Deep Learning for Water Quality Prediction—A Case Study of the Huangyang Reservoir

Water quality prediction is a fundamental prerequisite for effective water resource management and pollution prevention. Accurate predictions of water quality information can provide essential technical support and strategic planning for the protection of water resources. This study aims to enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 14; H. 19; S. 8755
Hauptverfasser: Chen, Jixuan, Wei, Xiaojuan, Liu, Yinxiao, Zhao, Chunxia, Liu, Zhenan, Bao, Zhikang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2024
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water quality prediction is a fundamental prerequisite for effective water resource management and pollution prevention. Accurate predictions of water quality information can provide essential technical support and strategic planning for the protection of water resources. This study aims to enhance the accuracy of water quality prediction, considering the temporal characteristics, variability, and complex nature of water quality data. We utilized the LTSF-Linear model to predict water quality at the Huangyang Reservoir. Comparative analysis with three other models (ARIMA, LSTM, and Informer) revealed that the Linear model outperforms them, achieving reductions of 8.55% and 10.51% in mean square error (MSE) and mean absolute error (MAE), respectively. This research introduces a novel method and framework for predicting hydrological parameters relevant to water quality in the Huangyang Reservoir. These findings offer a valuable new approach and reference for enhancing the intelligent and sustainable management of the reservoir.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app14198755