Population Dynamics in Genetic Programming for Dynamic Symbolic Regression

This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 14; H. 2; S. 596
Hauptverfasser: Fleck, Philipp, Werth, Bernhard, Affenzeller, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2024
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess the performance of a genetic algorithm (GA) as a traditional evolutionary algorithm and an age-layered population structure (ALPS) as an open-ended evolutionary algorithm for dynamic symbolic regression. This study analyzes population dynamics by examining variable frequencies and impact changes over time in response to dynamic shifts in the training data. The results demonstrate the effectiveness of both the GA and ALPS in handling changing data, showcasing their ability to recover and evolve improved solutions after an initial drop in population quality following data changes. Population dynamics reveal that variable impacts respond rapidly to data changes, while variable frequencies shift gradually across generations, aligning with the indirect measure of fitness represented by variable impacts. Notably, the GA shows a strong dependence on mutation to avoid variables becoming permanently extinct, contrasting with the ALPS’s unexpected insensitivity to mutation rates owing to its reseeding mechanism for effective variable reintroduction.
AbstractList This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess the performance of a genetic algorithm (GA) as a traditional evolutionary algorithm and an age-layered population structure (ALPS) as an open-ended evolutionary algorithm for dynamic symbolic regression. This study analyzes population dynamics by examining variable frequencies and impact changes over time in response to dynamic shifts in the training data. The results demonstrate the effectiveness of both the GA and ALPS in handling changing data, showcasing their ability to recover and evolve improved solutions after an initial drop in population quality following data changes. Population dynamics reveal that variable impacts respond rapidly to data changes, while variable frequencies shift gradually across generations, aligning with the indirect measure of fitness represented by variable impacts. Notably, the GA shows a strong dependence on mutation to avoid variables becoming permanently extinct, contrasting with the ALPS’s unexpected insensitivity to mutation rates owing to its reseeding mechanism for effective variable reintroduction.
Audience Academic
Author Fleck, Philipp
Werth, Bernhard
Affenzeller, Michael
Author_xml – sequence: 1
  givenname: Philipp
  orcidid: 0000-0001-8290-6356
  surname: Fleck
  fullname: Fleck, Philipp
– sequence: 2
  givenname: Bernhard
  orcidid: 0000-0002-7830-3138
  surname: Werth
  fullname: Werth, Bernhard
– sequence: 3
  givenname: Michael
  orcidid: 0000-0001-5692-5940
  surname: Affenzeller
  fullname: Affenzeller, Michael
BookMark eNptkclKBDEQhoMouJ58gQaPMpq1OzmK64jg4HIO6SxNhu6kTXoO8_bGGQURE0iKor4_lfoPwW6IwQJwiuAFIQJeqnFEFGLIRL0DDjBs6hmhqNn9Fe-Dk5yXsCyBCEfwADwu4rjq1eRjqG7WQQ1e58qH6t4GO3ldLVLskhoGH7rKxfRTU72uhzb2JXixXbI5F_4Y7DnVZ3vyfR-B97vbt-uH2dPz_fz66mmmKSTTTGhFHLTcOtPWitZtzTDS1CAtKEJGO6MpxsIQ00CtHRYt4UI3rm0dpbxm5AjMt7omqqUckx9UWsuovNwkYuqkSqX33krCoCNMYa4YpOVUhGOjNWta7CCrTdE622qNKX6sbJ7kMq5SKO1LLBBnNcKbFy-2VZ0qoj64OCWlyza2zKK44HzJXzUc8gbBhhQAbQGdYs7JOqn9tBlyAX0vEZRflslflhXm_A_z87X_qj8B6KuYig
CitedBy_id crossref_primary_10_3390_math12193021
Cites_doi 10.1109/4235.996017
10.1109/TCYB.2020.3011828
10.1023/A:1010933404324
10.1007/s10710-010-9109-y
10.1007/s10710-019-09371-3
10.1109/TEVC.2021.3060012
10.1214/aos/1013203451
10.1016/j.swevo.2023.101289
10.1108/IJICC-12-2013-0054
10.1109/CEC.2009.4982976
10.1080/10556788.2020.1808977
10.1109/4235.942529
10.1090/qam/10666
10.1145/1143997.1144142
10.1007/BF00994018
10.1145/2001858.2001965
10.3390/a14010021
10.1007/BF00175355
10.7551/mitpress/1090.001.0001
10.1007/978-3-031-25312-6_7
10.1016/j.swevo.2012.05.001
10.20944/preprints201905.0187.v1
10.1109/CEC.2009.4982978
10.1145/2576768.2598247
10.1109/TEVC.2019.2958075
10.1103/PhysRevE.94.012214
10.1080/14786440109462720
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app14020596
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_350f35a28a50428aa382dcc57b2f056d
A780871073
10_3390_app14020596
GeographicLocations Austria
Germany
GeographicLocations_xml – name: Austria
– name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-9ca3f0e8efdb6a46b6521c4d1c9411dcfdc4229d3d70ccf29b389c7fbbf448653
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149016600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:06:30 EDT 2025
Mon Jun 30 14:34:12 EDT 2025
Tue Nov 04 18:29:42 EST 2025
Sat Nov 29 07:17:24 EST 2025
Tue Nov 18 21:59:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-9ca3f0e8efdb6a46b6521c4d1c9411dcfdc4229d3d70ccf29b389c7fbbf448653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7830-3138
0000-0001-5692-5940
0000-0001-8290-6356
OpenAccessLink https://doaj.org/article/350f35a28a50428aa382dcc57b2f056d
PQID 2918561265
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_350f35a28a50428aa382dcc57b2f056d
proquest_journals_2918561265
gale_infotracacademiconefile_A780871073
crossref_citationtrail_10_3390_app14020596
crossref_primary_10_3390_app14020596
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Deb (ref_22) 2002; 6
Chen (ref_33) 2019; 24
ref_14
ref_13
ref_35
Cortes (ref_2) 1995; 20
ref_12
ref_34
ref_10
ref_32
ref_31
Nguyen (ref_24) 2012; 6
ref_30
Alza (ref_36) 2023; 78
Friedman (ref_42) 2001; 29
Pearson (ref_11) 1901; 2
ref_17
McKay (ref_19) 2010; 11
Hansen (ref_44) 2021; 36
ref_38
ref_15
ref_37
Quade (ref_9) 2016; 94
Levenberg (ref_43) 1944; 2
Koza (ref_3) 1994; 4
Michalewicz (ref_39) 2014; 7
Yazdani (ref_28) 2021; 25
Zitzler (ref_23) 2001; 103
Breiman (ref_1) 2001; 45
ref_21
ref_20
ref_41
ref_40
ref_29
ref_27
Yazdani (ref_25) 2020; 52
ref_26
ref_8
ref_5
ref_4
ref_7
Ryan (ref_16) 2001; 5
Kommenda (ref_18) 2020; 21
ref_6
References_xml – ident: ref_7
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: ref_5
– volume: 52
  start-page: 3380
  year: 2020
  ident: ref_25
  article-title: Benchmarking continuous dynamic optimization: Survey and generalized test suite
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3011828
– ident: ref_26
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_1
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 11
  start-page: 365
  year: 2010
  ident: ref_19
  article-title: Grammar-based genetic programming: A survey
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-010-9109-y
– volume: 21
  start-page: 471
  year: 2020
  ident: ref_18
  article-title: Parameter identification for symbolic regression using nonlinear least squares
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-019-09371-3
– volume: 25
  start-page: 630
  year: 2021
  ident: ref_28
  article-title: A survey of evolutionary continuous dynamic optimization over two decades—Part B
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3060012
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_42
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_40
– volume: 78
  start-page: 101289
  year: 2023
  ident: ref_36
  article-title: On the elusivity of dynamic optimisation problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101289
– volume: 7
  start-page: 143
  year: 2014
  ident: ref_39
  article-title: Implicit memory-based technique in solving dynamic scheduling problems through response surface methodology—Part II: Experiments and analysis
  publication-title: Int. J. Intell. Comput. Cybern.
  doi: 10.1108/IJICC-12-2013-0054
– ident: ref_35
  doi: 10.1109/CEC.2009.4982976
– ident: ref_37
– ident: ref_14
– volume: 36
  start-page: 114
  year: 2021
  ident: ref_44
  article-title: COCO: A platform for comparing continuous optimizers in a black-box setting
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2020.1808977
– volume: 5
  start-page: 349
  year: 2001
  ident: ref_16
  article-title: Grammatical evolution
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.942529
– volume: 2
  start-page: 164
  year: 1944
  ident: ref_43
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– ident: ref_21
  doi: 10.1145/1143997.1144142
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_2
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_10
  doi: 10.1145/2001858.2001965
– ident: ref_8
– ident: ref_4
– ident: ref_30
  doi: 10.3390/a14010021
– ident: ref_31
– ident: ref_27
– volume: 4
  start-page: 87
  year: 1994
  ident: ref_3
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– ident: ref_6
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref_12
– ident: ref_34
  doi: 10.1007/978-3-031-25312-6_7
– volume: 6
  start-page: 1
  year: 2012
  ident: ref_24
  article-title: Evolutionary dynamic optimization: A survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.05.001
– ident: ref_32
  doi: 10.20944/preprints201905.0187.v1
– ident: ref_38
  doi: 10.1109/CEC.2009.4982978
– ident: ref_41
– ident: ref_15
– ident: ref_29
  doi: 10.1145/2576768.2598247
– ident: ref_13
– ident: ref_17
– volume: 24
  start-page: 792
  year: 2019
  ident: ref_33
  article-title: A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2958075
– volume: 94
  start-page: 012214
  year: 2016
  ident: ref_9
  article-title: Prediction of dynamical systems by symbolic regression
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.012214
– ident: ref_20
– volume: 103
  start-page: 1
  year: 2001
  ident: ref_23
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK Rep.
– volume: 2
  start-page: 559
  year: 1901
  ident: ref_11
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
SSID ssj0000913810
Score 2.2848825
Snippet This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 596
SubjectTerms Adaptation
Algorithms
Artificial intelligence
dynamic optimization
Genetic algorithms
genetic programming
Genetic research
Interoperability
Machine learning
Neural networks
Optimization
Population biology
Programming languages
symbolic regression
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4EeCi1UbGmRD0g8pAjHiRPnhNrSCiG0WpWHerP8rCrRbLtZkPj3zCTOsgfggnJLRpad-ex52P4G4LlDG4-PysrcyAxBETMlg8hCKBuEVPSuT-Z8_VhPp-riopmlhFuXjlWOa2K_UPu5oxz5G9GgZUFzXMm3N7cZVY2i3dVUQuMubBJTGeJ88_h0OjtfZVmI9VLlfLiYV2B8T_vCOcVMkmj610xRz9j_t3W5NzZnD_63mw9hO7mZ7GjAxQ7cCe0ubK2RD-7CTprWHXuZuKdfPYIPs1VBL_ZuKFbfsauWkQQ2xWbDca5rbIGhuzvKsE8_ry0xDLPzcDmcrG0fw5ez088n77NUbiFzJS-WWeNMEXlQIXpbmbKyFZp2V_rcNWWee4d6K4VofOFr7lwUjUVnx9XR2ogxXiWLPdho5214AkxY2ReDDJ6juxW5FVEYq8qGi4ABXZjA6_HPa5e4yKkkxjeNMQmpSa-paYKIGoVvBgqOP4sdkwpXIsSb3b-YLy51moa6kDwW0ghlJAWLxhRKeOdkjT1EV9BP4AUBQNPsxg45ky4p4LCIJ0sf1YpjiImDm8DBCACdpn2nf2t__9-fn8J9gd7RkMs5gI3l4ns4hHvux_KqWzxLKP4Fp477QA
  priority: 102
  providerName: ProQuest
Title Population Dynamics in Genetic Programming for Dynamic Symbolic Regression
URI https://www.proquest.com/docview/2918561265
https://doaj.org/article/350f35a28a50428aa382dcc57b2f056d
Volume 14
WOSCitedRecordID wos001149016600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hyqEcUKGtGrpd-YDUhxTVceIkPkILAkRXEX2Iniw_ERIb0O62Uv99x3GCcgBxQTklGln2zNjzjWN_A7BnMMbjU6dFpniKTuHTmjuWOlcIdClvTbeZ8-usms3qiwvRjEp9hTNhkR44Ku5zzqnPuWK14gHeK5XXzBrDK808Bm8bVl9aiVEy1a3BIgvUVfFCXo55ffgfnIVciQd6_lEI6pj6H1qPuyBz9AK2enRI9mOvtmHNtTuwOeIM3IHtfjYuyYeeMvrjSzht7upwka-xxvySXLUkSGBTpImnsObYAkGUOsiQ7__mOhADk3N3GQ_Etq_g59Hhjy_HaV8lITUFzVepMCr31NXOW12qotQlRmRT2MyIIsusQXUXjAmb24oa45nQiFFM5bX2mJqVPH8N6-1N694AYZp3NRydpYiSPEUVM6XrQlDmMA9zCXwaFCdNTyEeKllcS0wlgpblSMsJOsIgfBuZM-4XOwgWuBMJdNfdB3QC2TuBfMwJEngf7CfDpMQOGdXfLcBhBXoruV_VFDNDHFwCk8HEsp-tS8kEohaEeiXffYrevIXnDKFP3KiZwPpq8ce9gw3zd3W1XEzh2cHhrDmfdg6Lb83Jt-b3fxjF7r4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKRJwoLSACBTwAcRDWuH1vg8IFUrV0DRaQanKyXj9qCKRTcmGovyp_sbO7CPkANx6QHvbHVn2-vO8bM8H8FSjjccn9UJfRR6CwnlpZIVnbZghpJzRdTLneJiMRunJSZavwUV3F4aOVXY6sVbUZqopR_5aZGhZ0BzH0duzHx6xRtHuakeh0cDiwC5-YchWvRns4vw-E2Lvw9H7fa9lFfB0yIO5l2kVOG5T60wRqzAuYrRgOjS-zkLfNxq7FwqRmcAkXGsnsgJtuk5cUTgMZWJiiUCVvx4S2Huwng8O86_LrA5V2Ux93lwEDIKM0z60TzFaRLQAK6avZgj4mx2ojdvexv_2W27DrdaNZjsN7jdhzZZbcHOluOIWbLZqq2Iv2traL-_Ax3xJWMZ2F6WajHXFxiUjCWyK5c1xtQm2wNCd72TY58WkoArK7JM9bU4Ol3fhy5WM8B70ymlp7wMTRVSTXVrD0Z10vBBOqCINMy4sBqy2D6-6mZa6rbVOlB_fJcZcBAu5Aos-rphO-KwpMfJnsXcEmaUI1QWvX0xnp7JVMzKIuAsiJVIVUTCsVJAKo3WUYA_R1TV9eE6Ak6S9sENatZcwcFhUB0zuJCnHEBoH14ftDnCyVWuV_I22B__-_ASu7x8dDuVwMDp4CDcEeoJN3mobevPZT_sIrunz-biaPW5XEINvV43OS3laWvQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tugjBAdgFRGEBH0A8pGgdJ2mSA0ILpaLsUkU8VsvJOH6sKtF0aQqof41fx0zilB6A2x5QbsnIsuPP87I9H8ADjTYenyyIQ5UECAoXZIkVgbVxjpByRjfJnOOjdDLJTk7yYgt-dndh6FhlpxMbRW3mmnLk-yJHy4LmeJDsO38sohiOnp99DYhBinZaOzqNFiKHdvUDw7f62XiIc_1QiNGrDy9fB55hINAxj5ZBrlXkuM2sM-VAxYNygNZMxybUeRyGRmNXYyFyE5mUa-1EXqJ916krS4dhzYAYI1D9b6NLHosebBfjt8WndYaHKm5mIW8vBUZRzmlPOqR4LSGKgA0z2LAF_M0mNIZudPV__kXX4Ip3r9lBux52YMtWu3B5o-jiLux4dVazx77m9pPr8KZYE5mx4apSs6mu2bRiJIFNsaI9xjbDFhi6-Z0Me7-alVRZmb2zp-2J4uoGfDyXEd6EXjWv7C1gokwaEkxrOLqZjpfCCVVmcc6FxUDW9uFpN-tS-xrsRAXyRWIsRhCRGxDp40rqhM_a0iN_FntB8FmLUL3w5sV8cSq9-pFRwl2UKJGphIJkpaJMGK2TFHuILrDpwyMCnySthh3Syl_OwGFRfTB5kGYcQ2scXB_2OvBJr-5q-Rt5t__9-T5cREjKo_Hk8A5cEuggtumsPegtF9_sXbigvy-n9eKeX0wMPp83OH8BJ1BjtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Dynamics+in+Genetic+Programming+for+Dynamic+Symbolic+Regression&rft.jtitle=Applied+sciences&rft.au=Fleck%2C+Philipp&rft.au=Werth%2C+Bernhard&rft.au=Affenzeller%2C+Michael&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fapp14020596&rft.externalDocID=A780871073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon