Short-term reforecasting of power output from a 48 MWe solar PV plant

•Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and reforecasted.•The reforecast models are based on ANN optimized by genetic algorithm.•The reforecasts significantly improve the forecast skills of the b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Solar energy Ročník 112; s. 68 - 77
Hlavní autoři: Chu, Yinghao, Urquhart, Bryan, Gohari, Seyyed M.I., Pedro, Hugo T.C., Kleissl, Jan, Coimbra, Carlos F.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.02.2015
Pergamon Press Inc
Témata:
ISSN:0038-092X, 1471-1257
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and reforecasted.•The reforecast models are based on ANN optimized by genetic algorithm.•The reforecasts significantly improve the forecast skills of the baseline models. A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kNN) model. Using the measured power data from the PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three baseline models are significantly increased for time horizons of 5, 10, and 15min. This study demonstrates the effectiveness of the optimized reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies.
AbstractList •Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and reforecasted.•The reforecast models are based on ANN optimized by genetic algorithm.•The reforecasts significantly improve the forecast skills of the baseline models. A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kNN) model. Using the measured power data from the PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three baseline models are significantly increased for time horizons of 5, 10, and 15min. This study demonstrates the effectiveness of the optimized reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies.
A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kNN) model. Using the measured power data from the PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three baseline models are significantly increased for time horizons of 5, 10, and 15 min. This study demonstrates the effectiveness of the optimized reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies.
Author Kleissl, Jan
Urquhart, Bryan
Pedro, Hugo T.C.
Gohari, Seyyed M.I.
Coimbra, Carlos F.M.
Chu, Yinghao
Author_xml – sequence: 1
  givenname: Yinghao
  surname: Chu
  fullname: Chu, Yinghao
– sequence: 2
  givenname: Bryan
  surname: Urquhart
  fullname: Urquhart, Bryan
– sequence: 3
  givenname: Seyyed M.I.
  surname: Gohari
  fullname: Gohari, Seyyed M.I.
– sequence: 4
  givenname: Hugo T.C.
  surname: Pedro
  fullname: Pedro, Hugo T.C.
– sequence: 5
  givenname: Jan
  surname: Kleissl
  fullname: Kleissl, Jan
– sequence: 6
  givenname: Carlos F.M.
  surname: Coimbra
  fullname: Coimbra, Carlos F.M.
  email: ccoimbra@ucsd.edu
BookMark eNqFkN1LwzAUxYNMcJv-CULA59bcNm1SfBAZ8wMmCn6-hSxNNWVrapIq_vdmbE--7OXeh3vOuZzfBI0622mEToGkQKA8b1NvV7rTLs0I0BQgJcAO0BgogwSygo3QmJCcJ6TK3o_QxPuWRAVwNkbzp0_rQhK0W2OnG-u0kj6Y7gPbBvf2Rztsh9APATfOrrHElOP7N43jR-nw4yvuV7ILx-iwkSuvT3Z7il6u58-z22TxcHM3u1okipI8JBKKGhqW5UWxVKxSkFe1rHhZASspLBvKOVU1YVmd07zRkmesAS6LOGNRUuVTdLbN7Z39GrQPorWD6-JLAWWR0ZKVVRZVF1uVctb72EooE2QwtgtOmpUAIjbcRCt23MSGmwAQkUp0F__cvTNr6X73-i63Ph0BfJt49croTunaRKhB1NbsSfgDaweLEg
CODEN SRENA4
CitedBy_id crossref_primary_10_1016_j_renene_2016_09_012
crossref_primary_10_1016_j_rser_2017_08_017
crossref_primary_10_1016_j_renene_2015_09_011
crossref_primary_10_1016_j_solener_2016_04_004
crossref_primary_10_1088_1742_6596_2728_1_012011
crossref_primary_10_1016_j_energy_2023_128135
crossref_primary_10_1002_for_3064
crossref_primary_10_1016_j_apenergy_2024_124844
crossref_primary_10_1016_j_apenergy_2019_114216
crossref_primary_10_1016_j_segan_2019_100286
crossref_primary_10_1016_j_apenergy_2024_122709
crossref_primary_10_1016_j_apenergy_2019_113760
crossref_primary_10_1109_ACCESS_2020_3039733
crossref_primary_10_1016_j_renene_2015_04_022
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_1080_15435075_2024_2338911
crossref_primary_10_1016_j_uclim_2025_102413
crossref_primary_10_1016_j_procs_2021_07_049
crossref_primary_10_1016_j_solener_2018_02_011
crossref_primary_10_1016_j_apenergy_2024_123467
crossref_primary_10_1016_j_enganabound_2023_06_003
crossref_primary_10_1016_j_renene_2025_123618
crossref_primary_10_1007_s40815_021_01087_w
crossref_primary_10_1016_j_ijepes_2021_107176
crossref_primary_10_1109_TSTE_2024_3390578
crossref_primary_10_1007_s42452_024_05793_6
crossref_primary_10_3390_rs15092340
crossref_primary_10_1016_j_renene_2018_12_014
crossref_primary_10_1016_j_renene_2022_07_005
crossref_primary_10_1016_j_energy_2020_118700
crossref_primary_10_1109_TPWRS_2015_2502423
crossref_primary_10_1016_j_seta_2020_100915
crossref_primary_10_1016_j_rser_2023_113977
crossref_primary_10_1016_j_renene_2024_120385
crossref_primary_10_1016_j_energy_2023_126963
crossref_primary_10_1016_j_solener_2019_04_070
crossref_primary_10_1109_TSTE_2021_3138592
crossref_primary_10_3390_s18082529
crossref_primary_10_1016_j_enconman_2024_118391
crossref_primary_10_1016_j_apenergy_2021_118452
crossref_primary_10_1016_j_epsr_2020_106510
crossref_primary_10_1016_j_eswa_2024_124286
crossref_primary_10_1016_j_ijepes_2020_106244
crossref_primary_10_1080_00207543_2023_2269565
crossref_primary_10_3390_en11051287
crossref_primary_10_3390_su142417005
crossref_primary_10_1016_j_measurement_2024_115405
crossref_primary_10_1016_j_energy_2025_135214
crossref_primary_10_1016_j_rser_2022_112473
crossref_primary_10_1016_j_energy_2025_135213
crossref_primary_10_1016_j_rser_2024_114691
crossref_primary_10_1051_e3sconf_202018501052
crossref_primary_10_1016_j_egyr_2022_11_208
crossref_primary_10_1109_TSTE_2021_3125200
crossref_primary_10_1016_j_ifacol_2017_08_1856
crossref_primary_10_3390_en15082855
crossref_primary_10_1016_j_solener_2017_09_055
crossref_primary_10_1080_15325008_2018_1433733
crossref_primary_10_1080_15567036_2022_2097751
crossref_primary_10_1016_j_engappai_2023_107691
crossref_primary_10_1007_s42835_025_02255_w
crossref_primary_10_3390_rs12152357
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_1109_ACCESS_2025_3589131
crossref_primary_10_17159_2413_3051_2020_v31i3a7754
crossref_primary_10_1016_j_solener_2021_05_095
crossref_primary_10_1016_j_solener_2020_03_083
crossref_primary_10_1038_s41598_024_60672_9
crossref_primary_10_3390_en16114436
crossref_primary_10_1016_j_renene_2015_09_058
crossref_primary_10_1016_j_solener_2017_03_088
crossref_primary_10_3390_en15010370
crossref_primary_10_1016_j_solener_2015_10_038
crossref_primary_10_3390_en14154424
crossref_primary_10_1016_j_renene_2022_05_056
crossref_primary_10_1016_j_epsr_2022_107908
crossref_primary_10_1080_15435075_2021_1875474
crossref_primary_10_14710_ijred_2022_43953
crossref_primary_10_1016_j_renene_2018_12_119
crossref_primary_10_1007_s40095_022_00530_4
crossref_primary_10_1016_j_apenergy_2022_119682
crossref_primary_10_3390_en14196075
crossref_primary_10_3390_en15072457
crossref_primary_10_1016_j_apenergy_2018_06_112
crossref_primary_10_1016_j_jclepro_2020_122269
crossref_primary_10_1016_j_egyr_2021_10_125
crossref_primary_10_1016_j_epsr_2022_108157
crossref_primary_10_1016_j_energy_2024_131295
crossref_primary_10_1016_j_renene_2019_03_020
crossref_primary_10_1002_2050_7038_12664
crossref_primary_10_1016_j_rineng_2024_103226
crossref_primary_10_3390_en14165154
crossref_primary_10_1016_j_enconman_2017_09_040
crossref_primary_10_1016_j_solener_2016_06_069
crossref_primary_10_3390_su14095669
crossref_primary_10_3390_s22041499
crossref_primary_10_1016_j_solener_2018_06_105
crossref_primary_10_1088_1755_1315_615_1_012077
crossref_primary_10_1109_TSTE_2016_2613962
crossref_primary_10_1016_j_rser_2021_110735
crossref_primary_10_1016_j_apenergy_2025_125869
crossref_primary_10_1109_JPHOTOV_2023_3306827
crossref_primary_10_1016_j_solener_2016_06_073
crossref_primary_10_1016_j_renene_2016_05_041
crossref_primary_10_5194_amt_12_5417_2019
crossref_primary_10_1016_j_energy_2021_122733
crossref_primary_10_1016_j_apenergy_2021_117410
crossref_primary_10_1016_j_rineng_2024_102141
crossref_primary_10_1111_joes_12678
crossref_primary_10_1016_j_agrformet_2024_110038
crossref_primary_10_3390_en11010184
crossref_primary_10_1109_ACCESS_2019_2927804
crossref_primary_10_1016_j_energy_2017_09_042
crossref_primary_10_1016_j_solener_2015_01_016
crossref_primary_10_3390_su141711083
crossref_primary_10_1002_ep_13098
crossref_primary_10_1016_j_energy_2021_120908
crossref_primary_10_1016_j_epsr_2022_109073
crossref_primary_10_1109_TAI_2022_3179353
crossref_primary_10_1109_TIE_2018_2889611
crossref_primary_10_1016_j_solener_2017_11_023
crossref_primary_10_3390_en13010011
crossref_primary_10_1049_iet_rpg_2019_1227
crossref_primary_10_1016_j_solener_2018_10_024
crossref_primary_10_1016_j_solener_2019_06_041
crossref_primary_10_1007_s00202_024_02535_0
crossref_primary_10_3390_en10071003
crossref_primary_10_1016_j_rser_2024_114391
crossref_primary_10_3390_su15129234
crossref_primary_10_1016_j_renene_2017_09_074
crossref_primary_10_1016_j_solener_2015_10_023
crossref_primary_10_1109_TSG_2017_2728480
crossref_primary_10_1016_j_apenergy_2020_116395
crossref_primary_10_1049_rpg2_12194
crossref_primary_10_1016_j_solener_2015_01_024
crossref_primary_10_1016_j_neucom_2022_08_016
crossref_primary_10_1080_01430750_2025_2516063
crossref_primary_10_1155_2020_9586707
crossref_primary_10_1007_s13369_019_04183_0
crossref_primary_10_1007_s11356_022_24321_w
crossref_primary_10_3390_app10020487
crossref_primary_10_1007_s11708_024_0915_y
crossref_primary_10_1186_s13007_022_00871_5
crossref_primary_10_1016_j_solener_2017_02_010
crossref_primary_10_3389_fenrg_2022_815256
crossref_primary_10_3390_en17020525
crossref_primary_10_32604_ee_2022_020283
crossref_primary_10_3390_su15065453
crossref_primary_10_1111_exsy_12394
crossref_primary_10_1016_j_eswa_2023_121988
crossref_primary_10_3390_en12081487
crossref_primary_10_1109_TSMC_2024_3485960
crossref_primary_10_1016_j_solener_2022_03_003
crossref_primary_10_1016_j_solener_2018_03_066
crossref_primary_10_1109_ACCESS_2023_3247499
crossref_primary_10_1109_TII_2019_2925018
crossref_primary_10_1016_j_ijepes_2019_105790
Cites_doi 10.1109/NAPS.2010.5618944
10.1175/MWR3175.1
10.1109/POWERCON.2010.5666688
10.1016/j.pecs.2008.01.001
10.1016/j.solener.2009.05.016
10.1115/1.4007496
10.1175/1520-0493(2002)130<1792:CCFTRA>2.0.CO;2
10.1080/00031305.1983.10483087
10.1016/j.solener.2011.08.025
10.1126/science.285.5433.1548
10.1109/JPROC.2011.2144951
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1175/MWR3402.1
10.1109/34.824819
10.1016/j.solener.2011.01.007
10.1016/S0038-092X(02)00045-2
10.1016/j.pecs.2013.06.002
10.2172/1000106
10.1016/j.solener.2012.04.004
10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2
10.1063/1.1144830
10.1016/j.solener.2010.02.006
10.1016/j.solener.2014.01.030
10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
10.1175/BAMS-87-1-33
10.1109/TSTE.2012.2205716
10.1109/ICIEA.2008.4582816
10.1007/3-540-44989-2_68
10.1016/j.solener.2013.10.020
10.1016/j.solener.2012.09.018
10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2
10.1016/j.egypro.2014.03.248
10.1016/S1364-0321(01)00006-5
10.1016/j.epsr.2005.01.006
10.1115/1.4007497
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright Pergamon Press Inc. Feb 2015
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Feb 2015
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2014.11.017
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 77
ExternalDocumentID 3584156621
10_1016_j_solener_2014_11_017
S0038092X14005611
Genre Feature
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7ST
8FD
AFXIZ
AGCQF
AGRNS
C1K
FR3
KR7
L7M
SOI
SSH
ID FETCH-LOGICAL-c403t-a15d1f72355bc79c139da986917641bf4884cd072d343fea827f18a57f1101093
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350191000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Sun Jul 13 03:49:42 EDT 2025
Sat Nov 29 02:23:39 EST 2025
Tue Nov 18 21:10:11 EST 2025
Fri Feb 23 02:18:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time reforecasting
PV generation
Genetic algorithm optimization
Artificial neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-a15d1f72355bc79c139da986917641bf4884cd072d343fea827f18a57f1101093
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1652467692
PQPubID 9393
PageCount 10
ParticipantIDs proquest_journals_1652467692
crossref_citationtrail_10_1016_j_solener_2014_11_017
crossref_primary_10_1016_j_solener_2014_11_017
elsevier_sciencedirect_doi_10_1016_j_solener_2014_11_017
PublicationCentury 2000
PublicationDate February 2015
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2015
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Huang, Y., Lu, J., Liu, C., Xu, X., Wang, W., Zhou, X., 2010. Comparative study of power forecasting methods for pv stations. In: Power System Technology (POWERCON), 2010 International Conference, IEEE, pp. 1–6.
Rajagopalan, Lall, Zebiak (b0210) 2002; 130
Chu, Pedro, Coimbra (b0040) 2013; 98
Marquez, Coimbra (b0155) 2011; 85
Lave, Kleissl, Stein (b0135) 2012; 4
Lendasse, A., Wertz, V., Verleysen, M., 2003. Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models. Artificial Neural Networks and Neural Information Processing ICANN/ICONIP 2714, pp. 573–580.
Li, Y., Luan, R., Niu, J., 2008. Forecast of power generation for grid-connected photovoltaic system based on grey model and markov chain. In: ICIEA 2008 3rd IEEE Conference, pp. 1729–1733.
Pai, Hong (b0195) 2005; 74
Johnson, R., Shields, J., Koehler, T., 1991. Analysis and interpretation of simultaneous multi-station whole sky imagery. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO 91-3, PL-TR-91-2214.
Urquhart, B., Chow, C.W., Nguyen, D., Kleissl, J., Sengupta, M., Blatchford, J., Jeon, D., 2012. Towards intra-hour solar forecasting using two sky imagers at a large solar power plant. In: Proceedings of the American Solar Energy Society.
Hart, Stoutenburg, Jacobson (b0065) 2012; 100
Carter, Dallavalle, Glahn (b0030) 1989; 4
Marquez, Coimbra (b0165) 2013; 135
Mellit, Pavan (b0185) 2010; 84
Wilks, Hamill (b0230) 2007; 135
Inman, Pedro, Coimbra (b0095) 2013; 39
Ineichen, Perez (b0090) 2002; 73
Johnson, R., Hering, W., Shields, J., 1989. Automated visibility and cloud cover measurements with a solid-state imaging system. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO Ref. 89-7, GL-TR-89-0061, 128 pp.
Lew, D., Miller, N., Clark, K., Jordan, G., Gao, Z., 2010. Impact of high solar penetration in the western interconnection. Technical Report, National Renewable Energy Laboratories, NREL/TP-5500-49667.
Krishnamurti, Kishtawal, LaRow, Bachiochi, Zhang, Williford, Surendran (b0130) 1999; 285
McLachlan, Do, Ambroise (b0175) 2004; vol. 42
Allmen, Kegelmeyer (b0005) 1997; 13
Hamill, Whitaker, Wei (b0055) 2004; 132
Jain, Duin, Mao (b0100) 2000; 22
Marquez, Coimbra (b0160) 2013; 91
Box, Jenkins, Reinsel (b0020) 2011
Urquhart, Ghonima, Nguyen, Kurtz, Kleissl (b0220) 2013
Bishop (b0015) 1994; 65
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp. 1137–1145.
Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M.S., 2010. Practical approach for sub-hourly and hourly prediction of pv power output. In: North American Power Symposium (NAPS), pp. 1–5.
Kalogirou (b0120) 2001; 5
Mellit, Kalogirou (b0180) 2008; 34
Iman Gohari, Urquhart, Yang, Kurtz, Nuguyen, Chow, Ghonima, Kleissl (b0085) 2014; 49
Marquez, Gueorguiev, Coimbra (b0170) 2013; 135
Holland (b0075) 1992
Quesada-Ruiz, Chu, Tovar-Pescador, Pedro, Coimbra (b0205) 2014; 102
Pedro, Coimbra (b0200) 2012; 86
Hamill, Whitaker, Mullen (b0060) 2006; 87
Chow, Urquhart, Lave, Dominguez, Kleissl, Shields, Washom (b0035) 2011; 85
Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Joseph (b0115) 1996; 77
Page (b0190) 2003
Brockwell, Davis (b0025) 2002
Geisser (b0050) 1993; vol. 55
Bacher, Madsen, Nielsen (b0010) 2009; 83
Whitaker, Wei, Vitart (b0225) 2006; 134
Efron, Gong (b0045) 1983; 37
10.1016/j.solener.2014.11.017_b0070
Holland (10.1016/j.solener.2014.11.017_b0075) 1992
Ineichen (10.1016/j.solener.2014.11.017_b0090) 2002; 73
Lave (10.1016/j.solener.2014.11.017_b0135) 2012; 4
10.1016/j.solener.2014.11.017_b0150
McLachlan (10.1016/j.solener.2014.11.017_b0175) 2004; vol. 42
Chu (10.1016/j.solener.2014.11.017_b0040) 2013; 98
Allmen (10.1016/j.solener.2014.11.017_b0005) 1997; 13
Hart (10.1016/j.solener.2014.11.017_b0065) 2012; 100
Urquhart (10.1016/j.solener.2014.11.017_b0220) 2013
Marquez (10.1016/j.solener.2014.11.017_b0165) 2013; 135
Iman Gohari (10.1016/j.solener.2014.11.017_b0085) 2014; 49
Pai (10.1016/j.solener.2014.11.017_b0195) 2005; 74
Marquez (10.1016/j.solener.2014.11.017_b0155) 2011; 85
10.1016/j.solener.2014.11.017_b0110
Jain (10.1016/j.solener.2014.11.017_b0100) 2000; 22
Mellit (10.1016/j.solener.2014.11.017_b0180) 2008; 34
Pedro (10.1016/j.solener.2014.11.017_b0200) 2012; 86
Kalogirou (10.1016/j.solener.2014.11.017_b0120) 2001; 5
10.1016/j.solener.2014.11.017_b0215
10.1016/j.solener.2014.11.017_b0080
Whitaker (10.1016/j.solener.2014.11.017_b0225) 2006; 134
Brockwell (10.1016/j.solener.2014.11.017_b0025) 2002
Chow (10.1016/j.solener.2014.11.017_b0035) 2011; 85
10.1016/j.solener.2014.11.017_b0140
Hamill (10.1016/j.solener.2014.11.017_b0055) 2004; 132
Marquez (10.1016/j.solener.2014.11.017_b0160) 2013; 91
Efron (10.1016/j.solener.2014.11.017_b0045) 1983; 37
Hamill (10.1016/j.solener.2014.11.017_b0060) 2006; 87
Wilks (10.1016/j.solener.2014.11.017_b0230) 2007; 135
Carter (10.1016/j.solener.2014.11.017_b0030) 1989; 4
Page (10.1016/j.solener.2014.11.017_b0190) 2003
Bishop (10.1016/j.solener.2014.11.017_b0015) 1994; 65
Mellit (10.1016/j.solener.2014.11.017_b0185) 2010; 84
Kalnay (10.1016/j.solener.2014.11.017_b0115) 1996; 77
Bacher (10.1016/j.solener.2014.11.017_b0010) 2009; 83
Rajagopalan (10.1016/j.solener.2014.11.017_b0210) 2002; 130
Box (10.1016/j.solener.2014.11.017_b0020) 2011
Inman (10.1016/j.solener.2014.11.017_b0095) 2013; 39
Marquez (10.1016/j.solener.2014.11.017_b0170) 2013; 135
10.1016/j.solener.2014.11.017_b0145
10.1016/j.solener.2014.11.017_b0125
Krishnamurti (10.1016/j.solener.2014.11.017_b0130) 1999; 285
Quesada-Ruiz (10.1016/j.solener.2014.11.017_b0205) 2014; 102
Geisser (10.1016/j.solener.2014.11.017_b0050) 1993; vol. 55
10.1016/j.solener.2014.11.017_b0105
References_xml – reference: Lew, D., Miller, N., Clark, K., Jordan, G., Gao, Z., 2010. Impact of high solar penetration in the western interconnection. Technical Report, National Renewable Energy Laboratories, NREL/TP-5500-49667.
– year: 2003
  ident: b0190
  article-title: Practical Handbook of Photovoltaics: Fundamentals and Applications
– volume: 49
  start-page: 2340
  year: 2014
  end-page: 2350
  ident: b0085
  article-title: Comparison of solar power output forecasting performance of the total sky imager and the University of California, San Diego sky imager
  publication-title: Energy Procedia
– volume: vol. 42
  year: 2004
  ident: b0175
  publication-title: Analyzing Microarray Gene Expression Data
– volume: 86
  start-page: 2017
  year: 2012
  end-page: 2028
  ident: b0200
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Solar Energy
– reference: Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp. 1137–1145.
– volume: 134
  start-page: 2279
  year: 2006
  end-page: 2284
  ident: b0225
  article-title: Improving week-2 forecasts with multimodel reforecast ensembles
  publication-title: Monthly Weather Rev.
– volume: 98
  start-page: 592
  year: 2013
  end-page: 603
  ident: b0040
  article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning
  publication-title: Solar Energy
– volume: 4
  start-page: 401
  year: 1989
  end-page: 412
  ident: b0030
  article-title: Statistical forecasts based on the national meteorological center’s numerical weather prediction system
  publication-title: Weather Forecast.
– volume: 135
  start-page: 0110171
  year: 2013
  end-page: 0110175
  ident: b0170
  article-title: Forecasting of global horizontal irradiance using sky cover indices
  publication-title: ASME J. Solar Energy Eng.
– volume: 132
  start-page: 1434
  year: 2004
  end-page: 1447
  ident: b0055
  article-title: Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts
  publication-title: Monthly Weather Rev.
– volume: 13
  start-page: 97
  year: 1997
  end-page: 113
  ident: b0005
  article-title: The computation of cloud-base height from paired whole sky imaging cameras
  publication-title: J. Atmospheric Oceanic Technol.
– year: 2011
  ident: b0020
  publication-title: Time Series Analysis, Forecasting and Control
– volume: 34
  start-page: 574
  year: 2008
  end-page: 632
  ident: b0180
  article-title: Artificial intelligence techniques for photovoltaic applications: a review
  publication-title: Prog. Energy Combust. Sci.
– volume: 85
  start-page: 2881
  year: 2011
  end-page: 2893
  ident: b0035
  article-title: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed
  publication-title: Solar Energy
– volume: 37
  start-page: 36
  year: 1983
  end-page: 48
  ident: b0045
  article-title: A leisurely look at the bootstrap, the jackknife, and cross-validation
  publication-title: Am. Statistician
– volume: 73
  start-page: 151
  year: 2002
  end-page: 157
  ident: b0090
  article-title: A new airmass independent formulation for the Linke turbidity coefficient
  publication-title: Solar Energy
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: b0100
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 130
  start-page: 1792
  year: 2002
  end-page: 1811
  ident: b0210
  article-title: Categorical climate forecasts through regularization and optimal combination of multiple gcm ensembles
  publication-title: Monthly Weather Rev.
– volume: 83
  start-page: 1772
  year: 2009
  end-page: 1783
  ident: b0010
  article-title: Online short-term solar power forecasting
  publication-title: Solar Energy
– volume: 74
  start-page: 417
  year: 2005
  end-page: 425
  ident: b0195
  article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
  publication-title: Electr. Power Syst. Res.
– volume: 84
  start-page: 807
  year: 2010
  end-page: 821
  ident: b0185
  article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Solar Energy
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  ident: b0115
  article-title: The ncep/ncar 40-year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 65
  start-page: 1803
  year: 1994
  end-page: 1832
  ident: b0015
  article-title: Neural networks and their applications
  publication-title: Rev. Scientific Instruments
– volume: 100
  start-page: 322
  year: 2012
  end-page: 334
  ident: b0065
  article-title: The potential of intermittent renewables to meet electric power demand: current methods and emerging analytical techniques
  publication-title: Proc. IEEE
– reference: Huang, Y., Lu, J., Liu, C., Xu, X., Wang, W., Zhou, X., 2010. Comparative study of power forecasting methods for pv stations. In: Power System Technology (POWERCON), 2010 International Conference, IEEE, pp. 1–6.
– year: 2013
  ident: b0220
  article-title: Solar Energy Forecasting and Resource Assessment
– volume: 102
  start-page: 267
  year: 2014
  end-page: 275
  ident: b0205
  article-title: Cloud-tracking methodology for intra-hour DNI forecasting
  publication-title: Solar Energy
– volume: vol. 55
  year: 1993
  ident: b0050
  publication-title: Predictive Inference
– volume: 91
  start-page: 327
  year: 2013
  end-page: 336
  ident: b0160
  article-title: Intra-hour DNI forecasting methodology based on cloud tracking image analysis
  publication-title: Solar Energy
– reference: Lendasse, A., Wertz, V., Verleysen, M., 2003. Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models. Artificial Neural Networks and Neural Information Processing ICANN/ICONIP 2714, pp. 573–580.
– reference: Johnson, R., Hering, W., Shields, J., 1989. Automated visibility and cloud cover measurements with a solid-state imaging system. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO Ref. 89-7, GL-TR-89-0061, 128 pp.
– reference: Li, Y., Luan, R., Niu, J., 2008. Forecast of power generation for grid-connected photovoltaic system based on grey model and markov chain. In: ICIEA 2008 3rd IEEE Conference, pp. 1729–1733.
– reference: Johnson, R., Shields, J., Koehler, T., 1991. Analysis and interpretation of simultaneous multi-station whole sky imagery. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO 91-3, PL-TR-91-2214.
– reference: Urquhart, B., Chow, C.W., Nguyen, D., Kleissl, J., Sengupta, M., Blatchford, J., Jeon, D., 2012. Towards intra-hour solar forecasting using two sky imagers at a large solar power plant. In: Proceedings of the American Solar Energy Society.
– volume: 285
  start-page: 1548
  year: 1999
  end-page: 1550
  ident: b0130
  article-title: Improved weather and seasonal climate forecasts from multimodel superensemble
  publication-title: Science
– volume: 39
  start-page: 535
  year: 2013
  end-page: 576
  ident: b0095
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog. Energy Combust. Sci.
– year: 2002
  ident: b0025
  article-title: Introduction to Time Series and Forecasting
– volume: 85
  start-page: 746
  year: 2011
  end-page: 756
  ident: b0155
  article-title: Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database
  publication-title: Solar Energy
– reference: Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M.S., 2010. Practical approach for sub-hourly and hourly prediction of pv power output. In: North American Power Symposium (NAPS), pp. 1–5.
– volume: 5
  start-page: 373
  year: 2001
  end-page: 401
  ident: b0120
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew. Sustainable Energy Rev.
– volume: 87
  start-page: 33
  year: 2006
  end-page: 46
  ident: b0060
  article-title: Reforecasts: an important dataset for improving weather predictions
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 135
  start-page: 0110161
  year: 2013
  end-page: 0110169
  ident: b0165
  article-title: Proposed metric for evaluation of solar forecasting models
  publication-title: ASME J. Solar Energy Eng.
– year: 1992
  ident: b0075
  publication-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
– volume: 4
  start-page: 501
  year: 2012
  end-page: 509
  ident: b0135
  article-title: A wavelet-based variability model (wvm) for solar pv power plants
  publication-title: IEEE Trans. Sustainable Energy
– volume: 135
  start-page: 2379
  year: 2007
  end-page: 2390
  ident: b0230
  article-title: Comparison of ensemble-mos methods using gfs reforecasts
  publication-title: Monthly Weather Rev.
– ident: 10.1016/j.solener.2014.11.017_b0070
  doi: 10.1109/NAPS.2010.5618944
– volume: 134
  start-page: 2279
  year: 2006
  ident: 10.1016/j.solener.2014.11.017_b0225
  article-title: Improving week-2 forecasts with multimodel reforecast ensembles
  publication-title: Monthly Weather Rev.
  doi: 10.1175/MWR3175.1
– ident: 10.1016/j.solener.2014.11.017_b0080
  doi: 10.1109/POWERCON.2010.5666688
– volume: 34
  start-page: 574
  year: 2008
  ident: 10.1016/j.solener.2014.11.017_b0180
  article-title: Artificial intelligence techniques for photovoltaic applications: a review
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.01.001
– volume: 83
  start-page: 1772
  year: 2009
  ident: 10.1016/j.solener.2014.11.017_b0010
  article-title: Online short-term solar power forecasting
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2009.05.016
– year: 2002
  ident: 10.1016/j.solener.2014.11.017_b0025
– volume: vol. 55
  year: 1993
  ident: 10.1016/j.solener.2014.11.017_b0050
– volume: 135
  start-page: 0110161
  year: 2013
  ident: 10.1016/j.solener.2014.11.017_b0165
  article-title: Proposed metric for evaluation of solar forecasting models
  publication-title: ASME J. Solar Energy Eng.
  doi: 10.1115/1.4007496
– volume: 130
  start-page: 1792
  year: 2002
  ident: 10.1016/j.solener.2014.11.017_b0210
  article-title: Categorical climate forecasts through regularization and optimal combination of multiple gcm ensembles
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(2002)130<1792:CCFTRA>2.0.CO;2
– volume: 37
  start-page: 36
  year: 1983
  ident: 10.1016/j.solener.2014.11.017_b0045
  article-title: A leisurely look at the bootstrap, the jackknife, and cross-validation
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1983.10483087
– volume: 85
  start-page: 2881
  year: 2011
  ident: 10.1016/j.solener.2014.11.017_b0035
  article-title: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2011.08.025
– year: 1992
  ident: 10.1016/j.solener.2014.11.017_b0075
– volume: 285
  start-page: 1548
  year: 1999
  ident: 10.1016/j.solener.2014.11.017_b0130
  article-title: Improved weather and seasonal climate forecasts from multimodel superensemble
  publication-title: Science
  doi: 10.1126/science.285.5433.1548
– ident: 10.1016/j.solener.2014.11.017_b0215
– volume: 100
  start-page: 322
  year: 2012
  ident: 10.1016/j.solener.2014.11.017_b0065
  article-title: The potential of intermittent renewables to meet electric power demand: current methods and emerging analytical techniques
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2144951
– volume: 77
  start-page: 437
  year: 1996
  ident: 10.1016/j.solener.2014.11.017_b0115
  article-title: The ncep/ncar 40-year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume: 135
  start-page: 2379
  year: 2007
  ident: 10.1016/j.solener.2014.11.017_b0230
  article-title: Comparison of ensemble-mos methods using gfs reforecasts
  publication-title: Monthly Weather Rev.
  doi: 10.1175/MWR3402.1
– volume: 22
  start-page: 4
  year: 2000
  ident: 10.1016/j.solener.2014.11.017_b0100
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.824819
– volume: 85
  start-page: 746
  year: 2011
  ident: 10.1016/j.solener.2014.11.017_b0155
  article-title: Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2011.01.007
– volume: 73
  start-page: 151
  year: 2002
  ident: 10.1016/j.solener.2014.11.017_b0090
  article-title: A new airmass independent formulation for the Linke turbidity coefficient
  publication-title: Solar Energy
  doi: 10.1016/S0038-092X(02)00045-2
– volume: 39
  start-page: 535
  year: 2013
  ident: 10.1016/j.solener.2014.11.017_b0095
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2013.06.002
– ident: 10.1016/j.solener.2014.11.017_b0145
  doi: 10.2172/1000106
– ident: 10.1016/j.solener.2014.11.017_b0125
– volume: 86
  start-page: 2017
  year: 2012
  ident: 10.1016/j.solener.2014.11.017_b0200
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.04.004
– volume: 13
  start-page: 97
  year: 1997
  ident: 10.1016/j.solener.2014.11.017_b0005
  article-title: The computation of cloud-base height from paired whole sky imaging cameras
  publication-title: J. Atmospheric Oceanic Technol.
  doi: 10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2
– volume: 65
  start-page: 1803
  year: 1994
  ident: 10.1016/j.solener.2014.11.017_b0015
  article-title: Neural networks and their applications
  publication-title: Rev. Scientific Instruments
  doi: 10.1063/1.1144830
– volume: 84
  start-page: 807
  year: 2010
  ident: 10.1016/j.solener.2014.11.017_b0185
  article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2010.02.006
– volume: 102
  start-page: 267
  year: 2014
  ident: 10.1016/j.solener.2014.11.017_b0205
  article-title: Cloud-tracking methodology for intra-hour DNI forecasting
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2014.01.030
– year: 2013
  ident: 10.1016/j.solener.2014.11.017_b0220
– year: 2011
  ident: 10.1016/j.solener.2014.11.017_b0020
– year: 2003
  ident: 10.1016/j.solener.2014.11.017_b0190
– volume: 132
  start-page: 1434
  year: 2004
  ident: 10.1016/j.solener.2014.11.017_b0055
  article-title: Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
– volume: 87
  start-page: 33
  year: 2006
  ident: 10.1016/j.solener.2014.11.017_b0060
  article-title: Reforecasts: an important dataset for improving weather predictions
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-87-1-33
– volume: 4
  start-page: 501
  year: 2012
  ident: 10.1016/j.solener.2014.11.017_b0135
  article-title: A wavelet-based variability model (wvm) for solar pv power plants
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2012.2205716
– ident: 10.1016/j.solener.2014.11.017_b0150
  doi: 10.1109/ICIEA.2008.4582816
– ident: 10.1016/j.solener.2014.11.017_b0140
  doi: 10.1007/3-540-44989-2_68
– volume: vol. 42
  year: 2004
  ident: 10.1016/j.solener.2014.11.017_b0175
– volume: 98
  start-page: 592
  year: 2013
  ident: 10.1016/j.solener.2014.11.017_b0040
  article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2013.10.020
– ident: 10.1016/j.solener.2014.11.017_b0110
– volume: 91
  start-page: 327
  year: 2013
  ident: 10.1016/j.solener.2014.11.017_b0160
  article-title: Intra-hour DNI forecasting methodology based on cloud tracking image analysis
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.09.018
– volume: 4
  start-page: 401
  year: 1989
  ident: 10.1016/j.solener.2014.11.017_b0030
  article-title: Statistical forecasts based on the national meteorological center’s numerical weather prediction system
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2
– ident: 10.1016/j.solener.2014.11.017_b0105
– volume: 49
  start-page: 2340
  year: 2014
  ident: 10.1016/j.solener.2014.11.017_b0085
  article-title: Comparison of solar power output forecasting performance of the total sky imager and the University of California, San Diego sky imager
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.03.248
– volume: 5
  start-page: 373
  year: 2001
  ident: 10.1016/j.solener.2014.11.017_b0120
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew. Sustainable Energy Rev.
  doi: 10.1016/S1364-0321(01)00006-5
– volume: 74
  start-page: 417
  year: 2005
  ident: 10.1016/j.solener.2014.11.017_b0195
  article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2005.01.006
– volume: 135
  start-page: 0110171
  year: 2013
  ident: 10.1016/j.solener.2014.11.017_b0170
  article-title: Forecasting of global horizontal irradiance using sky cover indices
  publication-title: ASME J. Solar Energy Eng.
  doi: 10.1115/1.4007497
SSID ssj0017187
Score 2.5644777
Snippet •Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and...
A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Artificial neural networks
Clouds
Forecasting
Genetic algorithm optimization
Neural networks
Photovoltaic cells
Photovoltaics
Position tracking
Prediction models
PV generation
Real-time reforecasting
Solar energy
Tracking techniques
Title Short-term reforecasting of power output from a 48 MWe solar PV plant
URI https://dx.doi.org/10.1016/j.solener.2014.11.017
https://www.proquest.com/docview/1652467692
Volume 112
WOSCitedRecordID wos000350191000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdQxwEOiKcYDOQDtyhhTpzYOY6psCE2VWo3eoscJ16ZUFKaBK3_PZ8fadYBGiBxiSJXdix_P3-vfg-E3giZCi4V8UMhYp-KmPkiZ8TPeSKIkgWNc1PE9RM7PeXzeTpxPt3GtBNgVcWvrtLlfyU1jAGxdersX5B7sygMwDsQHZ5Adnj-EeGnC9Cofc1xPZB-NXA00Wxim3VPNK_u2mXX2swS4VHunXwuvUbbuN7kXPeVrrYc9lPzS2mSBIdogM4wb1h3Iep-9Gz1rVsImwT0brUegPehhmETNzAt12vQcU-C42DgyoVNtjnqLmpvFhwG110RJO6jl3v_WJ8jMwQkGZ4b6QAL0zQdJI5lsyASfVCt2BYfdvHUlpPaZjtOJttOLz9xe-t4uAwaHcJQ6uquhAa6JqtNB71RSHuqd6I3AjaltpvAZt4JWZzyEdo5OB7PP27-fQJ5bWutup0PmV9vf_mx3-k0N6S7UVlmD9EDZ2vgA4uRR-hOWT1G969VoHyCxgNa8BZacK2wQQu2aMEaLVhgyjGgBRu04Mk5Nmh5is7ej2eHR77rrOFLuh-1viBxQRQLQdnMJUslmAGFSHkCtntCSa6Aq1NZ7LOwiGikSsFDpgiHi6xAW9QFyJ6hUVVX5XOEKVxtCmpnwjmhKk-ECFUuRSFiWahIqF1E-7PJpCs7r7uffM36-MLLzB1ppo8UTNIMjnQXBZtpS1t35bYJvD_4zCmPVinMAC23Td3rCZW5i9xkJIlDquO_wxf_vvJLdG-4J3to1K668hW6K7-3X5rVawe7H1C5nwc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+reforecasting+of+power+output+from+a+48+MWe+solar+PV+plant&rft.jtitle=Solar+energy&rft.au=Chu%2C+Yinghao&rft.au=Urquhart%2C+Bryan&rft.au=Gohari%2C+Seyyed+M.I.&rft.au=Pedro%2C+Hugo+T.C.&rft.date=2015-02-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=112&rft.spage=68&rft.epage=77&rft_id=info:doi/10.1016%2Fj.solener.2014.11.017&rft.externalDocID=S0038092X14005611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon