GARMT: Grouping-Based Association Rule Mining to Predict Future Tables in Database Queries

In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing structured data. These databases ensure data integrity through strongly typed schema definitions and support complex transaction management and eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers (Basel) Jg. 14; H. 6; S. 220
Hauptverfasser: He, Peixiong, Sun, Libo, Gao, Xian, Zhou, Yi, Qin, Xiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2025
Schlagworte:
ISSN:2073-431X, 2073-431X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing structured data. These databases ensure data integrity through strongly typed schema definitions and support complex transaction management and efficient query processing capabilities. However, data sparsity—where most fields in large table sets remain unused by most queries—leads to inefficiencies in access optimization. We propose a grouping-based approach (GARMT) that partitions SQL queries into fixed-size groups and applies a modified FP-Growth algorithm (GFP-Growth) to identify frequent table access patterns. Experiments on a real-world dataset show that grouping significantly reduces runtime—by up to 40%—compared to the ungrouped baseline while preserving rule relevance. These results highlight the practical value of query grouping for efficient pattern discovery in sparse database environments.
AbstractList In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing structured data. These databases ensure data integrity through strongly typed schema definitions and support complex transaction management and efficient query processing capabilities. However, data sparsity—where most fields in large table sets remain unused by most queries—leads to inefficiencies in access optimization. We propose a grouping-based approach (GARMT) that partitions SQL queries into fixed-size groups and applies a modified FP-Growth algorithm (GFP-Growth) to identify frequent table access patterns. Experiments on a real-world dataset show that grouping significantly reduces runtime—by up to 40%—compared to the ungrouped baseline while preserving rule relevance. These results highlight the practical value of query grouping for efficient pattern discovery in sparse database environments.
Audience Academic
Author Qin, Xiao
Sun, Libo
Zhou, Yi
Gao, Xian
He, Peixiong
Author_xml – sequence: 1
  givenname: Peixiong
  orcidid: 0009-0000-4507-2364
  surname: He
  fullname: He, Peixiong
– sequence: 2
  givenname: Libo
  surname: Sun
  fullname: Sun, Libo
– sequence: 3
  givenname: Xian
  orcidid: 0009-0006-4583-5513
  surname: Gao
  fullname: Gao, Xian
– sequence: 4
  givenname: Yi
  surname: Zhou
  fullname: Zhou, Yi
– sequence: 5
  givenname: Xiao
  orcidid: 0000-0002-8345-3587
  surname: Qin
  fullname: Qin, Xiao
BookMark eNptUU1rGzEQFSWBpkl-QG-CnjfVSFqt1JubJk4goUlwofQitPowMvbKlbSH_vuqcekH7cxhhpn3HjO8V-hoSpNH6DWQC8YUeWvTbj9XnwtwIgil5AU6oWRgHWfw-eiP_iU6L2VDWihgksIJ-rJcPN2v3uFlTvM-TuvuvSne4UUpyUZTY5rw07z1-D5ObYtrwg_Zu2grvp7rnD1emXHrC44T_mCqGRsbP84-R1_O0HEw2-LPf9ZT9On6anV50919XN5eLu46ywmrnQElOKfMK6e4FNSx4ABgNIOxg_XcSgGDACGglzSMISjSBw4usEAldYqdotuDrktmo_c57kz-ppOJ-nmQ8lqbXKPdeu2JE1SNigwicAWD6SWRbJScBwijk03rzUFrn9PX2ZeqN2nOUztfM0qZVKCI-I1amyYap5BqNnYXi9ULyfuBy170DXXxH1RL53fRNgdDbPO_CHAg2JxKyT78egaI_mG0_sdo9h10ZJwS
Cites_doi 10.1145/360402.360421
10.1145/3662165.3662765
10.1145/2063384.2063401
10.1109/ASE51524.2021.9678915
10.1145/1133905.1133907
10.1109/MCSE.2014.34
10.1109/TPDS.2018.2874014
10.14778/3626292.3626298
10.1145/3626253.3635607
10.1016/B978-0-12-381479-1.00006-X
10.1007/3-540-45728-3_10
10.1007/BF02948845
10.1109/TBC.2005.856727
10.1145/253260.253327
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/computers14060220
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2073-431X
ExternalDocumentID oai_doaj_org_article_e0d629b9076f4917a58083b844f1fbd8
A845748565
10_3390_computers14060220
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
IVC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c403t-a1964423e9d94862d3fd111ba7ac7ce4c861761661582fbff905f41df3f282d93
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514750200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-431X
IngestDate Fri Oct 03 12:52:12 EDT 2025
Fri Jul 25 09:15:32 EDT 2025
Tue Nov 11 10:46:38 EST 2025
Tue Nov 04 18:13:50 EST 2025
Sat Nov 29 07:09:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a1964423e9d94862d3fd111ba7ac7ce4c861761661582fbff905f41df3f282d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-4507-2364
0000-0002-8345-3587
0009-0006-4583-5513
OpenAccessLink https://www.proquest.com/docview/3223891906?pq-origsite=%requestingapplication%
PQID 3223891906
PQPubID 2032413
ParticipantIDs doaj_primary_oai_doaj_org_article_e0d629b9076f4917a58083b844f1fbd8
proquest_journals_3223891906
gale_infotracmisc_A845748565
gale_infotracacademiconefile_A845748565
crossref_primary_10_3390_computers14060220
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computers (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zeng (ref_1) 2023; 17
Hipp (ref_8) 2000; 2
ref_14
ref_12
ref_10
Yang (ref_13) 2006; 52
ref_20
Zhou (ref_11) 2018; 30
ref_19
ref_18
ref_17
Raddick (ref_16) 2014; 16
ref_15
ref_9
Huang (ref_3) 2000; 15
Yin (ref_2) 2020; 34
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 2
  start-page: 58
  year: 2000
  ident: ref_8
  article-title: Algorithms for association rule mining—A general survey and comparison
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/360402.360421
– ident: ref_20
  doi: 10.1145/3662165.3662765
– ident: ref_12
  doi: 10.1145/2063384.2063401
– ident: ref_4
  doi: 10.1109/ASE51524.2021.9678915
– ident: ref_9
  doi: 10.1145/1133905.1133907
– volume: 16
  start-page: 22
  year: 2014
  ident: ref_16
  article-title: Ten years of skyserver i: Tracking web and sql e-science usage
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2014.34
– ident: ref_10
– volume: 30
  start-page: 1091
  year: 2018
  ident: ref_11
  article-title: GreenDB: Energy-efficient prefetching and caching in database clusters
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2874014
– ident: ref_15
– volume: 17
  start-page: 148
  year: 2023
  ident: ref_1
  article-title: An empirical evaluation of columnar storage formats
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3626292.3626298
– ident: ref_18
  doi: 10.1145/3626253.3635607
– ident: ref_7
  doi: 10.1016/B978-0-12-381479-1.00006-X
– ident: ref_6
  doi: 10.1007/3-540-45728-3_10
– ident: ref_14
– volume: 34
  start-page: 3447
  year: 2020
  ident: ref_2
  article-title: Overcoming data sparsity in group recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_17
– ident: ref_19
– volume: 15
  start-page: 619
  year: 2000
  ident: ref_3
  article-title: A fast algorithm for mining association rules
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/BF02948845
– volume: 52
  start-page: 83
  year: 2006
  ident: ref_13
  article-title: PAPR reduction of an OFDM signal by use of PTS with low computational complexity
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2005.856727
– ident: ref_5
  doi: 10.1145/253260.253327
SSID ssj0000913821
Score 2.2932918
Snippet In modern data management systems, structured query language (SQL) databases, as a mature and stable technology, have become the standard for processing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 220
SubjectTerms Algorithms
Data management
Data mining
Datasets
Efficiency
Energy consumption
Management systems
Methods
Optimization
Queries
Query languages
Query processing
SQL database
Structured data
Structured query language
Tables (data)
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHrz4FqtVchAEYek-sruJt1atHmyppUrxEvKEgrTS3fr7nWS30iLixetuWMI3mcx8yc43CF2GJjEy1FFgTR4GJDFRwKxOYS0DG5Em1rGvhXl9yvt9Oh6zwUqrL_dPWCUPXAHXMqHOYiaBw2WWALcQKYWsQVJCbGSl9mW-Yc5WyJTfg5nT1ouqa8wEeH1L1U0SCmAUmSsvXQtEXq__t13Zh5ruHtqpc0Tcrua2jzbM9ADtLvsv4NodD9HbQ3vYG91gf34EISjoQEjSeAVxPFy8G9zzTSBwOcODubuXKXHXK4ngkaubKvBkiu9EKVxAw88Lp3xcHKGX7v3o9jGoeyUEioRJGQgnrAWpkWGaEWApOrEatjEpcqFyZYiikKpkEUTjlMZWWsvC1JJI28QC6dIsOUab09nUnCAsbZYqQ3NNhSQawNMig-8C2kkkwAYNdL0Ejn9UkhgcqIRDmf9AuYE6DtrvgU7N2j8AG_PaxvwvGzfQlTMMdz5XzoUSdekAzNepV_E2JWlOKOSmDdRcGwm-otZfL03La18tOGxp7rKWhdnpf0z2DG3HrkewP6lpos1yvjDnaEt9lpNifuGX6RfjS-t6
  priority: 102
  providerName: Directory of Open Access Journals
Title GARMT: Grouping-Based Association Rule Mining to Predict Future Tables in Database Queries
URI https://www.proquest.com/docview/3223891906
https://doaj.org/article/e0d629b9076f4917a58083b844f1fbd8
Volume 14
WOSCitedRecordID wos001514750200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5cCl5SlCS-QDEhKS1X14d-1eUAINIEi0RAGVXiyvH6hSlZTdDb-fGccpRAguXPawtryWZ8bz2vmGkOeJy12T2JR5VyWM5y5l0tsCeBm8kcZlNgu1MF8-VrOZOD-XdQy4dfG3yu2dGC5quzIYIz8BxsOUmkzKV9ffGXaNwuxqbKFxm-wjSgK2bqiLi5sYC2JeiizdJDNz8O5PTGyV0IFfUWKR6Y46Cqj9f7ubg8KZHP7vVu-Rg2hq0tGGN-6TW275gBxu2zjQKNUPycXb0Xy6OKUhDAWajI1Bs1n6G-HofH3l6DT0kqD9itYtpnd6OgmAJHSB5VcdvVzSN7rXqBfppzUCKHePyOfJ2eL1OxZbLjDDk7xnGvG5wMJy0koOzo7NvYXbsNGVNpVx3AiweMoUlHohMt94L5PC89T63IPvZmX-mOwtV0v3hNDGl4VxorJCN9zC6Vtdwrqpb_JUey4H5OX25NX1BllDgUeCZFJ_kGlAxkibm4kIih1erNpvKsqYcoktM9mAu1_C-mmlCwEGZiM49_BVKwbkBVJWoej2rTY6ViDAfhEES40ELyouwMQdkOOdmSByZnd4S3gVRb5Tv6j-9N_DR-Ruhk2EQyjnmOz17do9I3fMj_6ya4dkf3w2q-fDEByA54eKDQNXw0j9flp__QkRmP84
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFA6lFfTFesVtq-ZBEYShc8lMkoLI1rq27IVaVim-xEwuUpDddma24p_yN3pOdqa6iL71wddJyFzy5VznnI-QZ7HLXBnbJPKOxxHLXBJJb3PAMngjpUttGmphPo74ZCJOT-XxGvnR1cLgb5WdTAyC2s4Nxsh3AXiYUpNx8fr8IkLWKMyudhQaS1gM3fdv4LLVr44OYH-fp-ng7fTNYdSyCkSGxVkTaWxBBUaEk1YysOdt5i0c-FJzbbhxzAhQ6kUCeisXqS-9l3HuWWJ95sE9sdh8CUT-BssEx3M15NFVTAd7bIo0WSZPs0zGu6alZqjBjymwqHVF_QWWgL_pgqDgBpv_26e5Q263pjTtL7F_l6y52T2y2dFU0FZq3Sef3vVPxtM9GsJsoKmjfdDclv4GTHqy-OroOHBl0GZOjytMXzV0EBqu0CmWl9X0bEYPdKNR79P3C2wQXT8gH67lDR-S9dl85h4RWvoiN05wK3TJLOy21QWsm_gyS7RnskdedjutzpedQxR4XAgL9QcsemQfsXA1EZt-hwvz6otqZYhysS1SWcqYF7B-wnUuwIAuBWMe7mpFj7xAJCkUTU2ljW4rLOB5scmX6guWcybAhO-RnZWZIFLM6nAHNNWKtFr9QtnWv4efkpuH0_FIjY4mw21yK0XC5BC22iHrTbVwj8kNc9mc1dWTcHoo-XzdmPwJT2tVhg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD6UKuKL9YqpVedBEYQle5ndnRFEUmO0tA2xRCl9GWfnIoWS1OxG8a_56zxnslsNom998HVnmb3MN-c653wAT2KXuSq2SeRdGUc8c0kkvc0Ry-iNVC61aaiF-XhQjsfi-FhONuBHVwtDxyo7mRgEtZ0bipH3EXiUUpNx0fftsYjJcPTq_EtEDFKUae3oNFYQ2Xffv6H7Vr_cG-JaP03T0Zvp63dRyzAQGR5nTaSpHRUaFE5aydG2t5m3uPkrXWpTGseNQAVfJKjDcpH6ynsZ554n1mceXRVLjZhQ_F8p0cek44ST_OQivkP9NkWarBKpWSbjvmlpGmr0aQoqcF1ThYEx4G96ISi70db__Jtuwo3WxGaD1Z64BRtudhu2OvoK1kqzO3DydnB0OH3BQvgNNXi0ixrdst8Ay46WZ44dBg4N1szZZEFprYaNQiMWNqWys5qdzthQN5rsAfZ-SY2j67vw4VK-8B5szuYzdx9Y5YvcOFFaoStuceWtLnDexFdZoj2XPXjerbo6X3UUUeiJEUTUHxDpwS7h4uJGagYeLswXn1UrW5SLbZHKSsZlgfMnpc4FGtaV4NzjU63owTNClSKR1Sy00W3lBb4vNf9SA8Hzkgs07Xuws3YnihqzPtyBTrWirla_ELf97-HHcA2hqA72xvsP4HpKPMohmrUDm81i6R7CVfO1Oa0Xj8JGYvDpsiH5E5t6Xqo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GARMT%3A+Grouping-Based+Association+Rule+Mining+to+Predict+Future+Tables+in+Database+Queries&rft.jtitle=Computers+%28Basel%29&rft.au=He+Peixiong&rft.au=Sun%2C+Libo&rft.au=Gao+Xian&rft.au=Zhou%2C+Yi&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2073-431X&rft.volume=14&rft.issue=6&rft.spage=220&rft_id=info:doi/10.3390%2Fcomputers14060220&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-431X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-431X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-431X&client=summon