Short-term reforecasting of power output from a 48 MWe solar PV plant
•Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and reforecasted.•The reforecast models are based on ANN optimized by genetic algorithm.•The reforecasts significantly improve the forecast skills of the b...
Uloženo v:
| Vydáno v: | Solar energy Ročník 112; s. 68 - 77 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
01.02.2015
Pergamon Press Inc |
| Témata: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and reforecasted.•The reforecast models are based on ANN optimized by genetic algorithm.•The reforecasts significantly improve the forecast skills of the baseline models.
A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kNN) model. Using the measured power data from the PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three baseline models are significantly increased for time horizons of 5, 10, and 15min. This study demonstrates the effectiveness of the optimized reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies. |
|---|---|
| AbstractList | •Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and reforecasted.•The reforecast models are based on ANN optimized by genetic algorithm.•The reforecasts significantly improve the forecast skills of the baseline models.
A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kNN) model. Using the measured power data from the PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three baseline models are significantly increased for time horizons of 5, 10, and 15min. This study demonstrates the effectiveness of the optimized reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies. A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kNN) model. Using the measured power data from the PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three baseline models are significantly increased for time horizons of 5, 10, and 15 min. This study demonstrates the effectiveness of the optimized reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies. |
| Author | Kleissl, Jan Urquhart, Bryan Pedro, Hugo T.C. Gohari, Seyyed M.I. Coimbra, Carlos F.M. Chu, Yinghao |
| Author_xml | – sequence: 1 givenname: Yinghao surname: Chu fullname: Chu, Yinghao – sequence: 2 givenname: Bryan surname: Urquhart fullname: Urquhart, Bryan – sequence: 3 givenname: Seyyed M.I. surname: Gohari fullname: Gohari, Seyyed M.I. – sequence: 4 givenname: Hugo T.C. surname: Pedro fullname: Pedro, Hugo T.C. – sequence: 5 givenname: Jan surname: Kleissl fullname: Kleissl, Jan – sequence: 6 givenname: Carlos F.M. surname: Coimbra fullname: Coimbra, Carlos F.M. email: ccoimbra@ucsd.edu |
| BookMark | eNqFkN1LwzAUxYNMcJv-CULA59bcNm1SfBAZ8wMmCn6-hSxNNWVrapIq_vdmbE--7OXeh3vOuZzfBI0622mEToGkQKA8b1NvV7rTLs0I0BQgJcAO0BgogwSygo3QmJCcJ6TK3o_QxPuWRAVwNkbzp0_rQhK0W2OnG-u0kj6Y7gPbBvf2Rztsh9APATfOrrHElOP7N43jR-nw4yvuV7ILx-iwkSuvT3Z7il6u58-z22TxcHM3u1okipI8JBKKGhqW5UWxVKxSkFe1rHhZASspLBvKOVU1YVmd07zRkmesAS6LOGNRUuVTdLbN7Z39GrQPorWD6-JLAWWR0ZKVVRZVF1uVctb72EooE2QwtgtOmpUAIjbcRCt23MSGmwAQkUp0F__cvTNr6X73-i63Ph0BfJt49croTunaRKhB1NbsSfgDaweLEg |
| CODEN | SRENA4 |
| CitedBy_id | crossref_primary_10_1016_j_renene_2016_09_012 crossref_primary_10_1016_j_rser_2017_08_017 crossref_primary_10_1016_j_renene_2015_09_011 crossref_primary_10_1016_j_solener_2016_04_004 crossref_primary_10_1088_1742_6596_2728_1_012011 crossref_primary_10_1016_j_energy_2023_128135 crossref_primary_10_1002_for_3064 crossref_primary_10_1016_j_apenergy_2024_124844 crossref_primary_10_1016_j_apenergy_2019_114216 crossref_primary_10_1016_j_segan_2019_100286 crossref_primary_10_1016_j_apenergy_2024_122709 crossref_primary_10_1016_j_apenergy_2019_113760 crossref_primary_10_1109_ACCESS_2020_3039733 crossref_primary_10_1016_j_renene_2015_04_022 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_1080_15435075_2024_2338911 crossref_primary_10_1016_j_uclim_2025_102413 crossref_primary_10_1016_j_procs_2021_07_049 crossref_primary_10_1016_j_solener_2018_02_011 crossref_primary_10_1016_j_apenergy_2024_123467 crossref_primary_10_1016_j_enganabound_2023_06_003 crossref_primary_10_1016_j_renene_2025_123618 crossref_primary_10_1007_s40815_021_01087_w crossref_primary_10_1016_j_ijepes_2021_107176 crossref_primary_10_1109_TSTE_2024_3390578 crossref_primary_10_1007_s42452_024_05793_6 crossref_primary_10_3390_rs15092340 crossref_primary_10_1016_j_renene_2018_12_014 crossref_primary_10_1016_j_renene_2022_07_005 crossref_primary_10_1016_j_energy_2020_118700 crossref_primary_10_1109_TPWRS_2015_2502423 crossref_primary_10_1016_j_seta_2020_100915 