2016 ident: ref_5 article-title: A Task-Oriented Self-Organization Mechanism in Wireless Sensor Networks publication-title: IDEAL 2016: Intelligent Data Engineering and Automated Learning—IDEAL 2016 – volume: 9 start-page: 11974 year: 2021 ident: ref_17 article-title: Reliable task allocation for time-triggered IoT-WSN using discrete particle swarm optimization publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3132452 – volume: 87 start-page: 26 year: 2019 ident: ref_10 article-title: Use of a Quantum Genetic Algorithm for Coalition Formation in Large-Scale UAV Networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2018.11.008 – volume: 2020 start-page: 3231864 year: 2020 ident: ref_28 article-title: Elite immune ant colony optimization-based task allocation for maximizing task execution efficiency in agricultural wireless sensor networks publication-title: J. Sens. doi: 10.1155/2020/3231864 – ident: ref_26 doi: 10.1109/ICISCE.2018.00106 – ident: ref_25 doi: 10.1109/ICCA.2019.8900027 – volume: 7 start-page: 131163 year: 2019 ident: ref_12 article-title: ADAI and adaptive PSO-based resource allocation for wireless sensor networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940821 – ident: ref_18 doi: 10.1109/ELTECH.2019.8839377 – volume: 8 start-page: 68311 year: 2020 ident: ref_24 article-title: Method for Spatial Crowdsourcing Task Assignment Based on Integrating of Genetic Algorithm and Ant Colony Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983744 – volume: 10 start-page: 46 year: 2022 ident: ref_1 article-title: Wireless Sensor Network as a Mesh: Vision and Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3137341 – volume: 65 start-page: 744 year: 2016 ident: ref_20 article-title: System Support for the In Situ Testing of Wireless Sensor Networks via Programmable Virtual Onboard Sensors publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2494630 – ident: ref_19 doi: 10.1109/ICSCCC.2018.8703319 – ident: ref_8 doi: 10.1109/EIConRus.2019.8657131 – volume: 54 start-page: 994 year: 2021 ident: ref_13 article-title: A Modified Genetic Algorithm for Task Assignment of Heterogeneous Unmanned Aerial Vehicle System publication-title: Meas. Control doi: 10.1177/00202940211002235 – ident: ref_11 doi: 10.1109/IHMSC.2015.186 – volume: 13 start-page: 1550147717735747 year: 2017 ident: ref_6 article-title: Cooperative Task Allocation in Heterogeneous Wireless Sensor Networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147717735747 – volume: 6 start-page: 71767 year: 2018 ident: ref_2 article-title: Traffic Shaped Network Coding Aware Routing for Wireless Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882427 – volume: 14 start-page: 1902 year: 2020 ident: ref_4 article-title: Task Allocation Based on Node Pair Intimacy in Wireless Sensor Networks publication-title: IET Commun. doi: 10.1049/iet-com.2019.0835 – volume: 6 start-page: 613 year: 2022 ident: ref_21 article-title: Ensuring Energy Efficiency When Dynamically Assigning Tasks in Virtualized Wireless Sensor Networks publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2021.3118967 – ident: ref_23 doi: 10.1109/MDM.2016.85 – volume: 65 start-page: 5720 year: 2016 ident: ref_3 article-title: Characterizing the Topology of an Urban Wireless Sensor Network for Road Traffic Management publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2465811 – volume: 16 start-page: 3 year: 2022 ident: ref_9 article-title: A Flexible Framework for Diverse Multi-Robot Task Allocation Scenarios Including Multi-Tasking publication-title: ACM Trans. Auton. Adapt. Syst. – volume: 18 start-page: 446 year: 2018 ident: ref_7 article-title: Distributed Optimal On-Line Task Allocation Algorithm for Wireless Sensor Networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2768659 – volume: 2021 start-page: 5582646 year: 2021 ident: ref_27 article-title: An improved adaptive clone genetic algorithm for task allocation optimization in ITWSNs publication-title: J. Sens. doi: 10.1155/2021/5582646 – volume: 17 start-page: 140 year: 2020 ident: ref_16 article-title: Enhancing Clustering Stability in VANET: A Spectra Clustering Based Approach publication-title: China Commun. doi: 10.23919/JCC.2020.04.013 – volume: 67 start-page: 12109 year: 2018 ident: ref_22 article-title: Intrusion Detection Based on K-Coverage in Mobile Sensor Networks with Empowered Intruders publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2872848 |
| SSID | ssj0000913810 |
| Score | 2.2795093 |
| Snippet | In recent times, the progress of Intelligent Unmanned Wireless Sensor Networks (IUWSNs) has inspired scientists to develop inventive task allocation... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 9870 |
| SubjectTerms | Algorithms Assignment problem Efficiency Energy consumption genetic algorithm Genetic algorithms Genetic research Internet of Things Linear programming Mathematical optimization Mutation Optimization algorithms Particle Swarm Optimization Research methodology Sensors task allocation Wireless sensor networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF9EerCHUrWlr7VlD4JtITSbXZPdYypKC-UhqMXbMvtVxeeLvET__s4k8ZFDxUuvyyRsdj5_ZPY3jO3H8tBjJgvoaU5nKhqfaaNSpjFchrIKTvXjgH7_quZzfXlpTiejvqgnbKAHHg7uW5GMqgBxSgKlYiod5IVzUkGRpCxCH33zykzAVB-DjSDqquFCnkRcT_-DhSR2LhpLPElBPVP_U_G4TzInr9mrsTrk9bCrbbYRlzvs5YQzcIdtj97Y8s8jZfSXXXZf83nzEBf86AoafJYf09ViXge4o3DGSZKW68WfZnXdXd1yrFX5ObQ3uETpjNTDm8R_rhk6O36xvAWKwpw6ZBcYEfkZYl58bj60jrdv2MXJ8fnRj2wcqJB5lcsuA62D8CaaEjxmfpCu57tLovRBOx1d0ljFSgEIymIsBTgDMWhMo5jYZa7kW7a5bJbxHeMhhSLXqFtpQKUEUNALRRWV0Eb4Ysa-Pp6x9SPbOA29WFhEHaQQO1HIjO2vhe8Gko1_i30nZa1FiBm7X0B7saO92OfsZcYOSNWW_Bc35GG8hoCfRUxYtq7KAbQeztjeozXY0bFbWyACpKpIlO__x24-sC2aXz80re2xzW51Hz-yF_6hu25Xn3qb_gtz8vw9 priority: 102 providerName: Directory of Open Access Journals |
| Title | A Novel Chaotic Elite Adaptive Genetic Algorithm for Task Allocation of Intelligent Unmanned Wireless Sensor Networks |
| URI | https://www.proquest.com/docview/2862218116 https://doaj.org/article/2f947a721fa44ef6ba02bb34a2f332d2 |
| Volume | 13 |
| WOSCitedRecordID | wos001062879100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHoIWKLaXyoRIPKSKO3cQ-obTaikoQraBF5WQ5frSI7Wa7Sfv7mUm8yx6AC8c4TuJoxt88bH9DyIHPDy1YMgczrZaJ8MomUomQSIBLlxeuFn05oG-fiqqSFxdqEhNubdxWucTEHqhdYzFH_j4D1xvNEcs_zG8SrBqFq6uxhMZ9solMZaDnm0fjavJllWVB1kvJ0uFgHof4HteFGUeWLixPvGaKesb-v-Fyb2xOnvzvMJ-Sx9HNpOWgF1vknp9tk0dr5IPbZCtO65a-idzTb5-R25JWzZ2f0uMr08CzdIxnlGnpzBxxkWJPbC6nl_DV7uqagtNLz0z7E5rQLqKcaRPo6Yrqs6Pns2uDcE5xq-0UoJV-heAZnquGPejtc3J-Mj47_pjEygyJFSnvEiOlY1Z5lRsLLoThdU-cF1hunaylr4MEd5gzA9Gd9zkztTLeSbDH4CHwVPAdsjFrZv4FoS64LJWgJFwZEYIxGb6QFV4wqZjNRuTdUkjaRtpyrJ4x1RC-oET1mkRH5GDVeT6wdfy52xFKe9UFKbb7hmZxqeOM1VlQojAQIAcjhA95bdKsrrkwWeA8czCw16grGoEABmRNPM8Av4WUWros8iH6PRyRvaWu6IgQrf6tKLv_vv2SPMQS98O-tj2y0S1u_SvywN51P9rFflT4_T6XAFeT08-T778AssEN8w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gAgX2UMRDssg-aq8PCIXSqlHTKBItak9mvY8WkcYhTov4U_xGZmwn5ADceuC6Xlu79rfzzax3vgHY9PGWRSZzuNJyHSmf2kinKkQazaWLE5erqhzQp34yGOjj43S4Aj_nuTB0rHJuEytD7QpLe-RvBLreREc8fjf5FlHVKPq7Oi-hUcNi3__4jiFb-bb3Ab_vcyF2dw6396KmqkBkVUfOIqO14zb1aWws0p-ReSX6Fnhsnc61z4NGV05yg5GJ9zE3eWq808glyG4Y_Et87jVYVQT2FqwOewfDk8WuDqlsat6pEwGlTDv0H5pLUgWjcshL1FdVCPgbD1Tktnvnf3std-F240azbo37NVjx43W4tSSuuA5rjdkq2ctGW_vVPbjoskFx6Uds-8wUeC_boRxs1nVmQnafUU9q7o5OcZazs3OGTj07NOVXbCLeJxyzIrDeQsp0xo7G54boitFR4hFSB_voxyXeN6jP2Jf34ehKXsYDaI2LsX8IzAUnOhoXgUyNCsEYQQ_kiVdcp9yKNryegyKzjSw7VQcZZRieEYKyJQS1YXPReVKrkfy523tC16ILSYhXDcX0NGssUiZCqhKTCB6MUj7EuemIPJfKiCClcDiwF4TNjAwdDsiaJl8Dp0WSYVk3ievofqsNG3NsZo0FLLPfwHz078vP4Mbe4UE_6_cG-4_hpkAnsj7DtwGt2fTCP4Hr9nL2pZw-bRYbg89XDeRfcBRp4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiE4AC0gFgr4UMRDiho_mjgHhELbFauW1Uq0qD0Fx48WsU2WTVrEX-PXMZNklz0Atx64Ok5kO5_nG9vjbwjZdNG2ASazMNNyFUiXmEAl0gcKzKWNYpvLJh3Qp4N4NFLHx8l4hfyc34XBsMq5TWwMtS0N7pFvcXC9kY5YtOW7sIjx7uDt9FuAGaTwpHWeTqOFyL778R2Wb9Wb4S786-ecD_YOd94HXYaBwMhQ1IFWyjKTuCTSBqhQi7wRgPMsMlblyuVegVsnmIZVinMR03minVXAK8B0IpQCvnuNrIJLLnmPrI6HH8Ynix0eVNxULGwvBQqRhHgmzQQqhGFq5CUabLIF_I0TGqIb3Pmfh-guud251zRt58MaWXHFOrm1JLq4TtY6c1bRl53m9qt75CKlo_LSTejOmS7hXbqHd7NpavUU-YBiTSxOJ6fQy_rsnIKzTw919RWK0B9AfNPS0-FC4rSmR8W5RhqjGGI8AUqhH11RwXujNva-uk-OrmQwHpBeURbuIaHWWx4qmBwi0dJ7rTl-kMVOMpUww_vk9Rwgmenk2jFryCSDZRuiKVtCU59sLipPW5WSP1d7h0hbVEFp8aagnJ1mnaXKuE9krGPOvJbS-SjXIc9zITX3QnALDXuBOM3QAEKDjO7ucUC3UEosS-OoXfVv98nGHKdZZxmr7DdIH_378TNyA9CbHQxH-4_JTQ6-ZRvat0F69ezCPSHXzWX9pZo97eYdJZ-vGse_AJf_cqM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Chaotic+Elite+Adaptive+Genetic+Algorithm+for+Task+Allocation+of+Intelligent+Unmanned+Wireless+Sensor+Networks&rft.jtitle=Applied+sciences&rft.au=Fei%2C+Hongmei&rft.au=Zhang%2C+Baitao&rft.au=Liu%2C+Yan&rft.au=Manli+Yan&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft.spage=9870&rft_id=info:doi/10.3390%2Fapp13179870&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |