Prediction of Coiled Tubing Erosion Rate Based on Sparrow Search Algorithm Back-Propagation Neural Network Model

Coiled tubing has been widely used in oilfield development because it can significantly improve oil well productivity and recovery efficiency. However, with the increase in fracturing, drilling, and sand-washing operations, the erosion of coiled tubing walls caused by solid particles has become one...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 14; číslo 20; s. 9519
Hlavní autori: Cao, Yinping, Fang, Fengying, Wang, Guowei, Zhu, Wenyu, Hu, Yijie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.10.2024
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Coiled tubing has been widely used in oilfield development because it can significantly improve oil well productivity and recovery efficiency. However, with the increase in fracturing, drilling, and sand-washing operations, the erosion of coiled tubing walls caused by solid particles has become one of the main failure modes. To accurately predict the erosion rate of coiled tubing, this study studied the influence law of erosion rate through experiments, screened the main influencing factors of erosion rate by grey relational analysis (GRA), and established a back-propagation neural network (BPNN) model optimized by the sparrow search algorithm (SSA) to predict the erosion rate. The results show that the main influencing factors for coiled tubing erosion rate are impact velocity, impact angle, and sand concentration. In addition, the SSA-BPNN model shows a high goodness of fit (R) and a good fit with the experimental data. The SSA-BPNN model underwent standard statistical validation tests, effectively predicting the erosion rate of coiled tubing with a high coefficient of determination and low errors, demonstrating a robust consistency between predicted and actual values. This study is of great significance to oilfield engineers, pipeline designers, and oilfield developers, and provides effective support for optimizing oilfield development and pipeline maintenance. The main users include oil companies, engineering consulting institutions and related industry personnel, and may also attract the interest of scientific research institutions and academia, providing a useful reference for the technological progress of the oil industry.
AbstractList Coiled tubing has been widely used in oilfield development because it can significantly improve oil well productivity and recovery efficiency. However, with the increase in fracturing, drilling, and sand-washing operations, the erosion of coiled tubing walls caused by solid particles has become one of the main failure modes. To accurately predict the erosion rate of coiled tubing, this study studied the influence law of erosion rate through experiments, screened the main influencing factors of erosion rate by grey relational analysis (GRA), and established a back-propagation neural network (BPNN) model optimized by the sparrow search algorithm (SSA) to predict the erosion rate. The results show that the main influencing factors for coiled tubing erosion rate are impact velocity, impact angle, and sand concentration. In addition, the SSA-BPNN model shows a high goodness of fit (R) and a good fit with the experimental data. The SSA-BPNN model underwent standard statistical validation tests, effectively predicting the erosion rate of coiled tubing with a high coefficient of determination and low errors, demonstrating a robust consistency between predicted and actual values. This study is of great significance to oilfield engineers, pipeline designers, and oilfield developers, and provides effective support for optimizing oilfield development and pipeline maintenance. The main users include oil companies, engineering consulting institutions and related industry personnel, and may also attract the interest of scientific research institutions and academia, providing a useful reference for the technological progress of the oil industry.
Audience Academic
Author Fang, Fengying
Hu, Yijie
Cao, Yinping
Zhu, Wenyu
Wang, Guowei
Author_xml – sequence: 1
  givenname: Yinping
  orcidid: 0000-0003-3433-5397
  surname: Cao
  fullname: Cao, Yinping
– sequence: 2
  givenname: Fengying
  surname: Fang
  fullname: Fang, Fengying
– sequence: 3
  givenname: Guowei
  surname: Wang
  fullname: Wang, Guowei
– sequence: 4
  givenname: Wenyu
  surname: Zhu
  fullname: Zhu, Wenyu
– sequence: 5
  givenname: Yijie
  surname: Hu
  fullname: Hu, Yijie
BookMark eNptUU1v3CAQRVUqNU1z6h-w1GPlFIyx4bhdJW2ktInycUazw9hh4zUuZhX135fdraqoChwGmPfeDG_es6MxjMTYR8HPpDT8C0yTqCtulDBv2HHF26aUtWiPXpzfsdN5XvO8jJBa8GM23URyHpMPYxG6Yhn8QK6436782BfnMcy7xC0kKr7CnDP5djdBjOG5uCOI-Fgshj5Enx43GYFP5U0ME_SwF_xJ2whDDuk5xKfiR3A0fGBvOxhmOv0bT9jDxfn98nt5df3tcrm4KrHmMpXQSFStIWq10BoVampXpiNyBgVo4lyQqbSolckf64A75K6ulXAaRdtwecIuD7ouwNpO0W8g_rYBvN0_hNhbiMnjQFY4QBQrxNqJWlcSuGocKKNl2zrTrLLWp4PWFMOvLc3JrsM2jrl9K0XFVaUquat4dkD1kEX92IUUAfN2tPGYZ9Vlb-0i95ytN3vC5wMBs89zpO5fm4Lb3Ujti5FmtPgPjT7tfc5l_PAq5w-BvaTf
CitedBy_id crossref_primary_10_1177_02670836251357334
Cites_doi 10.1061/(ASCE)CF.1943-5509.0000886
10.1016/S0893-6080(97)00134-2
10.1007/s11668-020-01006-5
10.3390/en15103750
10.1016/j.wear.2021.203646
10.1115/1.4043580
10.1016/j.neunet.2013.02.002
10.1016/j.molliq.2022.121194
10.1007/s11668-022-01400-1
10.1016/j.powtec.2011.12.016
10.1038/323533a0
10.1016/j.jclepro.2023.137153
10.1016/j.powtec.2015.06.073
10.1016/j.wear.2017.02.028
10.1016/j.wear.2013.02.014
10.1016/j.matdes.2021.110376
10.3390/en15051901
10.1016/j.engfailanal.2022.106688
10.3390/app14125234
10.3390/ma12030358
10.1016/j.engfailanal.2020.104909
10.1016/0308-0161(94)00055-N
10.1080/21642583.2019.1708830
10.3390/en5103892
10.1515/ntrev-2022-0493
10.1016/j.petsci.2023.01.010
10.1016/j.wear.2019.01.015
10.1007/s00521-021-06116-1
10.1016/j.wear.2007.03.016
10.3390/en14206609
10.1016/j.engfailanal.2017.07.011
10.3390/pr8060661
10.1007/s11668-018-0456-y
10.1007/s12206-023-0325-9
10.1016/j.heliyon.2023.e21275
10.1016/j.jngse.2022.104423
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14209519
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1dacc1bcc4d14823a056da598377d96b
A814381930
10_3390_app14209519
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-a63c579ee78188c5c8e7b9feed9c1a8e001e9281459341fa0dc0d4451d8c17603
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341677100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:14 EDT 2025
Mon Jun 30 15:08:42 EDT 2025
Tue Nov 04 18:15:37 EST 2025
Sat Nov 29 07:12:31 EST 2025
Tue Nov 18 22:15:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a63c579ee78188c5c8e7b9feed9c1a8e001e9281459341fa0dc0d4451d8c17603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3433-5397
OpenAccessLink https://doaj.org/article/1dacc1bcc4d14823a056da598377d96b
PQID 3120525230
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1dacc1bcc4d14823a056da598377d96b
proquest_journals_3120525230
gale_infotracacademiconefile_A814381930
crossref_primary_10_3390_app14209519
crossref_citationtrail_10_3390_app14209519
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sedrez (ref_11) 2019; 426–427
Zangenehmadar (ref_27) 2016; 30
Bilal (ref_14) 2021; 476
Shah (ref_18) 2008; 264
Jantunen (ref_42) 2023; 407
Lai (ref_17) 2019; 141
Cui (ref_41) 2024; 10
Han (ref_34) 1995; 63
Xu (ref_3) 2022; 22
Wang (ref_2) 2023; 373
Shaik (ref_29) 2021; 33
Liao (ref_32) 2012; 5
Rumelhart (ref_36) 1986; 323
Xie (ref_8) 2023; 9
Wang (ref_12) 2023; 37
Deng (ref_25) 2021; 119
Beccati (ref_9) 2019; 7
Zhao (ref_19) 2022; 99
Zhou (ref_7) 2022; 214
Zhang (ref_33) 2022; 11
Macchini (ref_30) 2013; 1–2
Nasiri (ref_35) 2017; 81
ref_22
ref_21
ref_20
Jiang (ref_1) 2023; 20
Zhu (ref_13) 2022; 142
Huang (ref_31) 2021; 33
Pandya (ref_23) 2017; 378–379
ref_28
Xue (ref_37) 2020; 8
Cao (ref_16) 2023; 51
ref_26
Cui (ref_5) 2018; 18
Marinack (ref_10) 2012; 221
Nitta (ref_39) 2013; 43
Cheng (ref_40) 2013; 34
Liu (ref_15) 2016; 22
Hamey (ref_38) 1998; 11
Jia (ref_4) 2020; 20
ref_6
Shamshirband (ref_24) 2015; 284
References_xml – volume: 51
  start-page: 143
  year: 2023
  ident: ref_16
  article-title: Erosion Factor Analysis of Coiled Tubing with Helical Buckling
  publication-title: China Pet. Mach.
– volume: 30
  start-page: 04016032
  year: 2016
  ident: ref_27
  article-title: Assessment of Remaining Useful Life of Pipelines Using Different Artificial Neural Networks Models
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000886
– volume: 11
  start-page: 669
  year: 1998
  ident: ref_38
  article-title: XOR has No Local Minima: A Case Study in Neural Network Error Surface Analysis
  publication-title: Neural. Netw.
  doi: 10.1016/S0893-6080(97)00134-2
– volume: 20
  start-page: 1928
  year: 2020
  ident: ref_4
  article-title: Numerical Simulation on Coiled Tubing Erosion During Hydraulic Fracturing
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-020-01006-5
– ident: ref_26
  doi: 10.3390/en15103750
– volume: 476
  start-page: 203646
  year: 2021
  ident: ref_14
  article-title: Experimental and CFD Investigations of 45 and 90 Degrees Bends and Various Elbow Curvature Radii Effects on Solid Particle Erosion
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203646
– volume: 141
  start-page: 121302
  year: 2019
  ident: ref_17
  article-title: Numerical Study of Solid Particle Erosion in a Centrifugal Pump for Liquid–Solid Flow
  publication-title: J. Fluid. Eng.
  doi: 10.1115/1.4043580
– volume: 43
  start-page: 1
  year: 2013
  ident: ref_39
  article-title: Local Minima in Hierarchical Structures of Complex-Valued Neural Networks
  publication-title: Neural. Netw.
  doi: 10.1016/j.neunet.2013.02.002
– volume: 10
  start-page: 1
  year: 2024
  ident: ref_41
  article-title: Study on the Erosion Performance of QT1100 Coiled Tubing Steel in Liquid-Solid Two-phase Flow
  publication-title: China Pet. Mach.
– volume: 373
  start-page: 121194
  year: 2023
  ident: ref_2
  article-title: Effects of the Surfactant, Polymer, and crude oil properties on the formation and stabilization of oil-based foam liquid films: Insights from the microscale
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.121194
– volume: 22
  start-page: 1276
  year: 2022
  ident: ref_3
  article-title: Coiled Tubing Erosion Prediction and Fracturing Fluid Parameters Optimization During Hydraulic Jet Fracturing
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-022-01400-1
– volume: 221
  start-page: 47
  year: 2012
  ident: ref_10
  article-title: An Eulerian, lattice-based cellular automata approach for modeling multiphase flows
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.12.016
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_36
  article-title: Learning Representations by Back-Propagating Errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 407
  start-page: 137153
  year: 2023
  ident: ref_42
  article-title: Influence of coal ashes on fired clay brick quality: Random forest regression and artificial neural networks modeling
  publication-title: J. Clean. Product.
  doi: 10.1016/j.jclepro.2023.137153
– volume: 284
  start-page: 336
  year: 2015
  ident: ref_24
  article-title: Performance Investigation of Micro- and Nano-Sized Particle Erosion in a 90° Elbow Using an ANFIS Model
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.06.073
– volume: 378–379
  start-page: 198
  year: 2017
  ident: ref_23
  article-title: A Computational Fluid Dynamics Based Artificial Neural Network Model to Predict Solid Particle Erosion
  publication-title: Wear
  doi: 10.1016/j.wear.2017.02.028
– volume: 1–2
  start-page: 21
  year: 2013
  ident: ref_30
  article-title: Influence of particle size, density, particle concentration on bend erosive wear in pneumatic conveyors
  publication-title: Wear
  doi: 10.1016/j.wear.2013.02.014
– volume: 214
  start-page: 110376
  year: 2022
  ident: ref_7
  article-title: Experimental Study on Erosion-Corrosion Behavior of Liquid–Solid Swirling Flow in Pipeline
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110376
– ident: ref_20
  doi: 10.3390/en15051901
– volume: 142
  start-page: 106688
  year: 2022
  ident: ref_13
  article-title: Research on Casing Erosion in Reservoir Section of Gas Storage Wells Based on Gas-Solid Two-Phase Flow
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106688
– ident: ref_22
  doi: 10.3390/app14125234
– ident: ref_6
  doi: 10.3390/ma12030358
– volume: 119
  start-page: 104909
  year: 2021
  ident: ref_25
  article-title: Life Prediction of Slotted Screen Based on Back-Propagation Neural Network
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104909
– volume: 63
  start-page: 205
  year: 1995
  ident: ref_34
  article-title: Artificial Neural Network Technology as a Method to Evaluate the Fatigue Life of Weldments with Welding Defects
  publication-title: Int. J. Press. Vessels. Pip.
  doi: 10.1016/0308-0161(94)00055-N
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_37
  article-title: A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm
  publication-title: Syst. Sci. Control. Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 33
  start-page: 14771
  year: 2021
  ident: ref_31
  article-title: A Novel Grey-Based Feature Ranking Method for Feature Subset Selection
  publication-title: J. Chin. Inst. Eng.
– volume: 5
  start-page: 3892
  year: 2012
  ident: ref_32
  article-title: A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion
  publication-title: Energies
  doi: 10.3390/en5103892
– volume: 11
  start-page: 3195
  year: 2022
  ident: ref_33
  article-title: Gray Correlation Analysis of Factors Influencing Compressive Strength and Durability of Nano-SiO2 and PVA Fiber Reinforced Geopolymer Mortar
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2022-0493
– volume: 20
  start-page: 1843
  year: 2023
  ident: ref_1
  article-title: Subsection and Superposition Method for Reservoir Formation Damage Evaluation of Complex-Structure Wells
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2023.01.010
– volume: 426–427
  start-page: 570
  year: 2019
  ident: ref_11
  article-title: Experiments and CFD Simulations of Erosion of a 90° Elbow in Liquid-Dominated Liquid-Solid and Dispersed-Bubble-Solid Flows
  publication-title: Wear
  doi: 10.1016/j.wear.2019.01.015
– volume: 33
  start-page: 14771
  year: 2021
  ident: ref_29
  article-title: An Intelligent Model to Predict the Life Condition of Crude Oil Pipelines Using Artificial Neural Networks
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-021-06116-1
– volume: 264
  start-page: 279
  year: 2008
  ident: ref_18
  article-title: Coiled Tubing Erosion During Hydraulic Fracturing Slurry Flow
  publication-title: Wear
  doi: 10.1016/j.wear.2007.03.016
– ident: ref_21
  doi: 10.3390/en14206609
– volume: 81
  start-page: 270
  year: 2017
  ident: ref_35
  article-title: Fracture Mechanics and Mechanical Fault Detection by Artificial Intelligence Methods: A review
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2017.07.011
– ident: ref_28
  doi: 10.3390/pr8060661
– volume: 34
  start-page: 1067
  year: 2013
  ident: ref_40
  article-title: Numerical simulation of Erosion for API Round Thread Connection in a Solid-liquid Two-phase Flow
  publication-title: China Pet. Mach.
– volume: 18
  start-page: 640
  year: 2018
  ident: ref_5
  article-title: Erosion–Corrosion Behavior of 20Cr Steel in Corrosive Solid–Liquid Two-Phase Flow Conditions
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-018-0456-y
– volume: 37
  start-page: 1871
  year: 2023
  ident: ref_12
  article-title: Study on Liquid-Solid Jet Erosion Characteristics of 316L Stainless Steel
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-023-0325-9
– volume: 22
  start-page: 80
  year: 2016
  ident: ref_15
  article-title: Erosion Wear Law of Coiled Tubing Outer Wall
  publication-title: China Powder Sci. Technol.
– volume: 9
  start-page: e21275
  year: 2023
  ident: ref_8
  article-title: Experimental Study on Particle Movement and Erosion Behavior of the Elbow in Liquid-Solid Flow
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e21275
– volume: 7
  start-page: 316
  year: 2019
  ident: ref_9
  article-title: Euerian Multi-Phase CFD model for predicting the performance of a centrifugal dredge pump
  publication-title: Int. J. Comp. Meth. Exp. Meas.
– volume: 99
  start-page: 104423
  year: 2022
  ident: ref_19
  article-title: Numerical Study on the Particle Erosion of Elbows Mounted in Series in the Gas-Solid Flow
  publication-title: J. Nat. Gas. Sci. Eng.
  doi: 10.1016/j.jngse.2022.104423
SSID ssj0000913810
Score 2.3112464
Snippet Coiled tubing has been widely used in oilfield development because it can significantly improve oil well productivity and recovery efficiency. However, with...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9519
SubjectTerms Accuracy
Algorithms
Back propagation
back-propagation neural network
coiled tubing
erosion rate prediction
Experimental methods
Flow velocity
grey relational analysis
Machine learning
Neural networks
Oil field services
Oil fields
Petroleum industry
Petroleum mining
Research methodology
Simulation
sparrow search algorithm
Turbulence models
Viscosity
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BxwN7ADZAKwzkh0n8kKLZcVLHT6ibNoEEVQRDGk9RfHYLojQl7fj7uUvcMiTgicc2VmTrznffF5-_AzjSuQ_E_tPE1UgERXuZOFeTL1szpe3kUt_rzL41k0lxeWnLeD16FcsqNzGxC9S92jPXbVMQPvYN8hfzY61SbsBG-PnV8nvCPaT4rDU21LgJOyy8JQewU755V37afnNhDcxCyf6ania2z6fEKksZZtjfElOn3_-3KN2lnvO7_3fS9-BOhKBi3PvMHtwIi33YvSZMuA97ccuvxPOoS_3iPizLlk912JKimYrThgKKFxdXxK1n4owWxQ_eE3YVJ5QavaBfH5adxqPoi5rFeD6j-aw_f6MR-DUpW2Lss841BIuE0KQmfVW64BZt8wfw8fzs4vR1Ehs2JJhJvU7qkcbc2BAMwYACcyyCcXZKadiiqotAKTHYtFBZbil5TmvpUXpWSPMFKjOS-iEMFs0iHIDInCWanzoTCJ8qdMQKRzKlFxc2NajlEF5urFVhVDPnphrzilgNm7a6ZtohHG0HL3sRjz8PO2Gzb4ew8nb3R9POqriRK-VrROUQM88SqromBOnr3BLRN96O3BCesdNUHB9oQljHaw60LFbaqsYFN5wn2ExLONw4TRUDx6r65SOP_v34MdxOCV_1dYWHMFi3V-EJ3MIf6y-r9mn0_J9A9RQE
  priority: 102
  providerName: ProQuest
Title Prediction of Coiled Tubing Erosion Rate Based on Sparrow Search Algorithm Back-Propagation Neural Network Model
URI https://www.proquest.com/docview/3120525230
https://doaj.org/article/1dacc1bcc4d14823a056da598377d96b
Volume 14
WOSCitedRecordID wos001341677100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBaj7cP2UNpuY1m7oofCfoCZJdmR9ZiUlA26YLoOuichnZSsLEuCk_bv753llgxW9tJH28KcdHe6-9DpO8ZOVBkion-ZeQcIUFTIM-8d2rLRE3QnL0PimT3X43F1dWXqjVZfVBOW6IHTwn0WwQEID1AEoqxUDiN2cKVBYKWD6XvafXNtNsBUuwcbQdRV6UKeQlxP58GikJRQmL9CUMvU_9h-3AaZsz2222WHfJCk2mfP4vyAvdjgDDxg-503rviHjjL640u2rBs6cKFF5osJP12grwd-eYOwd8pHKAV9uMC0kg8xagWOT9-XLf0iT_XGfDCbLprr9a8_OAJ-Z3WDYHraao0TfwcKNU4F45y6p81esR9no8vTL1nXSyGDIlfrzPUVlNrEqDFCV1BCFbU3E4yQBoSrIkaraGQlitJgXJu4PEAeiLwsVCB0P1ev2dZ8MY9vGC-8QQQuvY6YOgrwCNj6ucQfV0ZqUHmPfbpfXgsd0Tj1u5hZBBykC7uhix47eRi8TPwa_x42JD09DCFS7PYFmortTMX-z1R67D1p2ZLrokDguhsIOC0iwbKDinrBY0aLUzi6NwTb-fTKKiGp6R9itrdPIc0hey4xQUqFgUdsa93cxHdsB27X16vmmG0PR-P64rg1a3yqv36rf94B_jr86g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gAgX2UMRDsljv2lnvAaG0tGrUNLIgSO3JeB8piBAHJwXxp_iNzPgRigTceuBoe73yrr_9ZmYf3wBsy9h5jP5FYHKLAYp0PDAmRyxrNcHhZISrdWaHajRKjo91ugY_2rMwtK2y5cSKqF1haY78hQwFpVxDj_nV_EtAWaNodbVNoVHD4tB__4Yh2-Ll4DX-38dC7O-Ndw-CJqtAYCMul0HekzZW2nuFtiqxsU28MnqCtkLbME888rbXIgmjWCPDT3LuLHck4-USG6oel1jvJViPEOy8A-vp4Cg9Wc3qkMpmEvL6IKCUmtM6dBgJcmT0b6avyhDwNztQGbf9G_9bt9yE640bzfo17jdgzc824do5ccVN2Ghoa8GeNtraz27BPC1pZYrQyIoJ2y2QFB0bnxl8he1ht9GDN-h_sx00747h1dt5pVPJ6o3ZrD89xfYvP3zGEvZTkJYFUnIFb0ZCJ_hRo3pnPaM0c9Pb8O5C-uEOdGbFzN8FFhntjRRGefSxQ2swsu1xgRUnWigreReet3jIbKPITolBphlGZgSe7Bx4urC9KjyvhUj-XGyHgLUqQurh1Y2iPM0aMspCl1sbGmsjRzKwMkcv2OWxTqRSTvdMF54QLDPiOPwgmzdHNbBZpBaW9bH5FOlTE7ZaWGYN-S2yX5i89-_Hj-DKwfhomA0Ho8P7cFWgv1jvk9yCzrI88w_gsv26_LgoHzbjjMH7i8bwT7fvZMM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE4AC0gAgX2UMRDsmrv2lnvAaGkTUTVyrJKkXoz3odL1RAHJwXx1_h1zPgRigTceuBoe2N5N99-M7M7-w3Atoisw-ifezo3GKAI63ta54hlJQucTprbRmf2UCZJfHKi0jX40Z2FobTKjhNroraloTXyHRFwKrmGHvNO0aZFpHuTt_MvHlWQop3WrpxGA5ED9_0bhm-LN_t7-F8_53wyPt5957UVBjwT-mLp5QNhIqmck2i3YhOZ2EmtCrQbygR57JDDneJxEEYK2b7IfWt8S5JeNjaBHPgC33sN1qXAoKcH66Nxkh6tVnhIcTMO_OZQoBDKpz3pIOTk1KjfzGBdLeBvNqE2dJM7__MQ3YXbrXvNhs182IA1N9uEW5dEFzdho6WzBXvZam6_ugfztKIdK0IpKwu2WyJZWnZ8ofEnbIxDSA-O0C9nIzT7luHV-3mtX8mahG02nJ5i_5efPmMLc-6lVYlUXcOekQAKflTSZNwzKj83vQ8frmQcHkBvVs7cQ2ChVk4LrqVD3zswGiPegc_xxbHi0gi_D687bGSmVWqngiHTDCM2AlJ2CUh92F41njcCJX9uNiKQrZqQqnh9o6xOs5akssDmxgTamNCSPKzI0Tu2eaRiIaVVA92HFwTRjLgPP8jk7REO7BapiGVD7D6tAFAXtjqIZi0pLrJf-Hz078fP4AYCNzvcTw4ew02ObmSTPrkFvWV14Z7AdfN1ebaonrZTjsHHq4bwT33LbV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Coiled+Tubing+Erosion+Rate+Based+on+Sparrow+Search+Algorithm+Back-Propagation+Neural+Network+Model&rft.jtitle=Applied+sciences&rft.au=Yinping+Cao&rft.au=Fengying+Fang&rft.au=Guowei+Wang&rft.au=Wenyu+Zhu&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=20&rft.spage=9519&rft_id=info:doi/10.3390%2Fapp14209519&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1dacc1bcc4d14823a056da598377d96b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon