Population Dynamics in Genetic Programming for Dynamic Symbolic Regression
This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess th...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 14; číslo 2; s. 596 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2024
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess the performance of a genetic algorithm (GA) as a traditional evolutionary algorithm and an age-layered population structure (ALPS) as an open-ended evolutionary algorithm for dynamic symbolic regression. This study analyzes population dynamics by examining variable frequencies and impact changes over time in response to dynamic shifts in the training data. The results demonstrate the effectiveness of both the GA and ALPS in handling changing data, showcasing their ability to recover and evolve improved solutions after an initial drop in population quality following data changes. Population dynamics reveal that variable impacts respond rapidly to data changes, while variable frequencies shift gradually across generations, aligning with the indirect measure of fitness represented by variable impacts. Notably, the GA shows a strong dependence on mutation to avoid variables becoming permanently extinct, contrasting with the ALPS’s unexpected insensitivity to mutation rates owing to its reseeding mechanism for effective variable reintroduction. |
|---|---|
| AbstractList | This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess the performance of a genetic algorithm (GA) as a traditional evolutionary algorithm and an age-layered population structure (ALPS) as an open-ended evolutionary algorithm for dynamic symbolic regression. This study analyzes population dynamics by examining variable frequencies and impact changes over time in response to dynamic shifts in the training data. The results demonstrate the effectiveness of both the GA and ALPS in handling changing data, showcasing their ability to recover and evolve improved solutions after an initial drop in population quality following data changes. Population dynamics reveal that variable impacts respond rapidly to data changes, while variable frequencies shift gradually across generations, aligning with the indirect measure of fitness represented by variable impacts. Notably, the GA shows a strong dependence on mutation to avoid variables becoming permanently extinct, contrasting with the ALPS’s unexpected insensitivity to mutation rates owing to its reseeding mechanism for effective variable reintroduction. |
| Audience | Academic |
| Author | Fleck, Philipp Werth, Bernhard Affenzeller, Michael |
| Author_xml | – sequence: 1 givenname: Philipp orcidid: 0000-0001-8290-6356 surname: Fleck fullname: Fleck, Philipp – sequence: 2 givenname: Bernhard orcidid: 0000-0002-7830-3138 surname: Werth fullname: Werth, Bernhard – sequence: 3 givenname: Michael orcidid: 0000-0001-5692-5940 surname: Affenzeller fullname: Affenzeller, Michael |
| BookMark | eNptkclKBDEQhoMouJ58gQaPMpq1OzmK64jg4HIO6SxNhu6kTXoO8_bGGQURE0iKor4_lfoPwW6IwQJwiuAFIQJeqnFEFGLIRL0DDjBs6hmhqNn9Fe-Dk5yXsCyBCEfwADwu4rjq1eRjqG7WQQ1e58qH6t4GO3ldLVLskhoGH7rKxfRTU72uhzb2JXixXbI5F_4Y7DnVZ3vyfR-B97vbt-uH2dPz_fz66mmmKSTTTGhFHLTcOtPWitZtzTDS1CAtKEJGO6MpxsIQ00CtHRYt4UI3rm0dpbxm5AjMt7omqqUckx9UWsuovNwkYuqkSqX33krCoCNMYa4YpOVUhGOjNWta7CCrTdE622qNKX6sbJ7kMq5SKO1LLBBnNcKbFy-2VZ0qoj64OCWlyza2zKK44HzJXzUc8gbBhhQAbQGdYs7JOqn9tBlyAX0vEZRflslflhXm_A_z87X_qj8B6KuYig |
| CitedBy_id | crossref_primary_10_3390_math12193021 |
| Cites_doi | 10.1109/4235.996017 10.1109/TCYB.2020.3011828 10.1023/A:1010933404324 10.1007/s10710-010-9109-y 10.1007/s10710-019-09371-3 10.1109/TEVC.2021.3060012 10.1214/aos/1013203451 10.1016/j.swevo.2023.101289 10.1108/IJICC-12-2013-0054 10.1109/CEC.2009.4982976 10.1080/10556788.2020.1808977 10.1109/4235.942529 10.1090/qam/10666 10.1145/1143997.1144142 10.1007/BF00994018 10.1145/2001858.2001965 10.3390/a14010021 10.1007/BF00175355 10.7551/mitpress/1090.001.0001 10.1007/978-3-031-25312-6_7 10.1016/j.swevo.2012.05.001 10.20944/preprints201905.0187.v1 10.1109/CEC.2009.4982978 10.1145/2576768.2598247 10.1109/TEVC.2019.2958075 10.1103/PhysRevE.94.012214 10.1080/14786440109462720 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app14020596 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_350f35a28a50428aa382dcc57b2f056d A780871073 10_3390_app14020596 |
| GeographicLocations | Austria Germany |
| GeographicLocations_xml | – name: Austria – name: Germany |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c403t-9ca3f0e8efdb6a46b6521c4d1c9411dcfdc4229d3d70ccf29b389c7fbbf448653 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149016600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:06:30 EDT 2025 Mon Jun 30 14:34:12 EDT 2025 Tue Nov 04 18:29:42 EST 2025 Sat Nov 29 07:17:24 EST 2025 Tue Nov 18 21:59:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-9ca3f0e8efdb6a46b6521c4d1c9411dcfdc4229d3d70ccf29b389c7fbbf448653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7830-3138 0000-0001-5692-5940 0000-0001-8290-6356 |
| OpenAccessLink | https://www.proquest.com/docview/2918561265?pq-origsite=%requestingapplication% |
| PQID | 2918561265 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_350f35a28a50428aa382dcc57b2f056d proquest_journals_2918561265 gale_infotracacademiconefile_A780871073 crossref_citationtrail_10_3390_app14020596 crossref_primary_10_3390_app14020596 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Deb (ref_22) 2002; 6 Chen (ref_33) 2019; 24 ref_14 ref_13 ref_35 Cortes (ref_2) 1995; 20 ref_12 ref_34 ref_10 ref_32 ref_31 Nguyen (ref_24) 2012; 6 ref_30 Alza (ref_36) 2023; 78 Friedman (ref_42) 2001; 29 Pearson (ref_11) 1901; 2 ref_17 McKay (ref_19) 2010; 11 Hansen (ref_44) 2021; 36 ref_38 ref_15 ref_37 Quade (ref_9) 2016; 94 Levenberg (ref_43) 1944; 2 Koza (ref_3) 1994; 4 Michalewicz (ref_39) 2014; 7 Yazdani (ref_28) 2021; 25 Zitzler (ref_23) 2001; 103 Breiman (ref_1) 2001; 45 ref_21 ref_20 ref_41 ref_40 ref_29 ref_27 Yazdani (ref_25) 2020; 52 ref_26 ref_8 ref_5 ref_4 ref_7 Ryan (ref_16) 2001; 5 Kommenda (ref_18) 2020; 21 ref_6 |
| References_xml | – ident: ref_7 – volume: 6 start-page: 182 year: 2002 ident: ref_22 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: ref_5 – volume: 52 start-page: 3380 year: 2020 ident: ref_25 article-title: Benchmarking continuous dynamic optimization: Survey and generalized test suite publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3011828 – ident: ref_26 – volume: 45 start-page: 5 year: 2001 ident: ref_1 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 11 start-page: 365 year: 2010 ident: ref_19 article-title: Grammar-based genetic programming: A survey publication-title: Genet. Program. Evolvable Mach. doi: 10.1007/s10710-010-9109-y – volume: 21 start-page: 471 year: 2020 ident: ref_18 article-title: Parameter identification for symbolic regression using nonlinear least squares publication-title: Genet. Program. Evolvable Mach. doi: 10.1007/s10710-019-09371-3 – volume: 25 start-page: 630 year: 2021 ident: ref_28 article-title: A survey of evolutionary continuous dynamic optimization over two decades—Part B publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3060012 – volume: 29 start-page: 1189 year: 2001 ident: ref_42 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: ref_40 – volume: 78 start-page: 101289 year: 2023 ident: ref_36 article-title: On the elusivity of dynamic optimisation problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101289 – volume: 7 start-page: 143 year: 2014 ident: ref_39 article-title: Implicit memory-based technique in solving dynamic scheduling problems through response surface methodology—Part II: Experiments and analysis publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/IJICC-12-2013-0054 – ident: ref_35 doi: 10.1109/CEC.2009.4982976 – ident: ref_37 – ident: ref_14 – volume: 36 start-page: 114 year: 2021 ident: ref_44 article-title: COCO: A platform for comparing continuous optimizers in a black-box setting publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2020.1808977 – volume: 5 start-page: 349 year: 2001 ident: ref_16 article-title: Grammatical evolution publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.942529 – volume: 2 start-page: 164 year: 1944 ident: ref_43 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – ident: ref_21 doi: 10.1145/1143997.1144142 – volume: 20 start-page: 273 year: 1995 ident: ref_2 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_10 doi: 10.1145/2001858.2001965 – ident: ref_8 – ident: ref_4 – ident: ref_30 doi: 10.3390/a14010021 – ident: ref_31 – ident: ref_27 – volume: 4 start-page: 87 year: 1994 ident: ref_3 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – ident: ref_6 doi: 10.7551/mitpress/1090.001.0001 – ident: ref_12 – ident: ref_34 doi: 10.1007/978-3-031-25312-6_7 – volume: 6 start-page: 1 year: 2012 ident: ref_24 article-title: Evolutionary dynamic optimization: A survey of the state of the art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.05.001 – ident: ref_32 doi: 10.20944/preprints201905.0187.v1 – ident: ref_38 doi: 10.1109/CEC.2009.4982978 – ident: ref_41 – ident: ref_15 – ident: ref_29 doi: 10.1145/2576768.2598247 – ident: ref_13 – ident: ref_17 – volume: 24 start-page: 792 year: 2019 ident: ref_33 article-title: A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2958075 – volume: 94 start-page: 012214 year: 2016 ident: ref_9 article-title: Prediction of dynamical systems by symbolic regression publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.012214 – ident: ref_20 – volume: 103 start-page: 1 year: 2001 ident: ref_23 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm publication-title: TIK Rep. – volume: 2 start-page: 559 year: 1901 ident: ref_11 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440109462720 |
| SSID | ssj0000913810 |
| Score | 2.2848825 |
| Snippet | This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 596 |
| SubjectTerms | Adaptation Algorithms Artificial intelligence dynamic optimization Genetic algorithms genetic programming Genetic research Interoperability Machine learning Neural networks Optimization Population biology Programming languages symbolic regression |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CyCE9lDxaumkadAikLZjKsh7WMY-G0kNY-oDchDSySqBxQnYbyL_vyPIuPrT0Uh_NIOTRaOb7bPkbgGOuefJGhsoqIyuqUL7yMfBK1LolEqRTDH5oNmGurtrrazuftPrKZ8KKPHBx3IdG8dQoL1qvMrz3vmlFRFQmiETFO-bsy42dkKkhB9s6S1eVH_Ia4vX5e3CduZLK8vyTEjQo9f8tHw9F5nIHno_okJ2WWe3CRtfvwbOJZuAe7I67ccHejpLR7_bh83zdh4tdlB7zC3bTs2xBQ7F5OYV1SyMwQqkrG_b16TZkYWD2pftRDsT2L-D75cdv55-qsUtChZI3y8qibxLv2o7cqr3UQVNFRhlrtLKuI6aIUggbm2g4YhI2EEZBk0JIRM20al7CZn_Xd6-AGfQ8pdaLYJSMnSHyGpJCupIKqOUM3q8c53CUEM-dLH46ohLZy27i5Rkcr43vi3LGn83O8gqsTbLc9XCDgsCNQeD-FQQzOMnr5_KmpAmhH_8toMfK8lbu1LScmCGlsxkcrpbYjbt14YQl1EJQT6uD_zGb17AtCPqUFzWHsLl8-NW9gS18XN4sHo6GQP0NGLbtLQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Population Dynamics in Genetic Programming for Dynamic Symbolic Regression |
| URI | https://www.proquest.com/docview/2918561265 https://doaj.org/article/350f35a28a50428aa382dcc57b2f056d |
| Volume | 14 |
| WOSCitedRecordID | wos001149016600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOlBYQC23lQyUeUoTjxHZyqtrSCpBYRQWkcrLscVxVotmyWZD494wT77IH4EJuSUaWk3mP7W8ADrjiwerSZbXUZUYeymbWO56JXFWUBKngnR2aTejptLq4qJtUcOvTtsqlTRwMtZ9hrJG_FjV5FnLHSh7efMti16i4uppaaNyGzYhURnK-eXw6bc5XVZaIelnlfDyYV1B-H9eF85gzyQjTv-aKBsT-v9nlwdmcbf3vNB_A_RRmsqNRLrbhVtvtwL018MEd2E5q3bMXCXv65UN436waerE3Y7P6nl11LFLQUKwZt3Nd0wiMwt0lDfv489pFhGF23l6OO2u7R_D57PTTydsstVvIsOTFIqvRFoG3VUv8UbZUTpFrx9LnWJd57jF4LIWofeE1RwyidhTsoA7OBcrxlCwew0Y369onwDRaHkJlhdOy9K2mLNgFiXQF6VCVE3i1_PMGExZ5bInx1VBOEtlk1tg0gYMV8c0IwfFnsuPIwhVJxM0eHszmlyapoSkkD4W0orIyJovWFpXwiFI7ESgU9BN4HgXARO2mCaFNhxTosyJOljnSFacUk-ziBHaXAmCS2vfmN_ef_vv1M7grKDoaazm7sLGYf2_34A7-WFz18_0kxftDgYDumncfmi-_ADUZ_6I |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyToAWgBsVDAhyIeUoTj2HFyQKhQqi5tVysoUnsyfsTVSt1s2Syg_VP8RsZ5LHsAbj2QYzKynPjLzHx-zAewQ1PqteQmyoXkEUYoHWlnaMTiNEMSlHpndC02IYfD7PQ0H63Bz-4sTNhW2fnE2lG7qQ1z5K9YjpEFw3Eq3lx-jYJqVFhd7SQ0GlgcFosfSNmq14M9HN-njO2_P3l3ELWqApHlNJlHudWJp0VWYDdSzVOTYgSz3MU253HsrHeWM5a7xElqrWe5wZhupTfGI5VJg0oEuvx1HsDeg_XR4Hh0tpzVCVU2s5g2BwGTJKdhHToOHE0EWYCV0FcrBPwtDtTBbf_W__ZZbsPNNo0muw3uN2GtKLdgY6W44hZstm6rIs_b2tov7sCH0VKwjOwtSj0Z24qMSxIssCkyararTbAFgul8Z0M-LSYmVFAmH4vzZudweRc-X8kb3oNeOS2L-0Ck1dT7TDMjBXeFRJZvvLB4eWFsyvvwshtpZdta60Hy40Ih5wqwUCuw6MPO0viyKTHyZ7O3ATJLk1AXvL4xnZ2r1s2oRFCfCM0yLQIZ1jrJmLNWSMM8prquD88C4FTwXtghq9tDGPhaoQ6Y2pUZRQqNfr8P2x3gVOvWKvUbbQ_-_fgJXD84OT5SR4Ph4UO4wTATbOattqE3n30rHsE1-30-rmaP2z-IwJerRucvHghcrw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJwKLSASCmwhyIektX12uu1DwgVQkQoRBYPqZyWfXirSMQpcQDlr_HrmI3XIQfg1gM-2iPL9n6eb2Z3dj6AQ5pRp0Sqo4KLNEKGUpGymkYsznJMgjJntVqJTYjxOD89Lcot-NnthfFllZ1PXDlqOzN-jvyIFcgsSMcZP3KhLKIcDJ-df428gpRfae3kNFqInFTLH5i-NU9HAxzrB4wNX3548SoKCgORSWmyiAqjEkervMJHylSa6QzZzKQ2NkUax9Y4a1LGCptYQY1xrNDI70Y4rR2mNZlXjED3v40hecp6sF2O3paf1jM8vuNmHtN2U2CSFNSvScc-X-NeImCDBldqAX_jhBXRDa_9z5_oOuyE8Joct__DLmxV9R5c3Wi6uAe7wZ015FHouf34Brwu10JmZLCs1XRiGjKpibfAW5GyLWOb4h0IhvmdDXm_nGrfWZm8q87aiuL6Jny8kDe8Bb16Vle3gQijqHO5Ylrw1FYCs3_tuMHDcW2ytA9PulGXJvRg91IgXyTmYh4icgMifThcG5-3rUf-bPbcw2dt4vuFr07M5mcyuB-ZcOoSrliuuE-SlUpyZo3hQjOHIbDtw0MPPum9Gj6QUWFzBr6W7w8mj0VOMbVGPujDQQc-GdxdI38jb__fl-_DZYSkfDMan9yBKwwDxHY66wB6i_m36i5cMt8Xk2Z-L_xMBD5fNDh_AdDEZW8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Dynamics+in+Genetic+Programming+for+Dynamic+Symbolic+Regression&rft.jtitle=Applied+sciences&rft.au=Fleck%2C+Philipp&rft.au=Werth%2C+Bernhard&rft.au=Affenzeller%2C+Michael&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fapp14020596&rft.externalDocID=A780871073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |