GARMT: Grouping-Based Association Rule Mining to Predict Future Tables in Database Queries
In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing structured data. These databases ensure data integrity through strongly typed schema definitions and support complex transaction management and eff...
Gespeichert in:
| Veröffentlicht in: | Computers (Basel) Jg. 14; H. 6; S. 220 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2025
|
| Schlagworte: | |
| ISSN: | 2073-431X, 2073-431X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing structured data. These databases ensure data integrity through strongly typed schema definitions and support complex transaction management and efficient query processing capabilities. However, data sparsity—where most fields in large table sets remain unused by most queries—leads to inefficiencies in access optimization. We propose a grouping-based approach (GARMT) that partitions SQL queries into fixed-size groups and applies a modified FP-Growth algorithm (GFP-Growth) to identify frequent table access patterns. Experiments on a real-world dataset show that grouping significantly reduces runtime—by up to 40%—compared to the ungrouped baseline while preserving rule relevance. These results highlight the practical value of query grouping for efficient pattern discovery in sparse database environments. |
|---|---|
| AbstractList | In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing structured data. These databases ensure data integrity through strongly typed schema definitions and support complex transaction management and efficient query processing capabilities. However, data sparsity—where most fields in large table sets remain unused by most queries—leads to inefficiencies in access optimization. We propose a grouping-based approach (GARMT) that partitions SQL queries into fixed-size groups and applies a modified FP-Growth algorithm (GFP-Growth) to identify frequent table access patterns. Experiments on a real-world dataset show that grouping significantly reduces runtime—by up to 40%—compared to the ungrouped baseline while preserving rule relevance. These results highlight the practical value of query grouping for efficient pattern discovery in sparse database environments. |
| Audience | Academic |
| Author | Qin, Xiao Sun, Libo Zhou, Yi Gao, Xian He, Peixiong |
| Author_xml | – sequence: 1 givenname: Peixiong orcidid: 0009-0000-4507-2364 surname: He fullname: He, Peixiong – sequence: 2 givenname: Libo surname: Sun fullname: Sun, Libo – sequence: 3 givenname: Xian orcidid: 0009-0006-4583-5513 surname: Gao fullname: Gao, Xian – sequence: 4 givenname: Yi surname: Zhou fullname: Zhou, Yi – sequence: 5 givenname: Xiao orcidid: 0000-0002-8345-3587 surname: Qin fullname: Qin, Xiao |
| BookMark | eNptUU1rGzEQFSWBpkl-QG-CnjfVSFqt1JubJk4goUlwofQitPowMvbKlbSH_vuqcekH7cxhhpn3HjO8V-hoSpNH6DWQC8YUeWvTbj9XnwtwIgil5AU6oWRgHWfw-eiP_iU6L2VDWihgksIJ-rJcPN2v3uFlTvM-TuvuvSne4UUpyUZTY5rw07z1-D5ObYtrwg_Zu2grvp7rnD1emXHrC44T_mCqGRsbP84-R1_O0HEw2-LPf9ZT9On6anV50919XN5eLu46ywmrnQElOKfMK6e4FNSx4ABgNIOxg_XcSgGDACGglzSMISjSBw4usEAldYqdotuDrktmo_c57kz-ppOJ-nmQ8lqbXKPdeu2JE1SNigwicAWD6SWRbJScBwijk03rzUFrn9PX2ZeqN2nOUztfM0qZVKCI-I1amyYap5BqNnYXi9ULyfuBy170DXXxH1RL53fRNgdDbPO_CHAg2JxKyT78egaI_mG0_sdo9h10ZJwS |
| Cites_doi | 10.1145/360402.360421 10.1145/3662165.3662765 10.1145/2063384.2063401 10.1109/ASE51524.2021.9678915 10.1145/1133905.1133907 10.1109/MCSE.2014.34 10.1109/TPDS.2018.2874014 10.14778/3626292.3626298 10.1145/3626253.3635607 10.1016/B978-0-12-381479-1.00006-X 10.1007/3-540-45728-3_10 10.1007/BF02948845 10.1109/TBC.2005.856727 10.1145/253260.253327 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/computers14060220 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2073-431X |
| ExternalDocumentID | oai_doaj_org_article_e0d629b9076f4917a58083b844f1fbd8 A845748565 10_3390_computers14060220 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABUWG ADBBV AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC IVC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c403t-a1964423e9d94862d3fd111ba7ac7ce4c861761661582fbff905f41df3f282d93 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514750200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-431X |
| IngestDate | Fri Oct 03 12:52:12 EDT 2025 Fri Jul 25 09:15:32 EDT 2025 Tue Nov 11 10:46:38 EST 2025 Tue Nov 04 18:13:50 EST 2025 Sat Nov 29 07:09:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-a1964423e9d94862d3fd111ba7ac7ce4c861761661582fbff905f41df3f282d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-4507-2364 0000-0002-8345-3587 0009-0006-4583-5513 |
| OpenAccessLink | https://www.proquest.com/docview/3223891906?pq-origsite=%requestingapplication% |
| PQID | 3223891906 |
| PQPubID | 2032413 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e0d629b9076f4917a58083b844f1fbd8 proquest_journals_3223891906 gale_infotracmisc_A845748565 gale_infotracacademiconefile_A845748565 crossref_primary_10_3390_computers14060220 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Computers (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zeng (ref_1) 2023; 17 Hipp (ref_8) 2000; 2 ref_14 ref_12 ref_10 Yang (ref_13) 2006; 52 ref_20 Zhou (ref_11) 2018; 30 ref_19 ref_18 ref_17 Raddick (ref_16) 2014; 16 ref_15 ref_9 Huang (ref_3) 2000; 15 Yin (ref_2) 2020; 34 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 2 start-page: 58 year: 2000 ident: ref_8 article-title: Algorithms for association rule mining—A general survey and comparison publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/360402.360421 – ident: ref_20 doi: 10.1145/3662165.3662765 – ident: ref_12 doi: 10.1145/2063384.2063401 – ident: ref_4 doi: 10.1109/ASE51524.2021.9678915 – ident: ref_9 doi: 10.1145/1133905.1133907 – volume: 16 start-page: 22 year: 2014 ident: ref_16 article-title: Ten years of skyserver i: Tracking web and sql e-science usage publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2014.34 – ident: ref_10 – volume: 30 start-page: 1091 year: 2018 ident: ref_11 article-title: GreenDB: Energy-efficient prefetching and caching in database clusters publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2018.2874014 – ident: ref_15 – volume: 17 start-page: 148 year: 2023 ident: ref_1 article-title: An empirical evaluation of columnar storage formats publication-title: Proc. VLDB Endow. doi: 10.14778/3626292.3626298 – ident: ref_18 doi: 10.1145/3626253.3635607 – ident: ref_7 doi: 10.1016/B978-0-12-381479-1.00006-X – ident: ref_6 doi: 10.1007/3-540-45728-3_10 – ident: ref_14 – volume: 34 start-page: 3447 year: 2020 ident: ref_2 article-title: Overcoming data sparsity in group recommendation publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_17 – ident: ref_19 – volume: 15 start-page: 619 year: 2000 ident: ref_3 article-title: A fast algorithm for mining association rules publication-title: J. Comput. Sci. Technol. doi: 10.1007/BF02948845 – volume: 52 start-page: 83 year: 2006 ident: ref_13 article-title: PAPR reduction of an OFDM signal by use of PTS with low computational complexity publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2005.856727 – ident: ref_5 doi: 10.1145/253260.253327 |
| SSID | ssj0000913821 |
| Score | 2.2932918 |
| Snippet | In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 220 |
| SubjectTerms | Algorithms Data management Data mining Datasets Efficiency Energy consumption Management systems Methods Optimization Queries Query languages Query processing SQL database Structured data Structured query language Tables (data) Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHrz4FqtVchAEYek-sruJt1atHmyppUrxEvKEgrTS3fr7nWS30iLixetuWMI3mcx8yc43CF2GJjEy1FFgTR4GJDFRwKxOYS0DG5Em1rGvhXl9yvt9Oh6zwUqrL_dPWCUPXAHXMqHOYiaBw2WWALcQKYWsQVJCbGSl9mW-Yc5WyJTfg5nT1ouqa8wEeH1L1U0SCmAUmSsvXQtEXq__t13Zh5ruHtqpc0Tcrua2jzbM9ADtLvsv4NodD9HbQ3vYG91gf34EISjoQEjSeAVxPFy8G9zzTSBwOcODubuXKXHXK4ngkaubKvBkiu9EKVxAw88Lp3xcHKGX7v3o9jGoeyUEioRJGQgnrAWpkWGaEWApOrEatjEpcqFyZYiikKpkEUTjlMZWWsvC1JJI28QC6dIsOUab09nUnCAsbZYqQ3NNhSQawNMig-8C2kkkwAYNdL0Ejn9UkhgcqIRDmf9AuYE6DtrvgU7N2j8AG_PaxvwvGzfQlTMMdz5XzoUSdekAzNepV_E2JWlOKOSmDdRcGwm-otZfL03La18tOGxp7rKWhdnpf0z2DG3HrkewP6lpos1yvjDnaEt9lpNifuGX6RfjS-t6 priority: 102 providerName: Directory of Open Access Journals |
| Title | GARMT: Grouping-Based Association Rule Mining to Predict Future Tables in Database Queries |
| URI | https://www.proquest.com/docview/3223891906 https://doaj.org/article/e0d629b9076f4917a58083b844f1fbd8 |
| Volume | 14 |
| WOSCitedRecordID | wos001514750200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2073-431X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913821 issn: 2073-431X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-431X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913821 issn: 2073-431X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2073-431X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913821 issn: 2073-431X databaseCode: K7- dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2073-431X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913821 issn: 2073-431X databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-431X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913821 issn: 2073-431X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-431X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913821 issn: 2073-431X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5cCl5SlCS-QDEhKS1X14d-1eUAINIEi0RAGVXiyvH6hSlZTdDb-fGccpRAguXPawtryWZ8bz2vmGkOeJy12T2JR5VyWM5y5l0tsCeBm8kcZlNgu1MF8-VrOZOD-XdQy4dfG3yu2dGC5quzIYIz8BxsOUmkzKV9ffGXaNwuxqbKFxm-wjSgK2bqiLi5sYC2JeiizdJDNz8O5PTGyV0IFfUWKR6Y46Cqj9f7ubg8KZHP7vVu-Rg2hq0tGGN-6TW275gBxu2zjQKNUPycXb0Xy6OKUhDAWajI1Bs1n6G-HofH3l6DT0kqD9itYtpnd6OgmAJHSB5VcdvVzSN7rXqBfppzUCKHePyOfJ2eL1OxZbLjDDk7xnGvG5wMJy0koOzo7NvYXbsNGVNpVx3AiweMoUlHohMt94L5PC89T63IPvZmX-mOwtV0v3hNDGl4VxorJCN9zC6Vtdwrqpb_JUey4H5OX25NX1BllDgUeCZFJ_kGlAxkibm4kIih1erNpvKsqYcoktM9mAu1_C-mmlCwEGZiM49_BVKwbkBVJWoej2rTY6ViDAfhEES40ELyouwMQdkOOdmSByZnd4S3gVRb5Tv6j-9N_DR-Ruhk2EQyjnmOz17do9I3fMj_6ya4dkf3w2q-fDEByA54eKDQNXw0j9flp__QkRmP84 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFA6lFfTFesVtq-ZBEYShc8lMkoLI1rq27IVaVim-xEwuUpDddma24p_yN3pOdqa6iL71wddJyFzy5VznnI-QZ7HLXBnbJPKOxxHLXBJJb3PAMngjpUttGmphPo74ZCJOT-XxGvnR1cLgb5WdTAyC2s4Nxsh3AXiYUpNx8fr8IkLWKMyudhQaS1gM3fdv4LLVr44OYH-fp-ng7fTNYdSyCkSGxVkTaWxBBUaEk1YysOdt5i0c-FJzbbhxzAhQ6kUCeisXqS-9l3HuWWJ95sE9sdh8CUT-BssEx3M15NFVTAd7bIo0WSZPs0zGu6alZqjBjymwqHVF_QWWgL_pgqDgBpv_26e5Q263pjTtL7F_l6y52T2y2dFU0FZq3Sef3vVPxtM9GsJsoKmjfdDclv4GTHqy-OroOHBl0GZOjytMXzV0EBqu0CmWl9X0bEYPdKNR79P3C2wQXT8gH67lDR-S9dl85h4RWvoiN05wK3TJLOy21QWsm_gyS7RnskdedjutzpedQxR4XAgL9QcsemQfsXA1EZt-hwvz6otqZYhysS1SWcqYF7B-wnUuwIAuBWMe7mpFj7xAJCkUTU2ljW4rLOB5scmX6guWcybAhO-RnZWZIFLM6nAHNNWKtFr9QtnWv4efkpuH0_FIjY4mw21yK0XC5BC22iHrTbVwj8kNc9mc1dWTcHoo-XzdmPwJT2tVhg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD6UKuKL9YqpVedBEYQle5ndnRFEUmO0tA2xRCl9GWfnIoWS1OxG8a_56zxnslsNom998HVnmb3MN-c653wAT2KXuSq2SeRdGUc8c0kkvc0Ry-iNVC61aaiF-XhQjsfi-FhONuBHVwtDxyo7mRgEtZ0bipH3EXiUUpNx0fftsYjJcPTq_EtEDFKUae3oNFYQ2Xffv6H7Vr_cG-JaP03T0Zvp63dRyzAQGR5nTaSpHRUaFE5aydG2t5m3uPkrXWpTGseNQAVfJKjDcpH6ynsZ554n1mceXRVLjZhQ_F8p0cek44ST_OQivkP9NkWarBKpWSbjvmlpGmr0aQoqcF1ThYEx4G96ISi70db__Jtuwo3WxGaD1Z64BRtudhu2OvoK1kqzO3DydnB0OH3BQvgNNXi0ixrdst8Ay46WZ44dBg4N1szZZEFprYaNQiMWNqWys5qdzthQN5rsAfZ-SY2j67vw4VK-8B5szuYzdx9Y5YvcOFFaoStuceWtLnDexFdZoj2XPXjerbo6X3UUUeiJEUTUHxDpwS7h4uJGagYeLswXn1UrW5SLbZHKSsZlgfMnpc4FGtaV4NzjU63owTNClSKR1Sy00W3lBb4vNf9SA8Hzkgs07Xuws3YnihqzPtyBTrWirla_ELf97-HHcA2hqA72xvsP4HpKPMohmrUDm81i6R7CVfO1Oa0Xj8JGYvDpsiH5E5t6Xqo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GARMT%3A+Grouping-Based+Association+Rule+Mining+to+Predict+Future+Tables+in+Database+Queries&rft.jtitle=Computers+%28Basel%29&rft.au=He+Peixiong&rft.au=Sun%2C+Libo&rft.au=Gao+Xian&rft.au=Zhou%2C+Yi&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2073-431X&rft.volume=14&rft.issue=6&rft.spage=220&rft_id=info:doi/10.3390%2Fcomputers14060220&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-431X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-431X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-431X&client=summon |