crossref_primary_10_1016_j_rser_2023_113977 crossref_primary_10_1016_j_renene_2024_120385 crossref_primary_10_1016_j_energy_2023_126963 crossref_primary_10_1016_j_solener_2019_04_070 crossref_primary_10_1109_TSTE_2021_3138592 crossref_primary_10_3390_s18082529 crossref_primary_10_1016_j_enconman_2024_118391 crossref_primary_10_1016_j_apenergy_2021_118452 crossref_primary_10_1016_j_epsr_2020_106510 crossref_primary_10_1016_j_eswa_2024_124286 crossref_primary_10_1016_j_ijepes_2020_106244 crossref_primary_10_1080_00207543_2023_2269565 crossref_primary_10_3390_en11051287 crossref_primary_10_3390_su142417005 crossref_primary_10_1016_j_measurement_2024_115405 crossref_primary_10_1016_j_energy_2025_135214 crossref_primary_10_1016_j_rser_2022_112473 crossref_primary_10_1016_j_energy_2025_135213 crossref_primary_10_1016_j_rser_2024_114691 crossref_primary_10_1051_e3sconf_202018501052 crossref_primary_10_1016_j_egyr_2022_11_208 crossref_primary_10_1109_TSTE_2021_3125200 crossref_primary_10_1016_j_ifacol_2017_08_1856 crossref_primary_10_3390_en15082855 crossref_primary_10_1016_j_solener_2017_09_055 crossref_primary_10_1080_15325008_2018_1433733 crossref_primary_10_1080_15567036_2022_2097751 crossref_primary_10_1016_j_engappai_2023_107691 crossref_primary_10_1007_s42835_025_02255_w crossref_primary_10_3390_rs12152357 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_1109_ACCESS_2025_3589131 crossref_primary_10_17159_2413_3051_2020_v31i3a7754 crossref_primary_10_1016_j_solener_2021_05_095 crossref_primary_10_1016_j_solener_2020_03_083 crossref_primary_10_1038_s41598_024_60672_9 crossref_primary_10_3390_en16114436 crossref_primary_10_1016_j_renene_2015_09_058 crossref_primary_10_1016_j_solener_2017_03_088 crossref_primary_10_3390_en15010370 crossref_primary_10_1016_j_solener_2015_10_038 crossref_primary_10_3390_en14154424 crossref_primary_10_1016_j_renene_2022_05_056 crossref_primary_10_1016_j_epsr_2022_107908 crossref_primary_10_1080_15435075_2021_1875474 crossref_primary_10_14710_ijred_2022_43953 crossref_primary_10_1016_j_renene_2018_12_119 crossref_primary_10_1007_s40095_022_00530_4 crossref_primary_10_1016_j_apenergy_2022_119682 crossref_primary_10_3390_en14196075 crossref_primary_10_3390_en15072457 crossref_primary_10_1016_j_apenergy_2018_06_112 crossref_primary_10_1016_j_jclepro_2020_122269 crossref_primary_10_1016_j_egyr_2021_10_125 crossref_primary_10_1016_j_epsr_2022_108157 crossref_primary_10_1016_j_energy_2024_131295 crossref_primary_10_1016_j_renene_2019_03_020 crossref_primary_10_1002_2050_7038_12664 crossref_primary_10_1016_j_rineng_2024_103226 crossref_primary_10_3390_en14165154 crossref_primary_10_1016_j_enconman_2017_09_040 crossref_primary_10_1016_j_solener_2016_06_069 crossref_primary_10_3390_su14095669 crossref_primary_10_3390_s22041499 crossref_primary_10_1016_j_solener_2018_06_105 crossref_primary_10_1088_1755_1315_615_1_012077 crossref_primary_10_1109_TSTE_2016_2613962 crossref_primary_10_1016_j_rser_2021_110735 crossref_primary_10_1016_j_apenergy_2025_125869 crossref_primary_10_1109_JPHOTOV_2023_3306827 crossref_primary_10_1016_j_solener_2016_06_073 crossref_primary_10_1016_j_renene_2016_05_041 crossref_primary_10_5194_amt_12_5417_2019 crossref_primary_10_1016_j_energy_2021_122733 crossref_primary_10_1016_j_apenergy_2021_117410 crossref_primary_10_1016_j_rineng_2024_102141 crossref_primary_10_1111_joes_12678 crossref_primary_10_1016_j_agrformet_2024_110038 crossref_primary_10_3390_en11010184 crossref_primary_10_1109_ACCESS_2019_2927804 crossref_primary_10_1016_j_energy_2017_09_042 crossref_primary_10_1016_j_solener_2015_01_016 crossref_primary_10_3390_su141711083 crossref_primary_10_1002_ep_13098 crossref_primary_10_1016_j_energy_2021_120908 crossref_primary_10_1016_j_epsr_2022_109073 crossref_primary_10_1109_TAI_2022_3179353 crossref_primary_10_1109_TIE_2018_2889611 crossref_primary_10_1016_j_solener_2017_11_023 crossref_primary_10_3390_en13010011 crossref_primary_10_1049_iet_rpg_2019_1227 crossref_primary_10_1016_j_solener_2018_10_024 crossref_primary_10_1016_j_solener_2019_06_041 crossref_primary_10_1007_s00202_024_02535_0 crossref_primary_10_3390_en10071003 crossref_primary_10_1016_j_rser_2024_114391 crossref_primary_10_3390_su15129234 crossref_primary_10_1016_j_renene_2017_09_074 crossref_primary_10_1016_j_solener_2015_10_023 crossref_primary_10_1109_TSG_2017_2728480 crossref_primary_10_1016_j_apenergy_2020_116395 crossref_primary_10_1049_rpg2_12194 crossref_primary_10_1016_j_solener_2015_01_024 crossref_primary_10_1016_j_neucom_2022_08_016 crossref_primary_10_1080_01430750_2025_2516063 crossref_primary_10_1155_2020_9586707 crossref_primary_10_1007_s13369_019_04183_0 crossref_primary_10_1007_s11356_022_24321_w crossref_primary_10_3390_app10020487 crossref_primary_10_1007_s11708_024_0915_y crossref_primary_10_1186_s13007_022_00871_5 crossref_primary_10_1016_j_solener_2017_02_010 crossref_primary_10_3389_fenrg_2022_815256 crossref_primary_10_3390_en17020525 crossref_primary_10_32604_ee_2022_020283 crossref_primary_10_3390_su15065453 crossref_primary_10_1111_exsy_12394 crossref_primary_10_1016_j_eswa_2023_121988 crossref_primary_10_3390_en12081487 crossref_primary_10_1109_TSMC_2024_3485960 crossref_primary_10_1016_j_solener_2022_03_003 crossref_primary_10_1016_j_solener_2018_03_066 crossref_primary_10_1109_ACCESS_2023_3247499 crossref_primary_10_1109_TII_2019_2925018 crossref_primary_10_1016_j_ijepes_2019_105790 |
| Cites_doi | 10.1109/NAPS.2010.5618944 10.1175/MWR3175.1 10.1109/POWERCON.2010.5666688 10.1016/j.pecs.2008.01.001 10.1016/j.solener.2009.05.016 10.1115/1.4007496 10.1175/1520-0493(2002)130<1792:CCFTRA>2.0.CO;2 10.1080/00031305.1983.10483087 10.1016/j.solener.2011.08.025 10.1126/science.285.5433.1548 10.1109/JPROC.2011.2144951 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1175/MWR3402.1 10.1109/34.824819 10.1016/j.solener.2011.01.007 10.1016/S0038-092X(02)00045-2 10.1016/j.pecs.2013.06.002 10.2172/1000106 10.1016/j.solener.2012.04.004 10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2 10.1063/1.1144830 10.1016/j.solener.2010.02.006 10.1016/j.solener.2014.01.030 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2 10.1175/BAMS-87-1-33 10.1109/TSTE.2012.2205716 10.1109/ICIEA.2008.4582816 10.1007/3-540-44989-2_68 10.1016/j.solener.2013.10.020 10.1016/j.solener.2012.09.018 10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2 10.1016/j.egypro.2014.03.248 10.1016/S1364-0321(01)00006-5 10.1016/j.epsr.2005.01.006 10.1115/1.4007497 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd Copyright Pergamon Press Inc. Feb 2015 |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Feb 2015 |
| DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
| DOI | 10.1016/j.solener.2014.11.017 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 77 |
| ExternalDocumentID | 3584156621 10_1016_j_solener_2014_11_017 S0038092X14005611 |
| Genre | Feature |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7ST 8FD AFXIZ AGCQF AGRNS C1K FR3 KR7 L7M SOI SSH |
| ID | FETCH-LOGICAL-c403t-a15d1f72355bc79c139da986917641bf4884cd072d343fea827f18a57f1101093 |
| ISICitedReferencesCount | 206 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350191000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Sun Jul 13 03:49:42 EDT 2025 Sat Nov 29 02:23:39 EST 2025 Tue Nov 18 21:10:11 EST 2025 Fri Feb 23 02:18:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time reforecasting PV generation Genetic algorithm optimization Artificial neural networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c403t-a15d1f72355bc79c139da986917641bf4884cd072d343fea827f18a57f1101093 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1652467692 |
| PQPubID | 9393 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_1652467692 crossref_citationtrail_10_1016_j_solener_2014_11_017 crossref_primary_10_1016_j_solener_2014_11_017 elsevier_sciencedirect_doi_10_1016_j_solener_2014_11_017 |
| PublicationCentury | 2000 |
| PublicationDate | February 2015 2015-02-00 20150201 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Solar energy |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Huang, Y., Lu, J., Liu, C., Xu, X., Wang, W., Zhou, X., 2010. Comparative study of power forecasting methods for pv stations. In: Power System Technology (POWERCON), 2010 International Conference, IEEE, pp. 1–6. Rajagopalan, Lall, Zebiak (b0210) 2002; 130 Chu, Pedro, Coimbra (b0040) 2013; 98 Marquez, Coimbra (b0155) 2011; 85 Lave, Kleissl, Stein (b0135) 2012; 4 Lendasse, A., Wertz, V., Verleysen, M., 2003. Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models. Artificial Neural Networks and Neural Information Processing ICANN/ICONIP 2714, pp. 573–580. Li, Y., Luan, R., Niu, J., 2008. Forecast of power generation for grid-connected photovoltaic system based on grey model and markov chain. In: ICIEA 2008 3rd IEEE Conference, pp. 1729–1733. Pai, Hong (b0195) 2005; 74 Johnson, R., Shields, J., Koehler, T., 1991. Analysis and interpretation of simultaneous multi-station whole sky imagery. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO 91-3, PL-TR-91-2214. Urquhart, B., Chow, C.W., Nguyen, D., Kleissl, J., Sengupta, M., Blatchford, J., Jeon, D., 2012. Towards intra-hour solar forecasting using two sky imagers at a large solar power plant. In: Proceedings of the American Solar Energy Society. Hart, Stoutenburg, Jacobson (b0065) 2012; 100 Carter, Dallavalle, Glahn (b0030) 1989; 4 Marquez, Coimbra (b0165) 2013; 135 Mellit, Pavan (b0185) 2010; 84 Wilks, Hamill (b0230) 2007; 135 Inman, Pedro, Coimbra (b0095) 2013; 39 Ineichen, Perez (b0090) 2002; 73 Johnson, R., Hering, W., Shields, J., 1989. Automated visibility and cloud cover measurements with a solid-state imaging system. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO Ref. 89-7, GL-TR-89-0061, 128 pp. Lew, D., Miller, N., Clark, K., Jordan, G., Gao, Z., 2010. Impact of high solar penetration in the western interconnection. Technical Report, National Renewable Energy Laboratories, NREL/TP-5500-49667. Krishnamurti, Kishtawal, LaRow, Bachiochi, Zhang, Williford, Surendran (b0130) 1999; 285 McLachlan, Do, Ambroise (b0175) 2004; vol. 42 Allmen, Kegelmeyer (b0005) 1997; 13 Hamill, Whitaker, Wei (b0055) 2004; 132 Jain, Duin, Mao (b0100) 2000; 22 Marquez, Coimbra (b0160) 2013; 91 Box, Jenkins, Reinsel (b0020) 2011 Urquhart, Ghonima, Nguyen, Kurtz, Kleissl (b0220) 2013 Bishop (b0015) 1994; 65 Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp. 1137–1145. Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M.S., 2010. Practical approach for sub-hourly and hourly prediction of pv power output. In: North American Power Symposium (NAPS), pp. 1–5. Kalogirou (b0120) 2001; 5 Mellit, Kalogirou (b0180) 2008; 34 Iman Gohari, Urquhart, Yang, Kurtz, Nuguyen, Chow, Ghonima, Kleissl (b0085) 2014; 49 Marquez, Gueorguiev, Coimbra (b0170) 2013; 135 Holland (b0075) 1992 Quesada-Ruiz, Chu, Tovar-Pescador, Pedro, Coimbra (b0205) 2014; 102 Pedro, Coimbra (b0200) 2012; 86 Hamill, Whitaker, Mullen (b0060) 2006; 87 Chow, Urquhart, Lave, Dominguez, Kleissl, Shields, Washom (b0035) 2011; 85 Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Joseph (b0115) 1996; 77 Page (b0190) 2003 Brockwell, Davis (b0025) 2002 Geisser (b0050) 1993; vol. 55 Bacher, Madsen, Nielsen (b0010) 2009; 83 Whitaker, Wei, Vitart (b0225) 2006; 134 Efron, Gong (b0045) 1983; 37 10.1016/j.solener.2014.11.017_b0070 Holland (10.1016/j.solener.2014.11.017_b0075) 1992 Ineichen (10.1016/j.solener.2014.11.017_b0090) 2002; 73 Lave (10.1016/j.solener.2014.11.017_b0135) 2012; 4 10.1016/j.solener.2014.11.017_b0150 McLachlan (10.1016/j.solener.2014.11.017_b0175) 2004; vol. 42 Chu (10.1016/j.solener.2014.11.017_b0040) 2013; 98 Allmen (10.1016/j.solener.2014.11.017_b0005) 1997; 13 Hart (10.1016/j.solener.2014.11.017_b0065) 2012; 100 Urquhart (10.1016/j.solener.2014.11.017_b0220) 2013 Marquez (10.1016/j.solener.2014.11.017_b0165) 2013; 135 Iman Gohari (10.1016/j.solener.2014.11.017_b0085) 2014; 49 Pai (10.1016/j.solener.2014.11.017_b0195) 2005; 74 Marquez (10.1016/j.solener.2014.11.017_b0155) 2011; 85 10.1016/j.solener.2014.11.017_b0110 Jain (10.1016/j.solener.2014.11.017_b0100) 2000; 22 Mellit (10.1016/j.solener.2014.11.017_b0180) 2008; 34 Pedro (10.1016/j.solener.2014.11.017_b0200) 2012; 86 Kalogirou (10.1016/j.solener.2014.11.017_b0120) 2001; 5 10.1016/j.solener.2014.11.017_b0215 10.1016/j.solener.2014.11.017_b0080 Whitaker (10.1016/j.solener.2014.11.017_b0225) 2006; 134 Brockwell (10.1016/j.solener.2014.11.017_b0025) 2002 Chow (10.1016/j.solener.2014.11.017_b0035) 2011; 85 10.1016/j.solener.2014.11.017_b0140 Hamill (10.1016/j.solener.2014.11.017_b0055) 2004; 132 Marquez (10.1016/j.solener.2014.11.017_b0160) 2013; 91 Efron (10.1016/j.solener.2014.11.017_b0045) 1983; 37 Hamill (10.1016/j.solener.2014.11.017_b0060) 2006; 87 Wilks (10.1016/j.solener.2014.11.017_b0230) 2007; 135 Carter (10.1016/j.solener.2014.11.017_b0030) 1989; 4 Page (10.1016/j.solener.2014.11.017_b0190) 2003 Bishop (10.1016/j.solener.2014.11.017_b0015) 1994; 65 Mellit (10.1016/j.solener.2014.11.017_b0185) 2010; 84 Kalnay (10.1016/j.solener.2014.11.017_b0115) 1996; 77 Bacher (10.1016/j.solener.2014.11.017_b0010) 2009; 83 Rajagopalan (10.1016/j.solener.2014.11.017_b0210) 2002; 130 Box (10.1016/j.solener.2014.11.017_b0020) 2011 Inman (10.1016/j.solener.2014.11.017_b0095) 2013; 39 Marquez (10.1016/j.solener.2014.11.017_b0170) 2013; 135 10.1016/j.solener.2014.11.017_b0145 10.1016/j.solener.2014.11.017_b0125 Krishnamurti (10.1016/j.solener.2014.11.017_b0130) 1999; 285 Quesada-Ruiz (10.1016/j.solener.2014.11.017_b0205) 2014; 102 Geisser (10.1016/j.solener.2014.11.017_b0050) 1993; vol. 55 10.1016/j.solener.2014.11.017_b0105 |
| References_xml | – reference: Lew, D., Miller, N., Clark, K., Jordan, G., Gao, Z., 2010. Impact of high solar penetration in the western interconnection. Technical Report, National Renewable Energy Laboratories, NREL/TP-5500-49667. – year: 2003 ident: b0190 article-title: Practical Handbook of Photovoltaics: Fundamentals and Applications – volume: 49 start-page: 2340 year: 2014 end-page: 2350 ident: b0085 article-title: Comparison of solar power output forecasting performance of the total sky imager and the University of California, San Diego sky imager publication-title: Energy Procedia – volume: vol. 42 year: 2004 ident: b0175 publication-title: Analyzing Microarray Gene Expression Data – volume: 86 start-page: 2017 year: 2012 end-page: 2028 ident: b0200 article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs publication-title: Solar Energy – reference: Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp. 1137–1145. – volume: 134 start-page: 2279 year: 2006 end-page: 2284 ident: b0225 article-title: Improving week-2 forecasts with multimodel reforecast ensembles publication-title: Monthly Weather Rev. – volume: 98 start-page: 592 year: 2013 end-page: 603 ident: b0040 article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning publication-title: Solar Energy – volume: 4 start-page: 401 year: 1989 end-page: 412 ident: b0030 article-title: Statistical forecasts based on the national meteorological center’s numerical weather prediction system publication-title: Weather Forecast. – volume: 135 start-page: 0110171 year: 2013 end-page: 0110175 ident: b0170 article-title: Forecasting of global horizontal irradiance using sky cover indices publication-title: ASME J. Solar Energy Eng. – volume: 132 start-page: 1434 year: 2004 end-page: 1447 ident: b0055 article-title: Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts publication-title: Monthly Weather Rev. – volume: 13 start-page: 97 year: 1997 end-page: 113 ident: b0005 article-title: The computation of cloud-base height from paired whole sky imaging cameras publication-title: J. Atmospheric Oceanic Technol. – year: 2011 ident: b0020 publication-title: Time Series Analysis, Forecasting and Control – volume: 34 start-page: 574 year: 2008 end-page: 632 ident: b0180 article-title: Artificial intelligence techniques for photovoltaic applications: a review publication-title: Prog. Energy Combust. Sci. – volume: 85 start-page: 2881 year: 2011 end-page: 2893 ident: b0035 article-title: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed publication-title: Solar Energy – volume: 37 start-page: 36 year: 1983 end-page: 48 ident: b0045 article-title: A leisurely look at the bootstrap, the jackknife, and cross-validation publication-title: Am. Statistician – volume: 73 start-page: 151 year: 2002 end-page: 157 ident: b0090 article-title: A new airmass independent formulation for the Linke turbidity coefficient publication-title: Solar Energy – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: b0100 article-title: Statistical pattern recognition: a review publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 130 start-page: 1792 year: 2002 end-page: 1811 ident: b0210 article-title: Categorical climate forecasts through regularization and optimal combination of multiple gcm ensembles publication-title: Monthly Weather Rev. – volume: 83 start-page: 1772 year: 2009 end-page: 1783 ident: b0010 article-title: Online short-term solar power forecasting publication-title: Solar Energy – volume: 74 start-page: 417 year: 2005 end-page: 425 ident: b0195 article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms publication-title: Electr. Power Syst. Res. – volume: 84 start-page: 807 year: 2010 end-page: 821 ident: b0185 article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy publication-title: Solar Energy – volume: 77 start-page: 437 year: 1996 end-page: 471 ident: b0115 article-title: The ncep/ncar 40-year reanalysis project publication-title: Bull. Am. Meteorol. Soc. – volume: 65 start-page: 1803 year: 1994 end-page: 1832 ident: b0015 article-title: Neural networks and their applications publication-title: Rev. Scientific Instruments – volume: 100 start-page: 322 year: 2012 end-page: 334 ident: b0065 article-title: The potential of intermittent renewables to meet electric power demand: current methods and emerging analytical techniques publication-title: Proc. IEEE – reference: Huang, Y., Lu, J., Liu, C., Xu, X., Wang, W., Zhou, X., 2010. Comparative study of power forecasting methods for pv stations. In: Power System Technology (POWERCON), 2010 International Conference, IEEE, pp. 1–6. – year: 2013 ident: b0220 article-title: Solar Energy Forecasting and Resource Assessment – volume: 102 start-page: 267 year: 2014 end-page: 275 ident: b0205 article-title: Cloud-tracking methodology for intra-hour DNI forecasting publication-title: Solar Energy – volume: vol. 55 year: 1993 ident: b0050 publication-title: Predictive Inference – volume: 91 start-page: 327 year: 2013 end-page: 336 ident: b0160 article-title: Intra-hour DNI forecasting methodology based on cloud tracking image analysis publication-title: Solar Energy – reference: Lendasse, A., Wertz, V., Verleysen, M., 2003. Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models. Artificial Neural Networks and Neural Information Processing ICANN/ICONIP 2714, pp. 573–580. – reference: Johnson, R., Hering, W., Shields, J., 1989. Automated visibility and cloud cover measurements with a solid-state imaging system. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO Ref. 89-7, GL-TR-89-0061, 128 pp. – reference: Li, Y., Luan, R., Niu, J., 2008. Forecast of power generation for grid-connected photovoltaic system based on grey model and markov chain. In: ICIEA 2008 3rd IEEE Conference, pp. 1729–1733. – reference: Johnson, R., Shields, J., Koehler, T., 1991. Analysis and interpretation of simultaneous multi-station whole sky imagery. Technical Report, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, SIO 91-3, PL-TR-91-2214. – reference: Urquhart, B., Chow, C.W., Nguyen, D., Kleissl, J., Sengupta, M., Blatchford, J., Jeon, D., 2012. Towards intra-hour solar forecasting using two sky imagers at a large solar power plant. In: Proceedings of the American Solar Energy Society. – volume: 285 start-page: 1548 year: 1999 end-page: 1550 ident: b0130 article-title: Improved weather and seasonal climate forecasts from multimodel superensemble publication-title: Science – volume: 39 start-page: 535 year: 2013 end-page: 576 ident: b0095 article-title: Solar forecasting methods for renewable energy integration publication-title: Prog. Energy Combust. Sci. – year: 2002 ident: b0025 article-title: Introduction to Time Series and Forecasting – volume: 85 start-page: 746 year: 2011 end-page: 756 ident: b0155 article-title: Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database publication-title: Solar Energy – reference: Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M.S., 2010. Practical approach for sub-hourly and hourly prediction of pv power output. In: North American Power Symposium (NAPS), pp. 1–5. – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: b0120 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew. Sustainable Energy Rev. – volume: 87 start-page: 33 year: 2006 end-page: 46 ident: b0060 article-title: Reforecasts: an important dataset for improving weather predictions publication-title: Bull. Am. Meteorol. Soc. – volume: 135 start-page: 0110161 year: 2013 end-page: 0110169 ident: b0165 article-title: Proposed metric for evaluation of solar forecasting models publication-title: ASME J. Solar Energy Eng. – year: 1992 ident: b0075 publication-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence – volume: 4 start-page: 501 year: 2012 end-page: 509 ident: b0135 article-title: A wavelet-based variability model (wvm) for solar pv power plants publication-title: IEEE Trans. Sustainable Energy – volume: 135 start-page: 2379 year: 2007 end-page: 2390 ident: b0230 article-title: Comparison of ensemble-mos methods using gfs reforecasts publication-title: Monthly Weather Rev. – ident: 10.1016/j.solener.2014.11.017_b0070 doi: 10.1109/NAPS.2010.5618944 – volume: 134 start-page: 2279 year: 2006 ident: 10.1016/j.solener.2014.11.017_b0225 article-title: Improving week-2 forecasts with multimodel reforecast ensembles publication-title: Monthly Weather Rev. doi: 10.1175/MWR3175.1 – ident: 10.1016/j.solener.2014.11.017_b0080 doi: 10.1109/POWERCON.2010.5666688 – volume: 34 start-page: 574 year: 2008 ident: 10.1016/j.solener.2014.11.017_b0180 article-title: Artificial intelligence techniques for photovoltaic applications: a review publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2008.01.001 – volume: 83 start-page: 1772 year: 2009 ident: 10.1016/j.solener.2014.11.017_b0010 article-title: Online short-term solar power forecasting publication-title: Solar Energy doi: 10.1016/j.solener.2009.05.016 – year: 2002 ident: 10.1016/j.solener.2014.11.017_b0025 – volume: vol. 55 year: 1993 ident: 10.1016/j.solener.2014.11.017_b0050 – volume: 135 start-page: 0110161 year: 2013 ident: 10.1016/j.solener.2014.11.017_b0165 article-title: Proposed metric for evaluation of solar forecasting models publication-title: ASME J. Solar Energy Eng. doi: 10.1115/1.4007496 – volume: 130 start-page: 1792 year: 2002 ident: 10.1016/j.solener.2014.11.017_b0210 article-title: Categorical climate forecasts through regularization and optimal combination of multiple gcm ensembles publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(2002)130<1792:CCFTRA>2.0.CO;2 – volume: 37 start-page: 36 year: 1983 ident: 10.1016/j.solener.2014.11.017_b0045 article-title: A leisurely look at the bootstrap, the jackknife, and cross-validation publication-title: Am. Statistician doi: 10.1080/00031305.1983.10483087 – volume: 85 start-page: 2881 year: 2011 ident: 10.1016/j.solener.2014.11.017_b0035 article-title: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed publication-title: Solar Energy doi: 10.1016/j.solener.2011.08.025 – year: 1992 ident: 10.1016/j.solener.2014.11.017_b0075 – volume: 285 start-page: 1548 year: 1999 ident: 10.1016/j.solener.2014.11.017_b0130 article-title: Improved weather and seasonal climate forecasts from multimodel superensemble publication-title: Science doi: 10.1126/science.285.5433.1548 – ident: 10.1016/j.solener.2014.11.017_b0215 – volume: 100 start-page: 322 year: 2012 ident: 10.1016/j.solener.2014.11.017_b0065 article-title: The potential of intermittent renewables to meet electric power demand: current methods and emerging analytical techniques publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2144951 – volume: 77 start-page: 437 year: 1996 ident: 10.1016/j.solener.2014.11.017_b0115 article-title: The ncep/ncar 40-year reanalysis project publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume: 135 start-page: 2379 year: 2007 ident: 10.1016/j.solener.2014.11.017_b0230 article-title: Comparison of ensemble-mos methods using gfs reforecasts publication-title: Monthly Weather Rev. doi: 10.1175/MWR3402.1 – volume: 22 start-page: 4 year: 2000 ident: 10.1016/j.solener.2014.11.017_b0100 article-title: Statistical pattern recognition: a review publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.824819 – volume: 85 start-page: 746 year: 2011 ident: 10.1016/j.solener.2014.11.017_b0155 article-title: Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database publication-title: Solar Energy doi: 10.1016/j.solener.2011.01.007 – volume: 73 start-page: 151 year: 2002 ident: 10.1016/j.solener.2014.11.017_b0090 article-title: A new airmass independent formulation for the Linke turbidity coefficient publication-title: Solar Energy doi: 10.1016/S0038-092X(02)00045-2 – volume: 39 start-page: 535 year: 2013 ident: 10.1016/j.solener.2014.11.017_b0095 article-title: Solar forecasting methods for renewable energy integration publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2013.06.002 – ident: 10.1016/j.solener.2014.11.017_b0145 doi: 10.2172/1000106 – ident: 10.1016/j.solener.2014.11.017_b0125 – volume: 86 start-page: 2017 year: 2012 ident: 10.1016/j.solener.2014.11.017_b0200 article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs publication-title: Solar Energy doi: 10.1016/j.solener.2012.04.004 – volume: 13 start-page: 97 year: 1997 ident: 10.1016/j.solener.2014.11.017_b0005 article-title: The computation of cloud-base height from paired whole sky imaging cameras publication-title: J. Atmospheric Oceanic Technol. doi: 10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2 – volume: 65 start-page: 1803 year: 1994 ident: 10.1016/j.solener.2014.11.017_b0015 article-title: Neural networks and their applications publication-title: Rev. Scientific Instruments doi: 10.1063/1.1144830 – volume: 84 start-page: 807 year: 2010 ident: 10.1016/j.solener.2014.11.017_b0185 article-title: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy publication-title: Solar Energy doi: 10.1016/j.solener.2010.02.006 – volume: 102 start-page: 267 year: 2014 ident: 10.1016/j.solener.2014.11.017_b0205 article-title: Cloud-tracking methodology for intra-hour DNI forecasting publication-title: Solar Energy doi: 10.1016/j.solener.2014.01.030 – year: 2013 ident: 10.1016/j.solener.2014.11.017_b0220 – year: 2011 ident: 10.1016/j.solener.2014.11.017_b0020 – year: 2003 ident: 10.1016/j.solener.2014.11.017_b0190 – volume: 132 start-page: 1434 year: 2004 ident: 10.1016/j.solener.2014.11.017_b0055 article-title: Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2 – volume: 87 start-page: 33 year: 2006 ident: 10.1016/j.solener.2014.11.017_b0060 article-title: Reforecasts: an important dataset for improving weather predictions publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-87-1-33 – volume: 4 start-page: 501 year: 2012 ident: 10.1016/j.solener.2014.11.017_b0135 article-title: A wavelet-based variability model (wvm) for solar pv power plants publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2012.2205716 – ident: 10.1016/j.solener.2014.11.017_b0150 doi: 10.1109/ICIEA.2008.4582816 – ident: 10.1016/j.solener.2014.11.017_b0140 doi: 10.1007/3-540-44989-2_68 – volume: vol. 42 year: 2004 ident: 10.1016/j.solener.2014.11.017_b0175 – volume: 98 start-page: 592 year: 2013 ident: 10.1016/j.solener.2014.11.017_b0040 article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning publication-title: Solar Energy doi: 10.1016/j.solener.2013.10.020 – ident: 10.1016/j.solener.2014.11.017_b0110 – volume: 91 start-page: 327 year: 2013 ident: 10.1016/j.solener.2014.11.017_b0160 article-title: Intra-hour DNI forecasting methodology based on cloud tracking image analysis publication-title: Solar Energy doi: 10.1016/j.solener.2012.09.018 – volume: 4 start-page: 401 year: 1989 ident: 10.1016/j.solener.2014.11.017_b0030 article-title: Statistical forecasts based on the national meteorological center’s numerical weather prediction system publication-title: Weather Forecast. doi: 10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2 – ident: 10.1016/j.solener.2014.11.017_b0105 – volume: 49 start-page: 2340 year: 2014 ident: 10.1016/j.solener.2014.11.017_b0085 article-title: Comparison of solar power output forecasting performance of the total sky imager and the University of California, San Diego sky imager publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.03.248 – volume: 5 start-page: 373 year: 2001 ident: 10.1016/j.solener.2014.11.017_b0120 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew. Sustainable Energy Rev. doi: 10.1016/S1364-0321(01)00006-5 – volume: 74 start-page: 417 year: 2005 ident: 10.1016/j.solener.2014.11.017_b0195 article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2005.01.006 – volume: 135 start-page: 0110171 year: 2013 ident: 10.1016/j.solener.2014.11.017_b0170 article-title: Forecasting of global horizontal irradiance using sky cover indices publication-title: ASME J. Solar Energy Eng. doi: 10.1115/1.4007497 |
| SSID | ssj0017187 |
| Score | 2.5644777 |
| Snippet | •Smart reforecast is applied to the intra-hour power prediction of a PV plant.•Predictions of generation from three baseline models are analyzed and... A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant. This reforecasting method... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Artificial neural networks Clouds Forecasting Genetic algorithm optimization Neural networks Photovoltaic cells Photovoltaics Position tracking Prediction models PV generation Real-time reforecasting Solar energy Tracking techniques |
| Title | Short-term reforecasting of power output from a 48 MWe solar PV plant |
| URI | https://dx.doi.org/10.1016/j.solener.2014.11.017 https://www.proquest.com/docview/1652467692 |
| Volume | 112 |
| WOSCitedRecordID | wos000350191000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdQxwEOiKcYDOQDtyhhTpzYOY6psCE2VWo3eoscJ16ZUFKaBK3_PZ8fadYBGiBxiSJXdix_P3-vfg-E3giZCi4V8UMhYp-KmPkiZ8TPeSKIkgWNc1PE9RM7PeXzeTpxPt3GtBNgVcWvrtLlfyU1jAGxdersX5B7sygMwDsQHZ5Adnj-EeGnC9Cofc1xPZB-NXA00Wxim3VPNK_u2mXX2swS4VHunXwuvUbbuN7kXPeVrrYc9lPzS2mSBIdogM4wb1h3Iep-9Gz1rVsImwT0brUegPehhmETNzAt12vQcU-C42DgyoVNtjnqLmpvFhwG110RJO6jl3v_WJ8jMwQkGZ4b6QAL0zQdJI5lsyASfVCt2BYfdvHUlpPaZjtOJttOLz9xe-t4uAwaHcJQ6uquhAa6JqtNB71RSHuqd6I3AjaltpvAZt4JWZzyEdo5OB7PP27-fQJ5bWutup0PmV9vf_mx3-k0N6S7UVlmD9EDZ2vgA4uRR-hOWT1G969VoHyCxgNa8BZacK2wQQu2aMEaLVhgyjGgBRu04Mk5Nmh5is7ej2eHR77rrOFLuh-1viBxQRQLQdnMJUslmAGFSHkCtntCSa6Aq1NZ7LOwiGikSsFDpgiHi6xAW9QFyJ6hUVVX5XOEKVxtCmpnwjmhKk-ECFUuRSFiWahIqF1E-7PJpCs7r7uffM36-MLLzB1ppo8UTNIMjnQXBZtpS1t35bYJvD_4zCmPVinMAC23Td3rCZW5i9xkJIlDquO_wxf_vvJLdG-4J3to1K668hW6K7-3X5rVawe7H1C5nwc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+reforecasting+of+power+output+from+a+48+MWe+solar+PV+plant&rft.jtitle=Solar+energy&rft.au=Chu%2C+Yinghao&rft.au=Urquhart%2C+Bryan&rft.au=Gohari%2C+Seyyed+M.I.&rft.au=Pedro%2C+Hugo+T.C.&rft.date=2015-02-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=112&rft.spage=68&rft.epage=77&rft_id=info:doi/10.1016%2Fj.solener.2014.11.017&rft.externalDocID=S0038092X14005611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |