New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function

In 2003, Mercer presented an interesting variation of Jensen’s inequality called Jensen–Mercer inequality for convex function. In the present paper, by employing harmonically convex function, we introduce analogous versions of Hermite–Hadamard inequalities of the Jensen–Mercer type via fractional in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of function spaces Ročník 2021; s. 1 - 11
Hlavní autoři: Butt, Saad Ihsan, Yousaf, Saba, Asghar, Atifa, Khan, Khuram Ali, Moradi, Hamid Reza
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 2021
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:2314-8896, 2314-8888
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In 2003, Mercer presented an interesting variation of Jensen’s inequality called Jensen–Mercer inequality for convex function. In the present paper, by employing harmonically convex function, we introduce analogous versions of Hermite–Hadamard inequalities of the Jensen–Mercer type via fractional integrals. As a result, we introduce several related fractional inequalities connected with the right and left differences of obtained new inequalities for differentiable harmonically convex mappings. As an application viewpoint, new estimates regarding hypergeometric functions and special means of real numbers are exemplified to determine the pertinence and validity of the suggested scheme. Our results presented here provide extensions of others given in the literature. The results proved in this paper may stimulate further research in this fascinating area.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2314-8896
2314-8888
DOI:10.1155/2021/5868326