Multiple Kernel Learning for Dimensionality Reduction

In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them int...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 6; pp. 1147 - 1160
Main Authors: LIN, Yen-Yu, LIU, Tyng-Luh, FUH, Chiou-Shann
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.06.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel learning for dimensionality reduction, and distinguishes itself with the following three main contributions: First, our method provides the convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data. Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the unsupervised and semi-supervised ones.
AbstractList In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel learning for dimensionality reduction, and distinguishes itself with the following three main contributions: first, our method provides the convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data. Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the unsupervised and semi-supervised ones.
In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel learning for dimensionality reduction, and distinguishes itself with the following three main contributions: first, our method provides the convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data. Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the unsupervised and semi-supervised ones.In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel learning for dimensionality reduction, and distinguishes itself with the following three main contributions: first, our method provides the convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data. Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the unsupervised and semi-supervised ones.
Author Tyng-Luh Liu
Chiou-Shann Fuh
Yen-Yu Lin
Author_xml – sequence: 1
  givenname: Yen-Yu
  surname: LIN
  fullname: LIN, Yen-Yu
  organization: Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan, Province of China
– sequence: 2
  givenname: Tyng-Luh
  surname: LIU
  fullname: LIU, Tyng-Luh
  organization: Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan, Province of China
– sequence: 3
  givenname: Chiou-Shann
  surname: FUH
  fullname: FUH, Chiou-Shann
  organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan, Province of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24776230$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20921580$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1r3DAQxUVJaTZpr70UigmUnrwdfVnyMaQfCdmQUtKz0MqjoqCVt5J9yH9fe3fTQiDQ0zDwe2-Y907IUeoTEvKWwpJSaD_dfT-_uVoymHfNX5AFow3ULWvZEVkAbVitNdPH5KSUewAqJPBX5JhBy6jUsCDyZoxD2EasrjEnjNUKbU4h_ap8n6vPYYOphD7ZGIaH6gd2oxum9TV56W0s-OYwT8nPr1_uLi7r1e23q4vzVe0E8KFuKQNA67gCKRsGyrkOrQDqG-ik1HqNqmMawXdUWMr9urPCCeZx7VtA4Kfk4953m_vfI5bBbEJxGKNN2I_FaCVBiOmr_yBhykTsyLMn5H0_5unDCWpYC0rx-fD7AzSuN9iZbQ4bmx_MY3AT8OEA2OJs9NkmF8o_TijVsJ2R2HMu96Vk9MaFwc4ZDtmGaCiYuUez69HMPZqpx0m2fCJ7dH5W8G4vCIj4F5YNUMU1_wMGvqTm
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIP_2020_3013167
crossref_primary_10_1016_j_patcog_2017_02_004
crossref_primary_10_1002_gepi_22017
crossref_primary_10_1109_TCSVT_2016_2607345
crossref_primary_10_1109_TNNLS_2024_3474793
crossref_primary_10_1109_TIFS_2021_3111766
crossref_primary_10_1016_j_neucom_2019_06_066
crossref_primary_10_1109_ACCESS_2019_2933304
crossref_primary_10_1109_TIP_2014_2307480
crossref_primary_10_1016_j_neucom_2018_08_065
crossref_primary_10_1016_j_patcog_2013_04_003
crossref_primary_10_1016_j_patcog_2014_12_001
crossref_primary_10_5772_58900
crossref_primary_10_1016_j_patcog_2014_06_016
crossref_primary_10_1007_s41095_016_0044_6
crossref_primary_10_1109_TFUZZ_2017_2647966
crossref_primary_10_1109_TCYB_2014_2361770
crossref_primary_10_1109_TIP_2013_2292560
crossref_primary_10_1109_TPAMI_2019_2945574
crossref_primary_10_1007_s10994_024_06553_8
crossref_primary_10_1016_j_neucom_2017_05_097
crossref_primary_10_1109_TMI_2020_2975344
crossref_primary_10_1016_j_ins_2016_07_073
crossref_primary_10_1109_TGRS_2014_2358620
crossref_primary_10_3389_fgwh_2025_1368575
crossref_primary_10_1016_j_sigpro_2012_06_023
crossref_primary_10_1109_TGRS_2018_2833882
crossref_primary_10_1016_j_ins_2018_03_051
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1109_TIP_2016_2627806
crossref_primary_10_1016_j_patcog_2020_107379
crossref_primary_10_1016_j_jvcir_2015_12_001
crossref_primary_10_1109_ACCESS_2019_2904037
crossref_primary_10_1016_j_ins_2019_04_034
crossref_primary_10_1162_neco_a_01053
crossref_primary_10_1109_TNNLS_2014_2341634
crossref_primary_10_1007_s11280_018_0576_z
crossref_primary_10_1109_TSP_2016_2628348
crossref_primary_10_1016_j_neucom_2019_12_030
crossref_primary_10_1007_s11042_014_2010_6
crossref_primary_10_1109_TIP_2015_2409988
crossref_primary_10_1109_TMM_2015_2477058
crossref_primary_10_1109_TBME_2018_2884129
crossref_primary_10_1109_TMM_2014_2316473
crossref_primary_10_1109_TIP_2016_2572602
crossref_primary_10_1109_TIP_2023_3255102
crossref_primary_10_3390_rs13010130
crossref_primary_10_1016_j_jbi_2020_103636
crossref_primary_10_1016_j_neucom_2015_11_012
crossref_primary_10_1016_j_inffus_2024_102342
crossref_primary_10_1016_j_neucom_2018_08_032
crossref_primary_10_1109_TNNLS_2020_3047953
crossref_primary_10_1016_j_neunet_2013_09_004
crossref_primary_10_1016_j_ins_2022_12_072
crossref_primary_10_1002_wics_1553
crossref_primary_10_1109_TITS_2017_2727143
crossref_primary_10_3390_biomedicines13092171
crossref_primary_10_1109_TCSVT_2015_2412831
crossref_primary_10_1109_TASLP_2017_2694704
crossref_primary_10_1109_TCSVT_2013_2276713
crossref_primary_10_1109_TIP_2014_2365725
crossref_primary_10_1016_j_sigpro_2014_08_002
crossref_primary_10_1016_j_media_2016_06_007
crossref_primary_10_1109_TGRS_2016_2585961
crossref_primary_10_1109_ACCESS_2020_2980964
crossref_primary_10_1016_j_neucom_2013_09_073
crossref_primary_10_3390_rs71114292
crossref_primary_10_1587_transinf_2016PCP0005
crossref_primary_10_1007_s13042_021_01370_0
crossref_primary_10_1016_j_compbiomed_2024_109281
crossref_primary_10_1016_j_neucom_2022_09_097
crossref_primary_10_1049_iet_cvi_2016_0294
crossref_primary_10_1109_TMI_2024_3512175
crossref_primary_10_3390_rs11242892
crossref_primary_10_1186_s12911_020_01140_y
crossref_primary_10_1007_s13042_016_0592_1
crossref_primary_10_1109_TMM_2014_2359769
crossref_primary_10_1016_j_patcog_2017_07_016
crossref_primary_10_1016_j_ins_2015_01_005
crossref_primary_10_1016_j_compbiomed_2017_10_002
crossref_primary_10_1016_j_knosys_2015_03_019
crossref_primary_10_1016_j_jvcir_2021_103228
crossref_primary_10_1016_j_jvcir_2018_03_004
crossref_primary_10_3390_genes14071330
crossref_primary_10_1016_j_neucom_2015_01_021
crossref_primary_10_1093_nar_gkz422
crossref_primary_10_1155_2013_427462
crossref_primary_10_1016_j_media_2016_10_002
crossref_primary_10_1007_s11063_012_9234_0
crossref_primary_10_1109_TKDE_2022_3172048
crossref_primary_10_1016_j_eswa_2019_06_062
crossref_primary_10_1016_j_neucom_2018_05_065
crossref_primary_10_1016_j_media_2019_101594
crossref_primary_10_1109_TKDE_2012_213
crossref_primary_10_1109_TPDS_2016_2603511
crossref_primary_10_1016_j_ins_2023_01_149
crossref_primary_10_1109_TCSVT_2019_2916167
crossref_primary_10_1109_TIP_2014_2385591
crossref_primary_10_1109_TNNLS_2016_2522431
crossref_primary_10_1016_j_patcog_2016_10_021
crossref_primary_10_1109_TCSVT_2016_2607842
crossref_primary_10_1109_TPAMI_2019_2895608
crossref_primary_10_1016_j_patcog_2013_01_016
crossref_primary_10_1109_TASLP_2017_2690568
crossref_primary_10_1109_TSP_2016_2605068
crossref_primary_10_1109_TIFS_2016_2555792
crossref_primary_10_1109_TIP_2014_2363445
crossref_primary_10_1016_j_patcog_2017_01_021
crossref_primary_10_1109_TSP_2018_2802445
crossref_primary_10_1109_TGRS_2012_2227757
crossref_primary_10_1007_s11045_016_0440_1
crossref_primary_10_1109_ACCESS_2019_2904400
crossref_primary_10_1109_TIP_2016_2587119
crossref_primary_10_1109_TSMC_2016_2645660
crossref_primary_10_1016_j_media_2021_102278
crossref_primary_10_1109_TNNLS_2023_3296895
crossref_primary_10_1016_j_datak_2018_07_001
crossref_primary_10_1109_TCSVT_2019_2945202
crossref_primary_10_1016_j_ajhg_2024_10_004
crossref_primary_10_1109_TKDE_2022_3200723
crossref_primary_10_1109_ACCESS_2019_2936973
crossref_primary_10_1109_TNNLS_2021_3105146
crossref_primary_10_1038_s41598_024_54603_x
crossref_primary_10_1016_j_neucom_2025_129763
crossref_primary_10_1007_s00521_017_3328_6
crossref_primary_10_1109_TGRS_2016_2619384
crossref_primary_10_1109_TIP_2014_2322938
crossref_primary_10_1186_s12711_014_0075_3
Cites_doi 10.1023/b:visi.0000029664.99615.94
10.1126/science.1136800
10.1126/science.290.5500.2323
10.1109/ICCV.2007.4408875
10.1145/1390156.1390201
10.1007/3-540-44887-X_2
10.1109/CVPR.2007.383084
10.1109/NNSP.1999.788121
10.1109/ICCV.2007.4409066
10.1109/CVPR.2001.990529
10.1007/s11263-009-0268-3
10.1126/science.290.5500.2319
10.1023/A:1011139631724
10.1109/ICCV.2007.4409065
10.7551/mitpress/7503.003.0196
10.1109/TPAMI.2007.250598
10.1109/CVPR.2008.4587366
10.1137/1038003
10.1109/cvpr.2007.382983
10.1145/1015330.1015424
10.1109/CVPR.2006.301
10.1109/TPAMI.2002.1017623
10.1109/ICCV.2005.239
10.1145/1273496.1273594
10.1109/CVPR.2010.5540063
10.1145/1143844.1143903
10.7551/mitpress/7503.003.0057
10.1109/CVPR.2006.200
10.1109/CVPR.2007.383198
10.1109/CVPR.2008.4587598
10.1145/1014052.1014092
10.1109/ICCV.2007.4408853
10.1162/089976698300017467
10.1109/ICCV.2005.56
10.1109/CVPR.2005.320
10.1109/CVPR.2005.216
10.1109/ICCV.2009.5459169
10.1109/CVPR.2004.383
10.1007/978-1-4757-1904-8
10.1109/ICCV.2009.5459172
10.1109/TPAMI.2003.1251154
10.1109/ICCV.2007.4408856
10.1109/ICCV.2007.4408839
10.1109/CVPR.2010.5540223
10.1109/CVPR.2005.254
10.1109/ICCV.2009.5459183
10.1109/CVPR.2006.68
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2010.183
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE
Technology Research Database
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1160
ExternalDocumentID 2326436341
20921580
24776230
10_1109_TPAMI_2010_183
5601738
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c403t-91200eac370556207ccdea401f60d5588be7d28e0fd14a13fbda4c42febf90e03
IEDL.DBID RIE
ISICitedReferencesCount 178
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000289524000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 23:46:31 EDT 2025
Sun Sep 28 06:42:32 EDT 2025
Sun Jun 29 16:48:28 EDT 2025
Mon Jul 21 06:06:26 EDT 2025
Mon Jul 21 09:12:44 EDT 2025
Tue Nov 18 21:24:08 EST 2025
Sat Nov 29 08:09:43 EST 2025
Tue Aug 26 17:18:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cluster analysis
Dimensionality reduction
Computer vision
Image processing
Face recognition
Cluster
Pattern recognition
Object recognition
image clustering
Kernel method
object categorization
Dimension reduction
Image analysis
Multidimensional analysis
multiple kernel learning
Supervised learning
Facies
Learning algorithm
Categorization
Visual task
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-91200eac370556207ccdea401f60d5588be7d28e0fd14a13fbda4c42febf90e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20921580
PQID 862907730
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_870292445
pubmed_primary_20921580
crossref_citationtrail_10_1109_TPAMI_2010_183
crossref_primary_10_1109_TPAMI_2010_183
ieee_primary_5601738
proquest_journals_862907730
proquest_miscellaneous_875044145
pascalfrancis_primary_24776230
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Christoudias (ref10) 2009
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref55
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Sonnenburg (ref45) 2006; 7
ref48
ref47
ref42
ref41
Cox (ref11)
ref44
ref43
ref49
Zhu (ref59) 2005
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Ye (ref57) 2004
ref35
ref34
ref37
Lin (ref32) 2008
ref36
ref31
ref30
ref33
Pekalska (ref38) 2002; 2
ref2
ref1
ref39
Lanckriet (ref29) 2004; 5
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Strehl (ref46) 2002; 3
Everingham (ref13) 2007
Chen (ref8)
He (ref23) 2003
References_xml – ident: ref33
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref15
  doi: 10.1126/science.1136800
– ident: ref40
  doi: 10.1126/science.290.5500.2323
– ident: ref50
  doi: 10.1109/ICCV.2007.4408875
– ident: ref20
  doi: 10.1145/1390156.1390201
– ident: ref22
  doi: 10.1007/3-540-44887-X_2
– ident: ref31
  doi: 10.1109/CVPR.2007.383084
– ident: ref34
  doi: 10.1109/NNSP.1999.788121
– ident: ref5
  doi: 10.1109/ICCV.2007.4409066
– year: 2005
  ident: ref59
  article-title: Multi-Class Adaboost
– ident: ref3
  doi: 10.1109/CVPR.2001.990529
– ident: ref26
  doi: 10.1007/s11263-009-0268-3
– ident: ref47
  doi: 10.1126/science.290.5500.2319
– ident: ref37
  doi: 10.1023/A:1011139631724
– ident: ref28
  doi: 10.1109/ICCV.2007.4409065
– volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: ref23
  article-title: Locality Preserving Projections
– ident: ref53
  doi: 10.7551/mitpress/7503.003.0196
– ident: ref54
  doi: 10.1109/TPAMI.2007.250598
– ident: ref48
  doi: 10.1109/CVPR.2008.4587366
– ident: ref49
  doi: 10.1137/1038003
– ident: ref52
  doi: 10.1109/cvpr.2007.382983
– start-page: 1089
  volume-title: Proc. IEEE Int’l Conf. Computer Vision
  ident: ref8
  article-title: Lighting Normalization with Generic Intrinsic Illumination Subspace for Face Recognition
– ident: ref1
  doi: 10.1145/1015330.1015424
– volume: 5
  start-page: 27
  year: 2004
  ident: ref29
  article-title: Learning the Kernel Matrix with Semidefinite Programming
  publication-title: J. Machine Learning Research
– volume: 2
  start-page: 175
  issue: 2
  year: 2002
  ident: ref38
  article-title: A Generalized Kernel Approach to Dissimilarity-Based Classification
  publication-title: J. Machine Learning Research
– ident: ref58
  doi: 10.1109/CVPR.2006.301
– ident: ref36
  doi: 10.1109/TPAMI.2002.1017623
– year: 2007
  ident: ref13
  publication-title: The PASCAL Visual Object Classes Challenge (VOC2007) Results
– ident: ref21
  doi: 10.1109/ICCV.2005.239
– ident: ref39
  doi: 10.1145/1273496.1273594
– ident: ref7
  doi: 10.1109/CVPR.2010.5540063
– ident: ref27
  doi: 10.1145/1143844.1143903
– ident: ref16
  doi: 10.7551/mitpress/7503.003.0057
– ident: ref35
  doi: 10.1109/CVPR.2006.200
– volume-title: Advances in Neural Information Processing Systems
  year: 2004
  ident: ref57
  article-title: Two-Dimensional Linear Discriminant Analysis
– year: 2009
  ident: ref10
  article-title: Bayesian Localized Multiple Kernel Learning
– ident: ref43
  doi: 10.1109/CVPR.2007.383198
– ident: ref4
  doi: 10.1109/CVPR.2008.4587598
– ident: ref56
  doi: 10.1145/1014052.1014092
– ident: ref12
  doi: 10.1109/ICCV.2007.4408853
– ident: ref41
  doi: 10.1162/089976698300017467
– volume-title: Multidimentional Scaling
  ident: ref11
– ident: ref24
  doi: 10.1109/ICCV.2005.56
– ident: ref2
  doi: 10.1109/CVPR.2005.320
– ident: ref9
  doi: 10.1109/CVPR.2005.216
– volume: 3
  start-page: 583
  year: 2002
  ident: ref46
  article-title: Cluster Ensembles—A Knowledge Reuse Framework for Combining Multiple Partitions
  publication-title: J. Machine Learning Research
– start-page: 961
  volume-title: Advances in Neural Information Processing Systems
  year: 2008
  ident: ref32
  article-title: Dimensionality Reduction for Data in Multiple Feature Representations
– ident: ref19
  doi: 10.1109/ICCV.2009.5459169
– ident: ref14
  doi: 10.1109/CVPR.2004.383
– ident: ref25
  doi: 10.1007/978-1-4757-1904-8
– ident: ref55
  doi: 10.1109/ICCV.2009.5459172
– ident: ref44
  doi: 10.1109/TPAMI.2003.1251154
– ident: ref6
  doi: 10.1109/ICCV.2007.4408856
– ident: ref17
  doi: 10.1109/ICCV.2007.4408839
– ident: ref18
  doi: 10.1109/CVPR.2010.5540223
– ident: ref42
  doi: 10.1109/CVPR.2005.254
– ident: ref51
  doi: 10.1109/ICCV.2009.5459183
– ident: ref30
  doi: 10.1109/CVPR.2006.68
– volume: 7
  start-page: 1531
  year: 2006
  ident: ref45
  article-title: Large Scale Multiple Kernel Learning
  publication-title: J. Machine Learning Research
SSID ssj0014503
Score 2.486775
Snippet In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1147
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Cluster Analysis
Computer science; control theory; systems
Data processing. List processing. Character string processing
Dimensionality reduction
Eigenvalues and eigenfunctions
Exact sciences and technology
Face - anatomy & histology
face recognition
Focusing
Humans
image clustering
Image Processing, Computer-Assisted - methods
Kernel
Kernels
Laplace equations
Learning
Learning and adaptive systems
Machine learning
Memory organisation. Data processing
multiple kernel learning
object categorization
Optimization
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Principal component analysis
Reduction
Representations
Software
Tasks
Training
Visual
Title Multiple Kernel Learning for Dimensionality Reduction
URI https://ieeexplore.ieee.org/document/5601738
https://www.ncbi.nlm.nih.gov/pubmed/20921580
https://www.proquest.com/docview/862907730
https://www.proquest.com/docview/870292445
https://www.proquest.com/docview/875044145
Volume 33
WOSCitedRecordID wos000289524000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSx0xEB9UeqgHtWr1VX3kIPTianY3MbtHaRWlVUQsvNuSj0kpyD55H_79TrJ5W4Va8LaQgQ2ZmcxMMvn9AA65MxpVbTJF0TwTOeaZMaUmv7LaoHdUdUXWkp_q5qYajerbJTjq38IgYmw-w-PwGe_y3djOw1HZSageVFktw7JSqnur1d8YCBlZkCmDIQ-nMiIBNOa8Prm_Pbu-6rq4yIAD_C-vKdIFJMgXsSiSq4TWSD2l1fEdrcXbeWeMPxfr75v5BqylPJOddYbxCZaw3YT1BYcDSy69CasvAAm3QF6n_kL2AyctPrAEv_qbUW7LvgcmgA7Fg3J3dhdQX4Net-HXxfn9t8ssEStkVvByRoog36Adt4xQOgVX1jrUVGn5U-6krCqDyhUVcu9yofPSG6eFFYVH42uOvPwMK-24xV1g2nLjLOWIlReiPJVaCylc4aXTuVLODiBbLHFjE-p4IL94aGL1wesmaqcJ2mlIOwP42ss_dngbb0puhXXupdISD2D4SoP9eCEUbfwlH8DeQqVN8tdpQ3VdzZUKo6wfJUcLtye6xfGcRBQvqFgV8n8iklN6GUR2Olv5-_dkcl_-Pes9-NgdVofjnX1YmU3meAAf7NPsz3QyJHsfVcNo78997_q0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sFWofatVqr7Y2D4W-dGt2NzG7j9JWFO8OkSv4tuRjUgqyJ_fh3-8km9sq1ELfFjKwITOTmUkmvx_AJ-6MRlWbTFE0z0SOeWZMqcmvrDboHVVdkbVkqMbj6vq6vlyDL_1bGESMzWf4NXzGu3w3tctwVHYUqgdVVs_guRSiyLvXWv2dgZCRB5lyGPJxKiQSRGPO66PJ5cnovOvjIhMOAMC8plgXsCAfRKNIrxKaI_Wc1sd3xBZPZ54xAp1u_d_cX8OrlGmyk840tmEN2x3YWrE4sOTUO_DyASThLshR6jBkFzhr8YYlANZfjLJb9j1wAXQ4HpS9s6uA-xo0-wZ-nv6YfDvLErVCZgUvF6QK8g7ac8sIplNwZa1DTbWWP-ZOyqoyqFxRIfcuFzovvXFaWFF4NL7myMs9WG-nLb4Fpi03zlKWWHkhymOptZDCFV46nSvl7ACy1RI3NuGOB_qLmybWH7xuonaaoJ2GtDOAz738bYe48aTkbljnXiot8QAOH2mwHy-Eoq2_5AM4WKm0SR47b6iyq7lSYZT1o-Rq4f5EtzhdkojiBZWrQv5LRHJKMIPIfmcrf_6eTO7d32f9EV6cTUbDZng-vjiAze7oOhz2vIf1xWyJH2DD3i1-z2eH0ervAcHR_RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Kernel+Learning+for+Dimensionality+Reduction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lin%2C+Yen-Yu&rft.au=Liu%2C+Tyng-Luh&rft.au=Fuh%2C+Chiou-Shann&rft.date=2011-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=33&rft.issue=6&rft.spage=1147&rft_id=info:doi/10.1109%2FTPAMI.2010.183&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2326436341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon