Improved Combined Inertial Control of Wind Turbine Based on CAE and DNN for Temporary Frequency Support

With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease leads to the weakening of the system’s capability to provide inertia support and frequency regulation during disturbance events. The wind tur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 13; H. 12; S. 6984
Hauptverfasser: Ji, Ziyang, Zhang, Jie, Liu, Yi, Zhou, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2023
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease leads to the weakening of the system’s capability to provide inertia support and frequency regulation during disturbance events. The wind turbines (WT), as the main representatives of renewable energy generation, should be more efficiently involved in the power system frequency regulation dynamics. However, optimal frequency regulation is difficult to achieve through the combined inertial control strategy of wind turbines because it greatly depends on control parameters and fluctuates in different scenarios. To cope with disturbance efficiently and quickly in different scenarios and obtain the optimal frequency regulation results, this paper presents an improved combined inertial intelligent control strategy of WT based on contractive autoencoder (CAE) and deep neural network (DNN). This method obtains the optimal parameters for combined inertial control using the particle swarm optimization (PSO) algorithm, then effectively extracts features from actual data using CAE followed by building a network model to predict the optimal combined inertial control parameters online. To verify and test the proposed method, it is applied in the IEEE 9-bus test system. The simulation results show that the method can obtain optimal control parameters with a faster computational time, good prediction accuracy, and generalization capability.
AbstractList With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease leads to the weakening of the system’s capability to provide inertia support and frequency regulation during disturbance events. The wind turbines (WT), as the main representatives of renewable energy generation, should be more efficiently involved in the power system frequency regulation dynamics. However, optimal frequency regulation is difficult to achieve through the combined inertial control strategy of wind turbines because it greatly depends on control parameters and fluctuates in different scenarios. To cope with disturbance efficiently and quickly in different scenarios and obtain the optimal frequency regulation results, this paper presents an improved combined inertial intelligent control strategy of WT based on contractive autoencoder (CAE) and deep neural network (DNN). This method obtains the optimal parameters for combined inertial control using the particle swarm optimization (PSO) algorithm, then effectively extracts features from actual data using CAE followed by building a network model to predict the optimal combined inertial control parameters online. To verify and test the proposed method, it is applied in the IEEE 9-bus test system. The simulation results show that the method can obtain optimal control parameters with a faster computational time, good prediction accuracy, and generalization capability.
Audience Academic
Author Ji, Ziyang
Zhang, Jie
Zhou, Tao
Liu, Yi
Author_xml – sequence: 1
  givenname: Ziyang
  surname: Ji
  fullname: Ji, Ziyang
– sequence: 2
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
– sequence: 3
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
– sequence: 4
  givenname: Tao
  orcidid: 0000-0002-2450-5551
  surname: Zhou
  fullname: Zhou, Tao
BookMark eNptUU1vEzEQtVCRKKUn_oAljijFX2uvjyG0EKkqB4I4WrNeO3K0ay_eTaX-eyYEpAphHzx6fu9p3sxrcpFLDoS85exGSss-wDRxyYW2rXpBLgUzeiUVNxfP6lfkep4PDI_lsuXskuy341TLY-jppoxdylhsc6hLggGRvNQy0BLpj5R7ujvWE4N-hBlpJdPN-pYCfnx6eKCxVLoL41Qq1Cd6V8PPY8j-iX47Togtb8jLCMMcrv-8V-T73e1u82V1__XzdrO-X3nF5LKynVWmixAhsC4EJX2rve6s7nzkijcSlFFgVB-VsdyoGFjbad90EEXHdS-vyPbs2xc4uKmmEdtxBZL7DZS6d4Dp_BCcaFgjTdCghFZKe8uFMT2PvVLGaH7yenf2wglhmnlxh3KsGdt3ohXWcCEbiaybM2sPaJpyLEsFj7cPY_K4opgQX5tGWSO1sSjgZ4GvZZ5riM6nBZZ0mjakwXHmTvt0z_aJmvf_aP5G-x_7F34FoSU
CitedBy_id crossref_primary_10_3390_en17133208
crossref_primary_10_1049_gtd2_13299
Cites_doi 10.1109/TPWRS.2017.2755685
10.1109/TPWRS.2015.2490342
10.1109/TPWRS.2005.861956
10.1109/TPWRS.2015.2417758
10.1109/TSG.2017.2696339
10.1016/j.egyr.2022.05.178
10.1109/TPWRS.2013.2240466
10.1109/59.65898
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13126984
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_250537e6a426446c91277d1fd447761d
A754973679
10_3390_app13126984
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-9b947bfafae0bee43c86c6b96bcf14153a474a74df479174fe08b6c5baf2b16d3
IEDL.DBID PIMPY
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013955600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:33:33 EST 2025
Mon Jun 30 07:30:38 EDT 2025
Tue Nov 04 17:43:48 EST 2025
Sat Nov 29 07:11:37 EST 2025
Tue Nov 18 22:13:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-9b947bfafae0bee43c86c6b96bcf14153a474a74df479174fe08b6c5baf2b16d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2450-5551
OpenAccessLink https://www.proquest.com/publiccontent/docview/2829712353?pq-origsite=%requestingapplication%
PQID 2829712353
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_250537e6a426446c91277d1fd447761d
proquest_journals_2829712353
gale_infotracacademiconefile_A754973679
crossref_citationtrail_10_3390_app13126984
crossref_primary_10_3390_app13126984
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Anderson (ref_15) 1990; 5
Song (ref_22) 2023; 51
Yuan (ref_20) 2019; 42
Sun (ref_25) 2021; 41
Lai (ref_21) 2021; 42
Arani (ref_13) 2018; 9
Zhang (ref_10) 2017; 32
Jiang (ref_2) 2022; 43
You (ref_14) 2020; 39
Wen (ref_4) 2020; 40
Morren (ref_6) 2006; 21
Wang (ref_8) 2013; 28
Hu (ref_18) 2020; 27
Lu (ref_3) 2018; 51
Wang (ref_12) 2018; 33
Ding (ref_16) 2015; 39
Zhang (ref_5) 2018; 42
Vyver (ref_7) 2016; 31
ref_24
ref_23
Zhou (ref_19) 2022; 8
Liu (ref_1) 2014; 38
Liu (ref_17) 2012; 36
Cai (ref_11) 2021; 49
Ye (ref_9) 2017; 31
References_xml – volume: 33
  start-page: 2644
  year: 2018
  ident: ref_12
  article-title: Coordinated Control Method for DFIG-Based Wind Farm to Provide Primary Frequency Regulation Service
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2755685
– volume: 39
  start-page: 43
  year: 2020
  ident: ref_14
  article-title: Wind turbine generator frequency control based on improved particle swarm optimization
  publication-title: Electr. Power Eng. Technol.
– ident: ref_24
– volume: 31
  start-page: 3414
  year: 2017
  ident: ref_9
  article-title: Analytical Modeling of Inertial and Droop Responses from a Wind Farm for Short-Term Frequency Regulation in Power Systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2490342
– volume: 51
  start-page: 177
  year: 2023
  ident: ref_22
  article-title: State estimation method of a new energy power system based on SC-DNN and multi-source data fusion
  publication-title: Power Syst. Prot. Control
– volume: 39
  start-page: 29
  year: 2015
  ident: ref_16
  article-title: Active rotor speed protection strategy for DFIG-based wind turbines with inertia control
  publication-title: Autom. Electr. Power Syst.
– volume: 21
  start-page: 433
  year: 2006
  ident: ref_6
  article-title: Wind turbines emulating inertia and supporting primary frequency control
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.861956
– volume: 31
  start-page: 1129
  year: 2016
  ident: ref_7
  article-title: Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2417758
– ident: ref_23
– volume: 43
  start-page: 54
  year: 2022
  ident: ref_2
  article-title: Analysis of power generation technology trend in 14th five-year plan under the background of carbon peak and carbon neutrality
  publication-title: Power Gener. Technol.
– volume: 9
  start-page: 5742
  year: 2018
  ident: ref_13
  article-title: Dynamic Droop Control for Wind Turbines Participating in Primary Frequency Regulation in Microgrids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2696339
– volume: 27
  start-page: 16
  year: 2020
  ident: ref_18
  article-title: A hybrid particle swarm optimization with dynamic adjustment of inertial weight
  publication-title: Electron. Opt. Control
– volume: 42
  start-page: 1793
  year: 2018
  ident: ref_5
  article-title: Retrospect and prospect of research on frequency regulation technology of power system by wind power
  publication-title: Power Syst. Technol.
– volume: 49
  start-page: 169
  year: 2021
  ident: ref_11
  article-title: Frequency coordination control of a variable speed wind turbine based on inertia/droop control
  publication-title: Power Syst. Prot. Control
– volume: 41
  start-page: 506
  year: 2021
  ident: ref_25
  article-title: Optimal Auxiliary Frequency Control Strategy of Wind Turbine Generator Utilizing Rotor Kinetic Energy
  publication-title: Proc. CSEE
– volume: 8
  start-page: 946
  year: 2022
  ident: ref_19
  article-title: Stepwise Inertial Intelligent Control for Wind Power Frequency Support Based on Modified Stacked Denoising Autoencoder
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.05.178
– volume: 40
  start-page: 211
  year: 2020
  ident: ref_4
  article-title: Review and prospect of frequency stability analysis and control of low-inertia power systems
  publication-title: Electr. Power Autom. Equip.
– volume: 32
  start-page: 225
  year: 2017
  ident: ref_10
  article-title: Primary Frequency Regulation Strategy of DFIG Based on Virtual Inertia and Frequency Droop Control
  publication-title: Trans. China Electrotech. Soc.
– volume: 28
  start-page: 2412
  year: 2013
  ident: ref_8
  article-title: High Wind Power Penetration in Isolated Power Systems—Assessment of Wind Inertial and Primary Frequency Responses
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2240466
– volume: 42
  start-page: 203
  year: 2019
  ident: ref_20
  article-title: Theories and Application of Auto-Encoder Neural Networks: A Literature Survey
  publication-title: Chin. J. Comput.
– volume: 38
  start-page: 638
  year: 2014
  ident: ref_1
  article-title: Prospect of technology for large-scale wind farm participating into power grid frequency regulation
  publication-title: Power Syst. Technol.
– volume: 42
  start-page: 218
  year: 2021
  ident: ref_21
  article-title: Review on autoencoder and its application
  publication-title: J. Commun.
– volume: 5
  start-page: 720
  year: 1990
  ident: ref_15
  article-title: A low-order system frequency response model
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.65898
– volume: 36
  start-page: 108
  year: 2012
  ident: ref_17
  article-title: Application of parallel adaptive particle swarm optimization algorithm in reactive power optimization of power systems
  publication-title: Power Syst. Technol.
– volume: 51
  start-page: 51
  year: 2018
  ident: ref_3
  article-title: The impact of power electronics interfaces on power system frequency control: A review
  publication-title: Electr. Power
SSID ssj0000913810
Score 2.263517
Snippet With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6984
SubjectTerms Air-turbines
Alternative energy sources
combined inertial control
contractive autoencoder
deep neural network
Energy
Governors
Inertia
particle swarm optimization
primary frequency regulation
Simulation methods
Testing equipment
Turbines
Wind power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEB_k8EEf5O5UrJ6ShwM_YLFppsnmsVev6EvxoeK9hXyKINuj7Qn-9zez2R4VFF98W3Znl2xmJpNfMvkNwDmpGKc28_qX8Q0ShmhswtBIm722vpXe-r7YhFku26sr-_mg1BfnhFV64Npx7zlEK5O170O3jlZOjEmyJERDEDzx6Ds29gBM9WOwlUxdVQ_kKcL1vB8slZxo2-JvIahn6v_beNwHmcUxPBpmh2JWW3UC93J3Cg8POANP4WTwxq14M1BGv30M3-raQE6C_JuwLl186jhjmj42r8noYl3EVwLgYnWzYQlxQfEriXUn5rNL4enBh-VS0BRWrPZsVWKxqYnWvwQX_6SJ-hP4srhczT82QwmFJuJY7RobLJpQfPF5HHJGFVsddbA6xCIpdiuPBr3BVNAQcMOSx23QcRp8mQSpk3oKR926y89AELJSk6imxQfEErX32Gqv6SrRW0WP4N2-V10c-MW5zMUPRziDVeAOVDCC8zvh60qr8WexC1bPnQhzYfc3yELcYCHuXxYygtesXMceSw2Kfjh4QL_F3FduZggjG6WNHcHZXv9ucOWt461mwyeK1fP_0ZoX8IAr1tdsszM42m1u8ku4H3_uvm83r3orvgUWlvPW
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Combined Inertial Control of Wind Turbine Based on CAE and DNN for Temporary Frequency Support
URI https://www.proquest.com/docview/2829712353
https://doaj.org/article/250537e6a426446c91277d1fd447761d
Volume 13
WOSCitedRecordID wos001013955600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELYg4UAPQAtVAyXyoRIPadV17NjrE0pCInpgFaEgymnlZ4WEdkuSIvHvmdl1QpGAEzdr7V15NePxfOPxN4ScgYjFWAeMfymTCcAQmfbCZkwHI7UpmNGmLTahyrK4vNTLdD16k9IqdzaxNdQd2zPmbYMRPveNw4j5OZ7_Kbzmyd9cf8uwhhSetaaCGndJH4m38h7pLy_eLz_vYy7IgVmwvLumxwHt4ykx42wkdSF-25ha_v6_Wel261k8_L-TfkQeJBeUTjqdOSR3Qn1EDm4REx6Rw7TkN_Rl4qV-9ZhcdQGI4CkYEQDU0LioMS0bPjbrMt5pE-knQPl0dbPGEXQKm6SnTU1nkzk10PG2LCn4yXS1o8Sii3WXzf2DYoVRQANPyMfFfDV7l6U6DZkTOd9m2mqhbDTRhNyGILgrpJNWS-siAweBG6GEUcJHoQAdihjywko3tiaOLJOeH5Ne3dThhFCAb3zk-DgaK0R00hhRSCOh5eGtKAfk9U5IlUsk5lhL42sFYAYlWt2S6ICc7Qdfd9wdfx42RWnvhyDhdvugWV9Vaf1W6ClyFaRpPUjpNBsp5Vn0QiglmR-QF6grFZoFmJAz6XYD_BYSbFUTBUBccan0gJzudKVK9mJT_VKNp__ufkbuY8H7LlntlPS265vwnNxz37dfNush6U_n5fLDsI0sDJP6_wSbXxMq
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUyTgALSAGCjgQxGLFJHEHjs-IDSddtRR29EcBtGegteqEkpKZgrqn-I38pxlKBJw64FbFL9YcfzlbX4LwDZuMRtIF_xfQkUMbYhIWqajRDrFpcoSJVXdbEJMp9nxsZytwY8uFyaEVXY8sWbUtjTBR_4unPiJkNhJP5x_jULXqHC62rXQaGBx4C6_o8m2eD_Zxf19mabjvfloP2q7CkSGxXQZSS2Z0F555WLtHKMm44ZrybXxCYozqphgSjDrmUBbhnkXZ5qbgVY-1Qm3FOe9AesMwR73YH02OZqdrLw6ocpmlsRNIiClMg7n0AlNUi4z9pvoqzsE_E0O1MJtfO9_-yz34W6rRpNhg_sNWHPFJty5UlxxEzZatrUgr9va2m8ewGnjRHGWICPUSGzJpAih5TjZqInaJ6Unn84KS-YXVaAgOyjoLSkLMhruEYUDu9MpQV2fzLuyXmRcNRHplyR0SUWL5iF8vJblP4JeURbuMRA0QWlq6MArzZg3XCmWccXxyuJTnvfhbQeD3LSF2EM_kC85GmQBM_kVzPRhe0V83tQf-TPZTsDTiiQUDa9vlNVp3vKgPGi7VDiuai2YG5mkQtjEW8aE4Intw6uAxjywNnwho9oMDVxWKBKWD8WASUG5kH3Y6tCYtzxvkf-C4pN_D7-AW_vzo8P8cDI9eAq3U1Qbm-C7Legtqwv3DG6ab8uzRfW8_b0IfL5u6P4EqIBknA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKUJwAFpABArMoYhFsmp7JjOeA0Jp0oioEOUQRHsys1aVkF2cFNS_xq_jjZdQJODWAzfLfh55PN-8bd4CsItLzAbSBf-XUBFDGyKSlukokU5xqbJESVU3mxCzWXZ0JOcb8KPLhQlhlR1PrBm1LU3wke-FEz8REjvpnm_DIubjyduzr1HoIBVOWrt2Gg1EDt3FdzTflm-mY1zr52k6OViM3kVth4HIsJiuIqklE9orr1ysnWPUZNxwLbk2PkHRRhUTTAlmPRNo1zDv4kxzM9DKpzrhluK412BThP69PdicTz_Mj9cenlBxM0viJimQUhmHM-mEJimXGftNDNbdAv4mE2pBN7nzP_-iu3C7Va_JsNkPW7Dhim24dano4jZstexsSV62Nbdf3YOTxrniLEEGqZHYkmkRQs5xsFETzU9KTz6dFpYszqtAQfZRAbCkLMhoeEAUPhjPZgRtALLoyn2RSdVEql-Q0D0VLZ378PFKpv8AekVZuIdA0DSlqaEDrzRj3nClWMYVxyuLb3neh9cdJHLTFmgPfUK-5GioBfzkl_DTh9018VlTl-TPZPsBW2uSUEy8vlFWJ3nLm_KgBVPhuKq1Y25kkgphE28ZE4Intg8vAjLzwPLwg4xqMzdwWqF4WD4UAyYF5UL2YadDZt7ywmX-C5aP_v34GdxAvObvp7PDx3AzRW2yicnbgd6qOndP4Lr5tjpdVk_bnUbg81Uj9yd35m1l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Combined+Inertial+Control+of+Wind+Turbine+Based+on+CAE+and+DNN+for+Temporary+Frequency+Support&rft.jtitle=Applied+sciences&rft.au=Ji%2C+Ziyang&rft.au=Zhang%2C+Jie&rft.au=Liu%2C+Yi&rft.au=Zhou%2C+Tao&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft.spage=6984&rft_id=info:doi/10.3390%2Fapp13126984&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon