Improved Combined Inertial Control of Wind Turbine Based on CAE and DNN for Temporary Frequency Support
With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease leads to the weakening of the system’s capability to provide inertia support and frequency regulation during disturbance events. The wind tur...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 13; H. 12; S. 6984 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2023
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease leads to the weakening of the system’s capability to provide inertia support and frequency regulation during disturbance events. The wind turbines (WT), as the main representatives of renewable energy generation, should be more efficiently involved in the power system frequency regulation dynamics. However, optimal frequency regulation is difficult to achieve through the combined inertial control strategy of wind turbines because it greatly depends on control parameters and fluctuates in different scenarios. To cope with disturbance efficiently and quickly in different scenarios and obtain the optimal frequency regulation results, this paper presents an improved combined inertial intelligent control strategy of WT based on contractive autoencoder (CAE) and deep neural network (DNN). This method obtains the optimal parameters for combined inertial control using the particle swarm optimization (PSO) algorithm, then effectively extracts features from actual data using CAE followed by building a network model to predict the optimal combined inertial control parameters online. To verify and test the proposed method, it is applied in the IEEE 9-bus test system. The simulation results show that the method can obtain optimal control parameters with a faster computational time, good prediction accuracy, and generalization capability. |
|---|---|
| AbstractList | With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease leads to the weakening of the system’s capability to provide inertia support and frequency regulation during disturbance events. The wind turbines (WT), as the main representatives of renewable energy generation, should be more efficiently involved in the power system frequency regulation dynamics. However, optimal frequency regulation is difficult to achieve through the combined inertial control strategy of wind turbines because it greatly depends on control parameters and fluctuates in different scenarios. To cope with disturbance efficiently and quickly in different scenarios and obtain the optimal frequency regulation results, this paper presents an improved combined inertial intelligent control strategy of WT based on contractive autoencoder (CAE) and deep neural network (DNN). This method obtains the optimal parameters for combined inertial control using the particle swarm optimization (PSO) algorithm, then effectively extracts features from actual data using CAE followed by building a network model to predict the optimal combined inertial control parameters online. To verify and test the proposed method, it is applied in the IEEE 9-bus test system. The simulation results show that the method can obtain optimal control parameters with a faster computational time, good prediction accuracy, and generalization capability. |
| Audience | Academic |
| Author | Ji, Ziyang Zhang, Jie Zhou, Tao Liu, Yi |
| Author_xml | – sequence: 1 givenname: Ziyang surname: Ji fullname: Ji, Ziyang – sequence: 2 givenname: Jie surname: Zhang fullname: Zhang, Jie – sequence: 3 givenname: Yi surname: Liu fullname: Liu, Yi – sequence: 4 givenname: Tao orcidid: 0000-0002-2450-5551 surname: Zhou fullname: Zhou, Tao |
| BookMark | eNptUU1vEzEQtVCRKKUn_oAljijFX2uvjyG0EKkqB4I4WrNeO3K0ay_eTaX-eyYEpAphHzx6fu9p3sxrcpFLDoS85exGSss-wDRxyYW2rXpBLgUzeiUVNxfP6lfkep4PDI_lsuXskuy341TLY-jppoxdylhsc6hLggGRvNQy0BLpj5R7ujvWE4N-hBlpJdPN-pYCfnx6eKCxVLoL41Qq1Cd6V8PPY8j-iX47Togtb8jLCMMcrv-8V-T73e1u82V1__XzdrO-X3nF5LKynVWmixAhsC4EJX2rve6s7nzkijcSlFFgVB-VsdyoGFjbad90EEXHdS-vyPbs2xc4uKmmEdtxBZL7DZS6d4Dp_BCcaFgjTdCghFZKe8uFMT2PvVLGaH7yenf2wglhmnlxh3KsGdt3ohXWcCEbiaybM2sPaJpyLEsFj7cPY_K4opgQX5tGWSO1sSjgZ4GvZZ5riM6nBZZ0mjakwXHmTvt0z_aJmvf_aP5G-x_7F34FoSU |
| CitedBy_id | crossref_primary_10_3390_en17133208 crossref_primary_10_1049_gtd2_13299 |
| Cites_doi | 10.1109/TPWRS.2017.2755685 10.1109/TPWRS.2015.2490342 10.1109/TPWRS.2005.861956 10.1109/TPWRS.2015.2417758 10.1109/TSG.2017.2696339 10.1016/j.egyr.2022.05.178 10.1109/TPWRS.2013.2240466 10.1109/59.65898 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app13126984 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_250537e6a426446c91277d1fd447761d A754973679 10_3390_app13126984 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c403t-9b947bfafae0bee43c86c6b96bcf14153a474a74df479174fe08b6c5baf2b16d3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013955600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:33:33 EST 2025 Mon Jun 30 07:30:38 EDT 2025 Tue Nov 04 17:43:48 EST 2025 Sat Nov 29 07:11:37 EST 2025 Tue Nov 18 22:13:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-9b947bfafae0bee43c86c6b96bcf14153a474a74df479174fe08b6c5baf2b16d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2450-5551 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2829712353?pq-origsite=%requestingapplication% |
| PQID | 2829712353 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_250537e6a426446c91277d1fd447761d proquest_journals_2829712353 gale_infotracacademiconefile_A754973679 crossref_citationtrail_10_3390_app13126984 crossref_primary_10_3390_app13126984 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Anderson (ref_15) 1990; 5 Song (ref_22) 2023; 51 Yuan (ref_20) 2019; 42 Sun (ref_25) 2021; 41 Lai (ref_21) 2021; 42 Arani (ref_13) 2018; 9 Zhang (ref_10) 2017; 32 Jiang (ref_2) 2022; 43 You (ref_14) 2020; 39 Wen (ref_4) 2020; 40 Morren (ref_6) 2006; 21 Wang (ref_8) 2013; 28 Hu (ref_18) 2020; 27 Lu (ref_3) 2018; 51 Wang (ref_12) 2018; 33 Ding (ref_16) 2015; 39 Zhang (ref_5) 2018; 42 Vyver (ref_7) 2016; 31 ref_24 ref_23 Zhou (ref_19) 2022; 8 Liu (ref_1) 2014; 38 Liu (ref_17) 2012; 36 Cai (ref_11) 2021; 49 Ye (ref_9) 2017; 31 |
| References_xml | – volume: 33 start-page: 2644 year: 2018 ident: ref_12 article-title: Coordinated Control Method for DFIG-Based Wind Farm to Provide Primary Frequency Regulation Service publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2755685 – volume: 39 start-page: 43 year: 2020 ident: ref_14 article-title: Wind turbine generator frequency control based on improved particle swarm optimization publication-title: Electr. Power Eng. Technol. – ident: ref_24 – volume: 31 start-page: 3414 year: 2017 ident: ref_9 article-title: Analytical Modeling of Inertial and Droop Responses from a Wind Farm for Short-Term Frequency Regulation in Power Systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2490342 – volume: 51 start-page: 177 year: 2023 ident: ref_22 article-title: State estimation method of a new energy power system based on SC-DNN and multi-source data fusion publication-title: Power Syst. Prot. Control – volume: 39 start-page: 29 year: 2015 ident: ref_16 article-title: Active rotor speed protection strategy for DFIG-based wind turbines with inertia control publication-title: Autom. Electr. Power Syst. – volume: 21 start-page: 433 year: 2006 ident: ref_6 article-title: Wind turbines emulating inertia and supporting primary frequency control publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.861956 – volume: 31 start-page: 1129 year: 2016 ident: ref_7 article-title: Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2417758 – ident: ref_23 – volume: 43 start-page: 54 year: 2022 ident: ref_2 article-title: Analysis of power generation technology trend in 14th five-year plan under the background of carbon peak and carbon neutrality publication-title: Power Gener. Technol. – volume: 9 start-page: 5742 year: 2018 ident: ref_13 article-title: Dynamic Droop Control for Wind Turbines Participating in Primary Frequency Regulation in Microgrids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2696339 – volume: 27 start-page: 16 year: 2020 ident: ref_18 article-title: A hybrid particle swarm optimization with dynamic adjustment of inertial weight publication-title: Electron. Opt. Control – volume: 42 start-page: 1793 year: 2018 ident: ref_5 article-title: Retrospect and prospect of research on frequency regulation technology of power system by wind power publication-title: Power Syst. Technol. – volume: 49 start-page: 169 year: 2021 ident: ref_11 article-title: Frequency coordination control of a variable speed wind turbine based on inertia/droop control publication-title: Power Syst. Prot. Control – volume: 41 start-page: 506 year: 2021 ident: ref_25 article-title: Optimal Auxiliary Frequency Control Strategy of Wind Turbine Generator Utilizing Rotor Kinetic Energy publication-title: Proc. CSEE – volume: 8 start-page: 946 year: 2022 ident: ref_19 article-title: Stepwise Inertial Intelligent Control for Wind Power Frequency Support Based on Modified Stacked Denoising Autoencoder publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.05.178 – volume: 40 start-page: 211 year: 2020 ident: ref_4 article-title: Review and prospect of frequency stability analysis and control of low-inertia power systems publication-title: Electr. Power Autom. Equip. – volume: 32 start-page: 225 year: 2017 ident: ref_10 article-title: Primary Frequency Regulation Strategy of DFIG Based on Virtual Inertia and Frequency Droop Control publication-title: Trans. China Electrotech. Soc. – volume: 28 start-page: 2412 year: 2013 ident: ref_8 article-title: High Wind Power Penetration in Isolated Power Systems—Assessment of Wind Inertial and Primary Frequency Responses publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2240466 – volume: 42 start-page: 203 year: 2019 ident: ref_20 article-title: Theories and Application of Auto-Encoder Neural Networks: A Literature Survey publication-title: Chin. J. Comput. – volume: 38 start-page: 638 year: 2014 ident: ref_1 article-title: Prospect of technology for large-scale wind farm participating into power grid frequency regulation publication-title: Power Syst. Technol. – volume: 42 start-page: 218 year: 2021 ident: ref_21 article-title: Review on autoencoder and its application publication-title: J. Commun. – volume: 5 start-page: 720 year: 1990 ident: ref_15 article-title: A low-order system frequency response model publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.65898 – volume: 36 start-page: 108 year: 2012 ident: ref_17 article-title: Application of parallel adaptive particle swarm optimization algorithm in reactive power optimization of power systems publication-title: Power Syst. Technol. – volume: 51 start-page: 51 year: 2018 ident: ref_3 article-title: The impact of power electronics interfaces on power system frequency control: A review publication-title: Electr. Power |
| SSID | ssj0000913810 |
| Score | 2.263517 |
| Snippet | With the continuous and large-scale development of renewable energy, there is a prominent decrease in the level of inertia in new power systems. This decrease... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 6984 |
| SubjectTerms | Air-turbines Alternative energy sources combined inertial control contractive autoencoder deep neural network Energy Governors Inertia particle swarm optimization primary frequency regulation Simulation methods Testing equipment Turbines Wind power |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEB_k8EEf5O5UrJ6ShwM_YLFppsnmsVev6EvxoeK9hXyKINuj7Qn-9zez2R4VFF98W3Znl2xmJpNfMvkNwDmpGKc28_qX8Q0ShmhswtBIm722vpXe-r7YhFku26sr-_mg1BfnhFV64Npx7zlEK5O170O3jlZOjEmyJERDEDzx6Ds29gBM9WOwlUxdVQ_kKcL1vB8slZxo2-JvIahn6v_beNwHmcUxPBpmh2JWW3UC93J3Cg8POANP4WTwxq14M1BGv30M3-raQE6C_JuwLl186jhjmj42r8noYl3EVwLgYnWzYQlxQfEriXUn5rNL4enBh-VS0BRWrPZsVWKxqYnWvwQX_6SJ-hP4srhczT82QwmFJuJY7RobLJpQfPF5HHJGFVsddbA6xCIpdiuPBr3BVNAQcMOSx23QcRp8mQSpk3oKR926y89AELJSk6imxQfEErX32Gqv6SrRW0WP4N2-V10c-MW5zMUPRziDVeAOVDCC8zvh60qr8WexC1bPnQhzYfc3yELcYCHuXxYygtesXMceSw2Kfjh4QL_F3FduZggjG6WNHcHZXv9ucOWt461mwyeK1fP_0ZoX8IAr1tdsszM42m1u8ku4H3_uvm83r3orvgUWlvPW priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved Combined Inertial Control of Wind Turbine Based on CAE and DNN for Temporary Frequency Support |
| URI | https://www.proquest.com/docview/2829712353 https://doaj.org/article/250537e6a426446c91277d1fd447761d |
| Volume | 13 |
| WOSCitedRecordID | wos001013955600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELYg4UAPQAtVAyXyoRIPadV17NjrE0pCInpgFaEgymnlZ4WEdkuSIvHvmdl1QpGAEzdr7V15NePxfOPxN4ScgYjFWAeMfymTCcAQmfbCZkwHI7UpmNGmLTahyrK4vNTLdD16k9IqdzaxNdQd2zPmbYMRPveNw4j5OZ7_Kbzmyd9cf8uwhhSetaaCGndJH4m38h7pLy_eLz_vYy7IgVmwvLumxwHt4ykx42wkdSF-25ha_v6_Wel261k8_L-TfkQeJBeUTjqdOSR3Qn1EDm4REx6Rw7TkN_Rl4qV-9ZhcdQGI4CkYEQDU0LioMS0bPjbrMt5pE-knQPl0dbPGEXQKm6SnTU1nkzk10PG2LCn4yXS1o8Sii3WXzf2DYoVRQANPyMfFfDV7l6U6DZkTOd9m2mqhbDTRhNyGILgrpJNWS-siAweBG6GEUcJHoQAdihjywko3tiaOLJOeH5Ne3dThhFCAb3zk-DgaK0R00hhRSCOh5eGtKAfk9U5IlUsk5lhL42sFYAYlWt2S6ICc7Qdfd9wdfx42RWnvhyDhdvugWV9Vaf1W6ClyFaRpPUjpNBsp5Vn0QiglmR-QF6grFZoFmJAz6XYD_BYSbFUTBUBccan0gJzudKVK9mJT_VKNp__ufkbuY8H7LlntlPS265vwnNxz37dfNush6U_n5fLDsI0sDJP6_wSbXxMq |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUyTgALSAGCjgQxGLFJHEHjs-IDSddtRR29EcBtGegteqEkpKZgrqn-I38pxlKBJw64FbFL9YcfzlbX4LwDZuMRtIF_xfQkUMbYhIWqajRDrFpcoSJVXdbEJMp9nxsZytwY8uFyaEVXY8sWbUtjTBR_4unPiJkNhJP5x_jULXqHC62rXQaGBx4C6_o8m2eD_Zxf19mabjvfloP2q7CkSGxXQZSS2Z0F555WLtHKMm44ZrybXxCYozqphgSjDrmUBbhnkXZ5qbgVY-1Qm3FOe9AesMwR73YH02OZqdrLw6ocpmlsRNIiClMg7n0AlNUi4z9pvoqzsE_E0O1MJtfO9_-yz34W6rRpNhg_sNWHPFJty5UlxxEzZatrUgr9va2m8ewGnjRHGWICPUSGzJpAih5TjZqInaJ6Unn84KS-YXVaAgOyjoLSkLMhruEYUDu9MpQV2fzLuyXmRcNRHplyR0SUWL5iF8vJblP4JeURbuMRA0QWlq6MArzZg3XCmWccXxyuJTnvfhbQeD3LSF2EM_kC85GmQBM_kVzPRhe0V83tQf-TPZTsDTiiQUDa9vlNVp3vKgPGi7VDiuai2YG5mkQtjEW8aE4Intw6uAxjywNnwho9oMDVxWKBKWD8WASUG5kH3Y6tCYtzxvkf-C4pN_D7-AW_vzo8P8cDI9eAq3U1Qbm-C7Legtqwv3DG6ab8uzRfW8_b0IfL5u6P4EqIBknA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKUJwAFpABArMoYhFsmp7JjOeA0Jp0oioEOUQRHsys1aVkF2cFNS_xq_jjZdQJODWAzfLfh55PN-8bd4CsItLzAbSBf-XUBFDGyKSlukokU5xqbJESVU3mxCzWXZ0JOcb8KPLhQlhlR1PrBm1LU3wke-FEz8REjvpnm_DIubjyduzr1HoIBVOWrt2Gg1EDt3FdzTflm-mY1zr52k6OViM3kVth4HIsJiuIqklE9orr1ysnWPUZNxwLbk2PkHRRhUTTAlmPRNo1zDv4kxzM9DKpzrhluK412BThP69PdicTz_Mj9cenlBxM0viJimQUhmHM-mEJimXGftNDNbdAv4mE2pBN7nzP_-iu3C7Va_JsNkPW7Dhim24dano4jZstexsSV62Nbdf3YOTxrniLEEGqZHYkmkRQs5xsFETzU9KTz6dFpYszqtAQfZRAbCkLMhoeEAUPhjPZgRtALLoyn2RSdVEql-Q0D0VLZ378PFKpv8AekVZuIdA0DSlqaEDrzRj3nClWMYVxyuLb3neh9cdJHLTFmgPfUK-5GioBfzkl_DTh9018VlTl-TPZPsBW2uSUEy8vlFWJ3nLm_KgBVPhuKq1Y25kkgphE28ZE4Intg8vAjLzwPLwg4xqMzdwWqF4WD4UAyYF5UL2YadDZt7ywmX-C5aP_v34GdxAvObvp7PDx3AzRW2yicnbgd6qOndP4Lr5tjpdVk_bnUbg81Uj9yd35m1l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Combined+Inertial+Control+of+Wind+Turbine+Based+on+CAE+and+DNN+for+Temporary+Frequency+Support&rft.jtitle=Applied+sciences&rft.au=Ji%2C+Ziyang&rft.au=Zhang%2C+Jie&rft.au=Liu%2C+Yi&rft.au=Zhou%2C+Tao&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft.spage=6984&rft_id=info:doi/10.3390%2Fapp13126984&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |