An Iterative Algorithm for Solving n-Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions

In this paper, we consider the iterative algorithm for a boundary value problem of n-order fractional differential equation with mixed integral and multipoint boundary conditions. Using an iterative technique, we derive an existence result of the uniqueness of the positive solution, then construct t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Complexity (New York, N.Y.) Ročník 2021; číslo 1
Hlavní autori: Tan, Jingjing, Zhang, Xinguang, Liu, Lishan, Wu, Yonghong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:1076-2787, 1099-0526
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we consider the iterative algorithm for a boundary value problem of n-order fractional differential equation with mixed integral and multipoint boundary conditions. Using an iterative technique, we derive an existence result of the uniqueness of the positive solution, then construct the iterative scheme to approximate the positive solution of the equation, and further establish some numerical results on the estimation of the convergence rate and the approximation error.
AbstractList In this paper, we consider the iterative algorithm for a boundary value problem of n-order fractional differential equation with mixed integral and multipoint boundary conditions. Using an iterative technique, we derive an existence result of the uniqueness of the positive solution, then construct the iterative scheme to approximate the positive solution of the equation, and further establish some numerical results on the estimation of the convergence rate and the approximation error.
In this paper, we consider the iterative algorithm for a boundary value problem of n ‐order fractional differential equation with mixed integral and multipoint boundary conditions. Using an iterative technique, we derive an existence result of the uniqueness of the positive solution, then construct the iterative scheme to approximate the positive solution of the equation, and further establish some numerical results on the estimation of the convergence rate and the approximation error.
Author Tan, Jingjing
Zhang, Xinguang
Wu, Yonghong
Liu, Lishan
Author_xml – sequence: 1
  givenname: Jingjing
  orcidid: 0000-0002-9941-0629
  surname: Tan
  fullname: Tan, Jingjing
  organization: School of Mathematics and Information ScienceWeifang UniversityWeifangShandong 261061Chinawfu.edu.cn
– sequence: 2
  givenname: Xinguang
  orcidid: 0000-0001-9250-6823
  surname: Zhang
  fullname: Zhang, Xinguang
  organization: School of Mathematical and Informational SciencesYantai UniversityYantaiShandong 264005Chinaytu.edu.cn
– sequence: 3
  givenname: Lishan
  orcidid: 0000-0001-8541-1017
  surname: Liu
  fullname: Liu, Lishan
  organization: School of Mathematical SciencesQufu Normal UniversityQufu 273165ShandongChinaqfnu.edu.cn
– sequence: 4
  givenname: Yonghong
  orcidid: 0000-0003-1028-1785
  surname: Wu
  fullname: Wu, Yonghong
  organization: Department of Mathematics and StatisticsCurtin University of TechnologyPerthWA 6845Australiacurtin.edu.au
BookMark eNp9UU1vFCEYnpia2FZv_gASjzqW74Hjum11kzY9qGcCwztbNlPYMkyrV3-5TLfxYKIn4OX5gOc5aY5iitA0bwn-SIgQZxRTcqaUVkroF80xwVq3WFB5tOw72dJOda-ak2naYYy1ZN1x82sV0aZAtiU8AFqN25RDub1DQ8roaxofQtyi2N5kDxldZtuXkKId0XkYBsgQS6iHi_vZLnP0WKnoOvwAjzaxwDbXSxs9up7HEvYpxII-pTl6m3-idYo-LKzpdfNysOMEb57X0-b75cW39Zf26ubzZr26anuOWWk1WMalHbR3wnHXqUFqJxXm1lFLPQCV9UdUsp53ygnJlKpID9xxokjP2GmzOej6ZHdmn8NdfYdJNpinQcpbY3MJ_QhGgRtUZ0FUP84dcaKnRDIKjGslMK1a7w5a-5zuZ5iK2aU512QmQ7nihKtOLKgPB1Sf0zRlGP64EmyWxszSmHlurMLpX_A-lKdkS7Zh_Bfp_YF0G2qwj-H_Fr8BTaaogQ
CitedBy_id crossref_primary_10_3390_fractalfract6120738
crossref_primary_10_12677_AAM_2022_113154
Cites_doi 10.15388/namc.2020.25.15736
10.1186/s13661-019-1205-1
10.1186/s13662-019-2250-x
10.3390/math7050439
10.1007/s13398-018-0527-7
10.1016/j.aml.2018.02.019
10.1186/s13661-017-0915-5
10.1155/2019/5923490
10.3390/math7040331
10.1016/j.aml.2020.106560
10.1186/s13660-019-1982-1
10.1186/s13660-019-2164-x
10.3846/mma.2018.037
10.3390/math7080744
10.1016/j.aml.2019.04.024
10.1007/s40815-019-00663-5
10.1016/j.amc.2012.02.014
10.18514/mmn.2019.2552
10.1016/j.cnsns.2012.08.033
10.1186/s13662-019-2086-4
10.1186/s13661-018-1003-1
10.3390/math8030446
10.1186/1687-2770-2013-245
10.1016/j.jmaa.2017.10.020
10.1016/j.chaos.2020.109824
10.1016/j.aml.2018.06.003
10.1515/math-2018-0055
10.1186/s13660-019-2156-x
10.1155/2020/2354927
10.1007/s12346-015-0162-z
10.1186/s13662-020-2540-3
10.1155/2020/2492193
10.1016/j.amc.2015.01.080
10.3390/math7040333
10.15388/na.2018.4.2
10.1016/j.amc.2020.125505
10.1186/s13661-018-0972-4
10.1016/j.aml.2014.10.014
10.1002/mma.5773
10.1016/j.na.2019.111609
10.1016/j.jfranklin.2019.03.020
10.1016/j.jmaa.2018.04.040
10.3934/math.2020033
10.1186/s13662-016-1062-5
10.1002/mma.6063
10.1186/s13661-019-1228-7
10.1016/j.aml.2019.05.007
10.1155/2020/9285686
10.1016/j.aml.2016.10.015
10.1155/2020/9742418
10.1016/j.amc.2017.11.063
10.1016/j.aml.2018.04.005
10.1016/j.camwa.2016.01.028
10.1155/2018/2059694
10.1155/2017/3976469
10.1016/j.camwa.2014.10.011
10.1016/j.aml.2015.11.005
10.15388/na.2019.2.4
10.1016/j.jmaa.2018.01.060
10.1007/s40314-020-1102-3
10.1155/2019/9278056
10.1186/s13662-020-02892-7
10.1016/j.mcm.2011.10.006
10.15388/na.2019.5.6
10.1186/s13662-015-0540-5
10.1186/s13662-019-2246-6
10.1016/j.aml.2019.106124
10.1016/j.apnum.2020.06.003
10.1155/2020/3857592
10.1016/j.amc.2018.12.058
10.1016/j.aml.2019.106002
10.1155/2020/5623589
10.1016/j.aml.2017.08.008
10.1155/2019/7567695
10.1007/s00009-016-0774-9
10.1016/j.aml.2018.11.011
10.3934/dcds.2018077
10.1007/s00009-017-0875-0
10.1186/s13661-017-0849-y
10.1002/mma.5210
10.1016/j.aml.2016.08.020
10.1016/j.amc.2012.10.082
10.1002/rnc.4371
10.1016/j.amc.2014.12.068
10.1016/j.amc.2012.07.046
10.1186/s13661-018-1035-6
10.1016/j.aml.2019.106018
10.15388/namc.2020.25.18135
10.1186/s13662-016-0865-8
10.1186/s13662-020-02726-6
10.1016/j.aml.2014.05.002
10.1016/j.cam.2008.05.033
10.1016/j.aml.2017.05.010
10.1016/j.amc.2020.125339
10.1002/mma.4254
10.1186/s13661-019-1163-7
10.1016/j.cam.2020.112939
10.1155/2018/8346398
10.1016/j.amc.2014.02.062
10.1186/s13661-018-1109-5
10.1016/j.physa.2019.122132
10.1016/j.amc.2018.07.041
10.15388/NA.2017.1.3
10.1002/mma.5606
10.1016/j.aml.2019.106149
10.1155/2020/8392397
ContentType Journal Article
Copyright Copyright © 2021 Jingjing Tan et al.
Copyright © 2021 Jingjing Tan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Jingjing Tan et al.
– notice: Copyright © 2021 Jingjing Tan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/8898859
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor M. A. Khater, Mostafa
Editor_xml – sequence: 1
  givenname: Mostafa
  surname: M. A. Khater
  fullname: M. A. Khater, Mostafa
ExternalDocumentID oai_doaj_org_article_8ebf87ae56af44b1b5c21632e3498502
10_1155_2021_8898859
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2017LA002; ZR2019MA022; 2017BS02
– fundername: National Natural Science Foundation of China
  grantid: 11871302
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAMMB
AANHP
AAYXX
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7XB
8FK
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c403t-9ea346af9db5b4b78f69b6804ab2a2dee26637263c478b56388db5de4b4181c33
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616110600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-2787
IngestDate Fri Oct 03 12:51:22 EDT 2025
Fri Jul 25 21:08:57 EDT 2025
Sat Nov 29 03:19:29 EST 2025
Tue Nov 18 21:36:35 EST 2025
Sun Jun 02 19:16:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-9ea346af9db5b4b78f69b6804ab2a2dee26637263c478b56388db5de4b4181c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9941-0629
0000-0001-9250-6823
0000-0003-1028-1785
0000-0001-8541-1017
OpenAccessLink https://doaj.org/article/8ebf87ae56af44b1b5c21632e3498502
PQID 2484148752
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_8ebf87ae56af44b1b5c21632e3498502
proquest_journals_2484148752
crossref_primary_10_1155_2021_8898859
crossref_citationtrail_10_1155_2021_8898859
hindawi_primary_10_1155_2021_8898859
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_109_2
e_1_2_10_40_2
e_1_2_10_70_2
e_1_2_10_93_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_74_2
e_1_2_10_37_2
e_1_2_10_97_2
e_1_2_10_78_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_79_2
e_1_2_10_32_2
e_1_2_10_51_2
e_1_2_10_105_2
e_1_2_10_82_2
e_1_2_10_29_2
e_1_2_10_63_2
e_1_2_10_101_2
e_1_2_10_48_2
e_1_2_10_86_2
e_1_2_10_25_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
e_1_2_10_41_2
Wang J. (e_1_2_10_92_2) 2019; 37
e_1_2_10_90_2
e_1_2_10_19_2
e_1_2_10_71_2
e_1_2_10_94_2
e_1_2_10_3_2
e_1_2_10_52_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_75_2
e_1_2_10_98_2
e_1_2_10_7_2
e_1_2_10_56_2
e_1_2_10_57_2
e_1_2_10_33_2
e_1_2_10_10_2
Wu X. (e_1_2_10_102_2) 2018; 7
e_1_2_10_83_2
e_1_2_10_106_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_64_2
e_1_2_10_87_2
e_1_2_10_23_2
e_1_2_10_69_2
e_1_2_10_42_2
Liu J. (e_1_2_10_55_2) 2014; 2014
e_1_2_10_91_2
e_1_2_10_72_2
e_1_2_10_39_2
e_1_2_10_95_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_76_2
e_1_2_10_110_2
e_1_2_10_35_2
e_1_2_10_99_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_58_2
e_1_2_10_30_2
e_1_2_10_80_2
e_1_2_10_61_2
e_1_2_10_103_2
e_1_2_10_84_2
e_1_2_10_27_2
e_1_2_10_65_2
e_1_2_10_46_2
e_1_2_10_88_2
e_1_2_10_20_2
e_1_2_10_43_2
Liu J. (e_1_2_10_60_2) 2014; 2014
e_1_2_10_108_2
e_1_2_10_1_2
e_1_2_10_17_2
e_1_2_10_73_2
e_1_2_10_96_2
e_1_2_10_5_2
e_1_2_10_54_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_77_2
e_1_2_10_111_2
e_1_2_10_9_2
e_1_2_10_12_2
e_1_2_10_59_2
e_1_2_10_31_2
e_1_2_10_50_2
e_1_2_10_81_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_85_2
e_1_2_10_104_2
Tian R. H. (e_1_2_10_107_2) 2019; 2019
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_66_2
e_1_2_10_89_2
e_1_2_10_100_2
References_xml – volume: 2014
  year: 2014
  ident: e_1_2_10_55_2
  article-title: An application of variational methods to second-order impulsive differential equation with derivative dependence
  publication-title: Electronic Journal of Differential Equations
– ident: e_1_2_10_1_2
  doi: 10.15388/namc.2020.25.15736
– ident: e_1_2_10_24_2
  doi: 10.1186/s13661-019-1205-1
– ident: e_1_2_10_38_2
  doi: 10.1186/s13662-019-2250-x
– ident: e_1_2_10_104_2
  doi: 10.3390/math7050439
– ident: e_1_2_10_62_2
  doi: 10.1007/s13398-018-0527-7
– ident: e_1_2_10_4_2
  doi: 10.1016/j.aml.2018.02.019
– ident: e_1_2_10_39_2
  doi: 10.1186/s13661-017-0915-5
– ident: e_1_2_10_9_2
  doi: 10.1155/2019/5923490
– ident: e_1_2_10_90_2
  doi: 10.3390/math7040331
– ident: e_1_2_10_66_2
  doi: 10.1016/j.aml.2020.106560
– ident: e_1_2_10_87_2
  doi: 10.1186/s13660-019-1982-1
– ident: e_1_2_10_12_2
  doi: 10.1186/s13660-019-2164-x
– ident: e_1_2_10_88_2
  doi: 10.3846/mma.2018.037
– ident: e_1_2_10_69_2
  doi: 10.3390/math7080744
– ident: e_1_2_10_68_2
  doi: 10.1016/j.aml.2019.04.024
– ident: e_1_2_10_98_2
  doi: 10.1007/s40815-019-00663-5
– ident: e_1_2_10_52_2
  doi: 10.1016/j.amc.2012.02.014
– ident: e_1_2_10_29_2
  doi: 10.18514/mmn.2019.2552
– ident: e_1_2_10_14_2
  doi: 10.1016/j.cnsns.2012.08.033
– ident: e_1_2_10_36_2
  doi: 10.1186/s13662-019-2086-4
– ident: e_1_2_10_84_2
  doi: 10.1186/s13661-018-1003-1
– ident: e_1_2_10_94_2
  doi: 10.3390/math8030446
– ident: e_1_2_10_3_2
  doi: 10.1186/1687-2770-2013-245
– ident: e_1_2_10_65_2
  doi: 10.1016/j.jmaa.2017.10.020
– ident: e_1_2_10_79_2
  doi: 10.1016/j.chaos.2020.109824
– ident: e_1_2_10_100_2
  doi: 10.1016/j.aml.2018.06.003
– ident: e_1_2_10_109_2
  doi: 10.1515/math-2018-0055
– ident: e_1_2_10_82_2
  doi: 10.1186/s13660-019-2156-x
– ident: e_1_2_10_48_2
  doi: 10.1155/2020/2354927
– ident: e_1_2_10_86_2
  doi: 10.1007/s12346-015-0162-z
– ident: e_1_2_10_108_2
  doi: 10.1186/s13662-020-2540-3
– ident: e_1_2_10_15_2
  doi: 10.1155/2020/2492193
– ident: e_1_2_10_46_2
  doi: 10.1016/j.amc.2015.01.080
– ident: e_1_2_10_71_2
  doi: 10.3390/math7040333
– ident: e_1_2_10_27_2
  doi: 10.15388/na.2018.4.2
– ident: e_1_2_10_76_2
  doi: 10.1016/j.amc.2020.125505
– ident: e_1_2_10_30_2
  doi: 10.1186/s13661-018-0972-4
– ident: e_1_2_10_96_2
  doi: 10.1016/j.aml.2014.10.014
– ident: e_1_2_10_77_2
  doi: 10.1002/mma.5773
– ident: e_1_2_10_56_2
  doi: 10.1016/j.na.2019.111609
– ident: e_1_2_10_70_2
  doi: 10.1016/j.jfranklin.2019.03.020
– ident: e_1_2_10_19_2
  doi: 10.1016/j.jmaa.2018.04.040
– ident: e_1_2_10_85_2
  doi: 10.3934/math.2020033
– ident: e_1_2_10_41_2
  doi: 10.1186/s13662-016-1062-5
– ident: e_1_2_10_74_2
  doi: 10.1002/mma.6063
– ident: e_1_2_10_2_2
  doi: 10.1186/s13661-019-1228-7
– ident: e_1_2_10_43_2
  doi: 10.1016/j.aml.2019.05.007
– ident: e_1_2_10_44_2
  doi: 10.1155/2020/9285686
– ident: e_1_2_10_91_2
  doi: 10.1016/j.aml.2016.10.015
– volume: 37
  start-page: 1
  year: 2019
  ident: e_1_2_10_92_2
  article-title: Nonemptyness and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses
  publication-title: Electronic Journal of Differential Equations
– ident: e_1_2_10_83_2
  doi: 10.1155/2020/9742418
– ident: e_1_2_10_99_2
  doi: 10.1016/j.amc.2017.11.063
– ident: e_1_2_10_58_2
  doi: 10.1016/j.aml.2018.04.005
– ident: e_1_2_10_34_2
  doi: 10.1016/j.camwa.2016.01.028
– ident: e_1_2_10_22_2
  doi: 10.1155/2018/2059694
– ident: e_1_2_10_64_2
  doi: 10.1155/2017/3976469
– ident: e_1_2_10_61_2
  doi: 10.1016/j.camwa.2014.10.011
– ident: e_1_2_10_20_2
  doi: 10.1016/j.aml.2015.11.005
– volume: 7
  year: 2018
  ident: e_1_2_10_102_2
  article-title: Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel
  publication-title: Mathematics
– ident: e_1_2_10_80_2
  doi: 10.15388/na.2019.2.4
– ident: e_1_2_10_63_2
  doi: 10.1016/j.jmaa.2018.01.060
– ident: e_1_2_10_35_2
  doi: 10.1007/s40314-020-1102-3
– ident: e_1_2_10_13_2
  doi: 10.1155/2019/9278056
– ident: e_1_2_10_47_2
  doi: 10.1186/s13662-020-02892-7
– ident: e_1_2_10_40_2
  doi: 10.1016/j.mcm.2011.10.006
– ident: e_1_2_10_89_2
  doi: 10.15388/na.2019.5.6
– ident: e_1_2_10_42_2
  doi: 10.1186/s13662-015-0540-5
– ident: e_1_2_10_103_2
  doi: 10.1186/s13662-019-2246-6
– ident: e_1_2_10_6_2
  doi: 10.1016/j.aml.2019.106124
– ident: e_1_2_10_78_2
  doi: 10.1016/j.apnum.2020.06.003
– ident: e_1_2_10_73_2
  doi: 10.1155/2020/3857592
– ident: e_1_2_10_7_2
  doi: 10.1016/j.amc.2018.12.058
– ident: e_1_2_10_111_2
  doi: 10.1016/j.aml.2019.106002
– ident: e_1_2_10_25_2
  doi: 10.1155/2020/5623589
– ident: e_1_2_10_5_2
  doi: 10.1016/j.aml.2017.08.008
– ident: e_1_2_10_93_2
  doi: 10.1155/2019/7567695
– ident: e_1_2_10_45_2
  doi: 10.1007/s00009-016-0774-9
– volume: 2014
  start-page: 1
  year: 2014
  ident: e_1_2_10_60_2
  article-title: Existence of positive solutions to a singular boundary-value problem using variational methods
  publication-title: Electronic Journal of Differential Equations
– ident: e_1_2_10_28_2
  doi: 10.1016/j.aml.2018.11.011
– ident: e_1_2_10_59_2
  doi: 10.3934/dcds.2018077
– ident: e_1_2_10_57_2
  doi: 10.1007/s00009-017-0875-0
– ident: e_1_2_10_10_2
  doi: 10.1186/s13661-017-0849-y
– ident: e_1_2_10_81_2
  doi: 10.1002/mma.5210
– ident: e_1_2_10_26_2
  doi: 10.1016/j.aml.2016.08.020
– ident: e_1_2_10_17_2
  doi: 10.1016/j.amc.2012.10.082
– ident: e_1_2_10_16_2
  doi: 10.1002/rnc.4371
– ident: e_1_2_10_31_2
  doi: 10.1016/j.amc.2014.12.068
– ident: e_1_2_10_49_2
  doi: 10.1016/j.amc.2012.07.046
– ident: e_1_2_10_37_2
  doi: 10.1186/s13661-018-1035-6
– ident: e_1_2_10_23_2
  doi: 10.1016/j.aml.2019.106018
– ident: e_1_2_10_75_2
  doi: 10.15388/namc.2020.25.18135
– ident: e_1_2_10_110_2
  doi: 10.1186/s13662-016-0865-8
– ident: e_1_2_10_106_2
  doi: 10.1186/s13662-020-02726-6
– ident: e_1_2_10_11_2
  doi: 10.1016/j.aml.2014.05.002
– ident: e_1_2_10_95_2
  doi: 10.1016/j.cam.2008.05.033
– ident: e_1_2_10_21_2
  doi: 10.1016/j.aml.2017.05.010
– ident: e_1_2_10_33_2
  doi: 10.1016/j.amc.2020.125339
– ident: e_1_2_10_72_2
  doi: 10.1002/mma.4254
– ident: e_1_2_10_54_2
  doi: 10.1186/s13661-019-1163-7
– ident: e_1_2_10_18_2
  doi: 10.1016/j.cam.2020.112939
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_2_10_107_2
  article-title: (3+1)-dimensional time-fractional modified Burgers equation for dust ion-acoustic waves as well as its exact and numerical solutions
  publication-title: Mathematical Methods in the Applied Sciences
– ident: e_1_2_10_8_2
  doi: 10.1155/2018/8346398
– ident: e_1_2_10_53_2
  doi: 10.1016/j.amc.2014.02.062
– ident: e_1_2_10_51_2
  doi: 10.1186/s13661-018-1109-5
– ident: e_1_2_10_97_2
  doi: 10.1016/j.physa.2019.122132
– ident: e_1_2_10_101_2
  doi: 10.1016/j.amc.2018.07.041
– ident: e_1_2_10_32_2
  doi: 10.15388/NA.2017.1.3
– ident: e_1_2_10_50_2
  doi: 10.1002/mma.5606
– ident: e_1_2_10_67_2
  doi: 10.1016/j.aml.2019.106149
– ident: e_1_2_10_105_2
  doi: 10.1155/2020/8392397
SSID ssj0009637
Score 2.2189128
Snippet In this paper, we consider the iterative algorithm for a boundary value problem of n-order fractional differential equation with mixed integral and multipoint...
In this paper, we consider the iterative algorithm for a boundary value problem of n ‐order fractional differential equation with mixed integral and multipoint...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Boundary conditions
Boundary value problems
Differential equations
Integrals
Iterative algorithms
Iterative methods
Methods
Variables
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RigMcEC0glhbkQ5FAyCLxR-Ict6Wr9tCCBEh7i2zHpiulSdksBa78csaOdxFUCC6REk1iJTPjmTeO3wAcYMQrbWYamkvHKUY8TbV3hpbW8ryonFK6ic0myvNzNZ9X7xJJ0nBzCR-jXYDn-WulKqVktQVbeAyg_GT-i1u3iNSYCGQKytAA1_-3_3Hvb5EnEvRjznsRkO_XxY2ZOIaX2X24l_JCMh0VuQO3XLcLd882pKrDLuwkPxzIi0QW_fIB_Jh25DQyI-O0Rabtpx7R_sUlwVyUvO_bUC4gHX0bCDbJbDnuYsBx3qS-KOjfLTn-PPJ9k1CUJWeLb64hpyONREt015C4S_eqX3QrchjbMC2_k6M-LHYHo30IH2fHH45OaOqrQK3I-IpWTnNRaF81RhphSuWLyhQqE9owzRrnMGjzkhXcilIZiR6qULJxwgjMByznj2C76zv3GIjQufJMee6lDTQzurEs885qBGLWeDOBV-tvXttEOh56X7R1BB9S1kFDddLQBJ5vpK9Gso2_yB0G9W1kAkV2vIBmUyePq5UzXpXaSXxTIUxupGWYfDLHRaVkxiZwkJT_j7H215ZRJ_ceaiaUyAPUY0_-7yl7cCecjrWbfdheLb-4p3DbXq8Ww_JZNOefdrjuiw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADpQXEloJ8KBIIWU38SJxTtS1dUaEWJEDqLfIr7Uoh2SYpj2t_eT2Od4uEgAPXxLITzeubsf0NQjs-4uUm0ZakwjHiI54iqnKa5MawNCuclMqGZhP5yYk8PS0-xoJbH49VLn1icNS2NVAj36Vc8hTQNd1bXBDoGgW7q7GFxm10J6U0BT1_n5Mb0t0scGb6DCcj1Gvm8uC7EJDzp7tSFlICS-kvISkw93swfA4p8ff5by46xJ3Z-v9-8UP0ICJOPB1VZAPdcs0mun-8omvtN9FGtPAev4o01K8foatpg48C57J3iHhan_m5h_Ov2KNc_KmtoRCBG_IBqDvxrBvvR_h13saOK95z1PjwYmQSx1DuxcfzH87io5GgosaqsTjc_12082bA-6HBU_cTH7SwjQ7m8Bh9mR1-PnhHYscGYnjCBlI4xXimqsJqobnOZZUVOpMJV5oqap3zcIDlNGOG51ILb_vSj7SOa-6RhmHsCVpr2sY9RZirVFZUVqwSBghslDU0qZxRPsUzutIT9GYptNJEOnPoqlGXIa0RogQRl1HEE_RyNXox0nj8Ydw-yH81Bsi3w4O2OyujLZfS6Urmygn_p5zrVAtDPayljvFCioRO0E7Unn-stb3UmzI6jr68UZqtv79-hu7BZGM1aButDd2le47umm_DvO9eBDu4BtSdDv0
  priority: 102
  providerName: ProQuest
Title An Iterative Algorithm for Solving n-Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions
URI https://dx.doi.org/10.1155/2021/8898859
https://www.proquest.com/docview/2484148752
https://doaj.org/article/8ebf87ae56af44b1b5c21632e3498502
Volume 2021
WOSCitedRecordID wos000616110600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: M2O
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIAtVDjAoaIFxEKpfCgSCFnd-JE4x92yq1Zot6sC0opLZDtOGykkbTa8rvxyxo6zqoRQL1zmEFmy5Rl7Zhz7G4SOwOMlZqxzEgnLCHg8RVRhNUmMYVGcWilV7otNJMulXK_T1a1SX-5OWI8H7ifuWFpdyERZEauCcx1pYSjEENQynkrRYyQh6hmSqQG3G3taJuQ2MaFgk8OVdyFcth8dS5lK6fikt5yRZ_ZDGHzlkuEf5V-bs_c488doN4SKeNIPcQ_ds_U-erTYclY3-2gvLM0NfhP40W-foN-TGp95WDLsZHhSXTZt2V19xRCe4o9N5U4QcE3OHXMTz9v-YQP08z6USoElX-HZTY8Ax-6cFi_KnzbHZz1ZosKqzrF_uHvdlHWHp74yU_sLnzTu_7ez46fo83z26eSUhFILxPAx60hqFeMww2muheY6kUWc6liOudJU0dxa8OMsoTEzPJFawKKV0DK3XHMIEQxjz9BO3dT2OcJcRbKgsmCFMI48o3JDx4U1CnIzows9Qu-GOc9M4JC7chhV5vMRITKnoSxoaIReb1tf9_yNf7SbOvVt2zhqtv8AtpQFW8rusqUROgrKv6Ovg8EysrDiNxnlkkcu-6Mv_sdQXqKHrsv-sOcA7XTtN_sKPTDfu3LTHqL709lydXHojR7kh4SAXNBzkCvxBeTF6foP7PgGTg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLamgQQcgA0QHQN82CQQspY4duIcEOo-qlVdCxJD2i3YjrNVypIuCYxd-UH8Rvw6SYeEgNMOXBMrlpPn_Yz9PAht2YgXaU-lxOcmIDbiSSIzo0ikdeCHsRFCpk5sIprNxMlJ_GEF_ejPwsC2yt4nOkedlhp65DuUCeZDdk3fLS4IqEbB39VeQqOFxcRcXdqSrX473rffd5vS0cHx3iHpVAWIZl7QkNjIgIUyi1PFFVORyMJYhcJjUlFJU2NsyAoiGgaaRUJxi09hR6aGKWajoYYGqHX5t1ggIuDqn0TkmuQ3dBydtqIKCbWW0G-05xx6DP6OELEQwIr6Swh0SgE2-T6DEvxy_ltIcHFu9OB_e0MP0f0uo8bD1gTW0Iop1tG96ZKOtl5Ha50Hq_Grjmb79SP0fVjgseOUtg4fD_NTu5bm7BzbLB5_LHNotOCCvAdqUjyq2vMfdp79TlHGesYcH1y0TOkY2tl4Ov9mUjxuCThyLIsUu_PNi3JeNHjXCVhVV3ivhG0CYO6P0acbeTNP0GpRFuYpwkz6IqMiCzKugaBHppp6mdHSlrBaZWqA3vQgSXRH1w6qIXniyjbOE4BU0kFqgLaXoxctTckfxu0C3pZjgFzcXSir06TzVYkwKhORNNyulDHlK66pTdupCVgsuEcHaKtD6z_m2uxxmnSOsU6uQbrx99sv0Z3D4-lRcjSeTZ6hu_DgtvO1iVab6ot5jm7rr828rl44G8To801D-if24GvF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Iterative+Algorithm+for+Solving+n-Order+Fractional+Differential+Equation+with+Mixed+Integral+and+Multipoint+Boundary+Conditions&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Jingjing+Tan&rft.au=Xinguang+Zhang&rft.au=Lishan+Liu&rft.au=Yonghong+Wu&rft.date=2021&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8898859&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8ebf87ae56af44b1b5c21632e3498502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon