Deep Learning for Water Quality Prediction—A Case Study of the Huangyang Reservoir

Water quality prediction is a fundamental prerequisite for effective water resource management and pollution prevention. Accurate predictions of water quality information can provide essential technical support and strategic planning for the protection of water resources. This study aims to enhance...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 14; číslo 19; s. 8755
Hlavní autoři: Chen, Jixuan, Wei, Xiaojuan, Liu, Yinxiao, Zhao, Chunxia, Liu, Zhenan, Bao, Zhikang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2024
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Water quality prediction is a fundamental prerequisite for effective water resource management and pollution prevention. Accurate predictions of water quality information can provide essential technical support and strategic planning for the protection of water resources. This study aims to enhance the accuracy of water quality prediction, considering the temporal characteristics, variability, and complex nature of water quality data. We utilized the LTSF-Linear model to predict water quality at the Huangyang Reservoir. Comparative analysis with three other models (ARIMA, LSTM, and Informer) revealed that the Linear model outperforms them, achieving reductions of 8.55% and 10.51% in mean square error (MSE) and mean absolute error (MAE), respectively. This research introduces a novel method and framework for predicting hydrological parameters relevant to water quality in the Huangyang Reservoir. These findings offer a valuable new approach and reference for enhancing the intelligent and sustainable management of the reservoir.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app14198755