A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms

In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, ar...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 6; p. 3529
Main Authors: Pitafi, Shahneela, Anwar, Toni, Sharif, Zubair
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2023
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. This research provides a modern, thorough review of both classic and cutting-edge clustering methods. The taxonomy of clustering is presented in this review from an applied angle and the compression of some hierarchical and partitional clustering algorithms with various parameters. We also discuss the open challenges in clustering such as computational complexity, refinement of clusters, speed of convergence, data dimensionality, effectiveness and scalability, data object representation, evaluation measures, data streams, and knowledge extraction; scientists and professionals alike will be able to use it as a benchmark as they strive to advance the state-of-the-art in clustering techniques.
AbstractList In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. This research provides a modern, thorough review of both classic and cutting-edge clustering methods. The taxonomy of clustering is presented in this review from an applied angle and the compression of some hierarchical and partitional clustering algorithms with various parameters. We also discuss the open challenges in clustering such as computational complexity, refinement of clusters, speed of convergence, data dimensionality, effectiveness and scalability, data object representation, evaluation measures, data streams, and knowledge extraction; scientists and professionals alike will be able to use it as a benchmark as they strive to advance the state-of-the-art in clustering techniques.
Audience Academic
Author Sharif, Zubair
Anwar, Toni
Pitafi, Shahneela
Author_xml – sequence: 1
  givenname: Shahneela
  orcidid: 0000-0003-3640-961X
  surname: Pitafi
  fullname: Pitafi, Shahneela
– sequence: 2
  givenname: Toni
  surname: Anwar
  fullname: Anwar, Toni
– sequence: 3
  givenname: Zubair
  surname: Sharif
  fullname: Sharif, Zubair
BookMark eNptUcFq3DAQFSWFJtuc-gOGHpNNJcu2pOOyJG1gQ6FNz0Irj7xabGkryZD8fSbdBkKIdNAwvPfmjd4ZOQkxACFfGL3iXNFv5nBgnHa8rdUHclpT0S15w8TJq_oTOc95T_EoxiWjp-T3qro3DzHE6bGKrrozducDVBswKfgwVOtxzgXSc7kah5h82U35slrvzDhCGABrE_rqZi5zguoXmHHKn8lHZ8YM5__fBflzc32__rHc_Px-u15tlrahvCyFdNDRzjVcCEplt2UMzRsrAWrXbfsWtko2LfrsrBTS4hbKiZqyXrnGyZYvyO1Rt49mrw_JTyY96mi8_teIadAmFW9H0Chtay5A9kw20jBVO4UTOUcxaPHTFuTrUeuQ4t8ZctH7OKeA9nUtFGsVZZwj6uqIGgyK-uBiScbi7WHyFuNwHvsr0TIlkUGRwI4Em2LOCZy2vpjiY0CiHzWj-jk7_So75Fy84bys9h76CSgamKY
CitedBy_id crossref_primary_10_1016_j_procs_2024_01_105
crossref_primary_10_1016_j_ress_2024_110593
crossref_primary_10_1080_09537325_2025_2464042
crossref_primary_10_1080_15567036_2024_2334923
crossref_primary_10_3390_math13182958
crossref_primary_10_3390_s24227219
crossref_primary_10_1371_journal_pone_0326095
crossref_primary_10_1016_j_asoc_2025_112791
crossref_primary_10_3390_app14146039
crossref_primary_10_3390_math13142272
crossref_primary_10_1002_srin_202300736
crossref_primary_10_1111_jsr_14349
crossref_primary_10_3233_JIFS_234148
crossref_primary_10_1016_j_enbuild_2024_115232
crossref_primary_10_3390_eng5030102
crossref_primary_10_1109_ACCESS_2023_3318600
crossref_primary_10_1016_j_asoc_2025_112789
crossref_primary_10_1177_10434631251327035
crossref_primary_10_3390_s24175693
crossref_primary_10_1016_j_ins_2024_121575
crossref_primary_10_3390_app14209162
crossref_primary_10_1016_j_compeleceng_2025_110697
crossref_primary_10_1371_journal_pone_0313890
crossref_primary_10_1016_j_scitotenv_2024_171901
Cites_doi 10.1109/MSP.2010.939739
10.1016/j.patcog.2005.01.025
10.1109/CICT.2013.6558109
10.1007/978-3-030-10674-4
10.1109/TETC.2014.2330519
10.4137/BBI.S38316
10.1016/j.procs.2020.06.032
10.1109/COMITCon.2019.8862451
10.1016/0031-3203(78)90018-3
10.1109/34.1000236
10.1137/1.9781611974348.42
10.1007/BF01246100
10.1016/j.neucom.2017.06.053
10.1093/comjnl/26.4.354
10.1016/j.patcog.2009.10.020
10.1016/j.csda.2007.03.013
10.1111/j.2517-6161.1985.tb01331.x
10.1145/331499.331504
10.1016/j.patrec.2010.04.001
10.1016/0167-8191(95)00017-I
10.1016/j.ins.2021.04.076
10.1109/TIT.1975.1055330
10.2307/2413593
10.1016/0031-3203(83)90022-5
10.1016/j.csda.2011.01.011
10.1002/widm.53
10.1007/BF01890115
10.1038/2021034a0
10.2307/2257249
10.1137/1.9781611972726.18
10.1023/A:1009740529316
10.1007/978-981-15-1209-4_1
10.1016/j.asoc.2015.12.001
10.1016/j.patrec.2009.09.011
10.1145/3458817.3476181
10.1007/3-540-73679-4
10.1016/j.knosys.2018.09.013
10.1016/j.eswa.2018.09.050
10.1007/s10462-020-09918-2
10.1016/j.patrec.2008.07.002
10.1109/ICRITO.2017.8342454
10.1109/TNN.2005.845141
10.1007/BF02616245
10.1016/j.jocs.2017.07.018
10.1109/ICCIT52419.2022.9711641
10.1109/ICDI57181.2022.10007397
10.1016/j.jprocont.2018.12.010
10.1007/978-3-642-34166-3_6
10.1016/0306-4573(86)90097-X
10.1007/s40745-015-0040-1
10.1093/comjnl/28.1.82
10.1007/s42452-020-2073-0
10.1093/comjnl/41.8.578
10.3390/bdcc2040032
10.1016/j.procs.2019.01.022
10.1145/1007730.1007731
10.1109/DAC.1999.781339
10.1109/CLUSTER51413.2022.00044
10.1093/comjnl/20.4.364
10.1007/s00521-020-05395-4
10.1109/ICNAS.2019.8807822
10.1093/comjnl/16.1.30
10.1145/502512.502574
10.1002/sam.11380
10.1016/j.patcog.2017.11.023
10.1016/j.jksuci.2023.01.001
10.1007/s10618-005-1396-1
10.1016/j.datak.2007.03.016
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13063529
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_116c237e8d1848a192f986b331d9e506
A751989010
10_3390_app13063529
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-78fe606f43770086b11635ac8ee2f6bd5eb98453816c878c2079f7201d9f4f853
IEDL.DBID PIMPY
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957399100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:27 EDT 2025
Mon Jun 30 07:30:53 EDT 2025
Tue Nov 04 17:44:44 EST 2025
Tue Nov 18 21:57:43 EST 2025
Sat Nov 29 07:12:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-78fe606f43770086b11635ac8ee2f6bd5eb98453816c878c2079f7201d9f4f853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3640-961X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2791590133?pq-origsite=%requestingapplication%
PQID 2791590133
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_116c237e8d1848a192f986b331d9e506
proquest_journals_2791590133
gale_infotracacademiconefile_A751989010
crossref_citationtrail_10_3390_app13063529
crossref_primary_10_3390_app13063529
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chavent (ref_44) 2007; 52
ref_93
ref_92
Olson (ref_28) 1995; 21
Sibson (ref_36) 1973; 16
ref_90
ref_14
Boley (ref_43) 1998; 2
ref_58
Dafir (ref_16) 2021; 54
Wharton (ref_63) 1983; 16
ref_12
ref_11
ref_55
Defays (ref_37) 1977; 20
ref_54
Wang (ref_50) 1996; 13
Gowda (ref_33) 1978; 10
Williams (ref_53) 1959; 47
Liao (ref_73) 2005; 38
ref_18
ref_17
Sanse (ref_65) 2015; 4
Murtagh (ref_30) 1985; 28
Xu (ref_35) 2005; 16
Comaniciu (ref_76) 2002; 24
Ezugwu (ref_8) 2021; 33
Xu (ref_25) 2015; 2
Murtagh (ref_39) 1983; 26
Fraley (ref_66) 1998; 41
(ref_68) 2016; 41
Zhou (ref_3) 2019; 163
Chang (ref_6) 2010; 43
ref_24
ref_23
ref_67
ref_21
ref_20
ref_64
ref_62
Ezugwu (ref_22) 2020; 2
Aliniya (ref_7) 2019; 117
Benabdellah (ref_10) 2019; 148
Williams (ref_48) 1964; 202
Sammaknejad (ref_85) 2019; 73
ref_72
Saxena (ref_15) 2017; 267
ref_70
Singh (ref_26) 2020; 173
Hansen (ref_51) 1991; 8
Jain (ref_1) 2010; 31
ref_79
ref_34
ref_78
Agrawal (ref_69) 2005; 11
ref_32
ref_31
ref_75
Voorhees (ref_38) 1986; 22
Fukunaga (ref_77) 1975; 21
Grira (ref_84) 2004; 1
Abualigah (ref_4) 2018; 25
Zadeh (ref_59) 1965; 8
ref_83
Zhong (ref_46) 2008; 29
ref_80
Myhre (ref_81) 2018; 76
Hartigan (ref_71) 1979; 28
Aitkin (ref_82) 1985; 47
ref_45
Mansalis (ref_74) 2018; 11
ref_89
ref_88
ref_87
ref_42
ref_86
Oyelade (ref_19) 2016; 10
ref_41
Day (ref_40) 1984; 1
Parsons (ref_61) 2004; 6
Murtagh (ref_27) 2012; 2
Feng (ref_47) 2010; 31
ref_2
Fahad (ref_13) 2014; 2
Kim (ref_56) 2011; 55
Jain (ref_29) 1999; 31
ref_49
Sneath (ref_52) 1995; 44
Vidal (ref_60) 2011; 28
ref_9
ref_5
Dinh (ref_91) 2021; 571
Ahmad (ref_57) 2007; 63
References_xml – volume: 28
  start-page: 100
  year: 1979
  ident: ref_71
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C
– ident: ref_9
– volume: 28
  start-page: 52
  year: 2011
  ident: ref_60
  article-title: Subspace clustering
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939739
– ident: ref_78
– ident: ref_49
– volume: 38
  start-page: 1857
  year: 2005
  ident: ref_73
  article-title: Clustering of time series data—A survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.01.025
– ident: ref_5
– ident: ref_32
– ident: ref_55
– ident: ref_80
– ident: ref_18
  doi: 10.1109/CICT.2013.6558109
– ident: ref_2
  doi: 10.1007/978-3-030-10674-4
– volume: 2
  start-page: 267
  year: 2014
  ident: ref_13
  article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2330519
– volume: 10
  start-page: 237
  year: 2016
  ident: ref_19
  article-title: Clustering algorithms: Their application to gene expression data
  publication-title: Bioinform. Biol. Insights
  doi: 10.4137/BBI.S38316
– volume: 173
  start-page: 272
  year: 2020
  ident: ref_26
  article-title: Review of Clustering Techniques in Control System: Review of Clustering Techniques in Control System
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.06.032
– ident: ref_88
– ident: ref_70
  doi: 10.1109/COMITCon.2019.8862451
– volume: 10
  start-page: 105
  year: 1978
  ident: ref_33
  article-title: Agglomerative clustering using the concept of mutual nearest neighbourhood
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(78)90018-3
– volume: 24
  start-page: 603
  year: 2002
  ident: ref_76
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
– ident: ref_90
  doi: 10.1137/1.9781611974348.42
– volume: 13
  start-page: 231
  year: 1996
  ident: ref_50
  article-title: The weighted sum of split and diameter clustering
  publication-title: J. Classif.
  doi: 10.1007/BF01246100
– volume: 267
  start-page: 664
  year: 2017
  ident: ref_15
  article-title: A review of clustering techniques and developments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.053
– volume: 26
  start-page: 354
  year: 1983
  ident: ref_39
  article-title: A survey of recent advances in hierarchical clustering algorithms
  publication-title: Comput. J.
  doi: 10.1093/comjnl/26.4.354
– volume: 43
  start-page: 1346
  year: 2010
  ident: ref_6
  article-title: A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.10.020
– volume: 52
  start-page: 687
  year: 2007
  ident: ref_44
  article-title: DIVCLUS-T: A monothetic divisive hierarchical clustering method
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.03.013
– volume: 47
  start-page: 67
  year: 1985
  ident: ref_82
  article-title: Estimation and hypothesis testing in finite mixture models
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1985.tb01331.x
– ident: ref_83
– ident: ref_87
– volume: 31
  start-page: 264
  year: 1999
  ident: ref_29
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– ident: ref_41
– volume: 31
  start-page: 1216
  year: 2010
  ident: ref_47
  article-title: A fast divisive clustering algorithm using an improved discrete particle swarm optimizer
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.04.001
– volume: 21
  start-page: 1313
  year: 1995
  ident: ref_28
  article-title: Parallel algorithms for hierarchical clustering
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(95)00017-I
– ident: ref_62
– volume: 571
  start-page: 418
  year: 2021
  ident: ref_91
  article-title: Clustering mixed numerical and categorical data with missing values
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.076
– volume: 21
  start-page: 32
  year: 1975
  ident: ref_77
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1975.1055330
– volume: 44
  start-page: 281
  year: 1995
  ident: ref_52
  article-title: Thirty years of numerical taxonomy
  publication-title: Syst. Biol.
  doi: 10.2307/2413593
– volume: 16
  start-page: 193
  year: 1983
  ident: ref_63
  article-title: A generalized histogram clustering scheme for multidimensional image data
  publication-title: J Pattern Recognition
  doi: 10.1016/0031-3203(83)90022-5
– volume: 55
  start-page: 2250
  year: 2011
  ident: ref_56
  article-title: A polythetic clustering process and cluster validity indexes for histogram-valued objects
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.01.011
– ident: ref_72
– volume: 2
  start-page: 86
  year: 2012
  ident: ref_27
  article-title: Algorithms for hierarchical clustering: An overview
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.53
– ident: ref_20
– volume: 1
  start-page: 7
  year: 1984
  ident: ref_40
  article-title: Efficient algorithms for agglomerative hierarchical clustering methods
  publication-title: J. Classif.
  doi: 10.1007/BF01890115
– volume: 202
  start-page: 1034
  year: 1964
  ident: ref_48
  article-title: Dissimilarity analysis: A new technique of hierarchical sub-division
  publication-title: Nature
  doi: 10.1038/2021034a0
– volume: 47
  start-page: 83
  year: 1959
  ident: ref_53
  article-title: Multivariate methods in plant ecology: I. Association-analysis in plant communities
  publication-title: J. Ecol.
  doi: 10.2307/2257249
– ident: ref_42
  doi: 10.1137/1.9781611972726.18
– volume: 2
  start-page: 325
  year: 1998
  ident: ref_43
  article-title: Principal direction divisive partitioning
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009740529316
– ident: ref_58
  doi: 10.1007/978-981-15-1209-4_1
– volume: 1
  start-page: 9
  year: 2004
  ident: ref_84
  article-title: Unsupervised and semi-supervised clustering: A brief survey
  publication-title: A Rev. Mach. Learn. Tech. Process. Multimed. Content
– volume: 41
  start-page: 192
  year: 2016
  ident: ref_68
  article-title: Automatic clustering using nature-inspired metaheuristics: A survey
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.001
– volume: 31
  start-page: 651
  year: 2010
  ident: ref_1
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref_11
  doi: 10.1145/3458817.3476181
– ident: ref_34
– ident: ref_75
  doi: 10.1007/3-540-73679-4
– volume: 163
  start-page: 546
  year: 2019
  ident: ref_3
  article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.09.013
– volume: 117
  start-page: 243
  year: 2019
  ident: ref_7
  article-title: A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.050
– ident: ref_86
– volume: 54
  start-page: 2411
  year: 2021
  ident: ref_16
  article-title: A survey on parallel clustering algorithms for big data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09918-2
– volume: 29
  start-page: 2067
  year: 2008
  ident: ref_46
  article-title: DIVFRP: An automatic divisive hierarchical clustering method based on the furthest reference points
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.07.002
– ident: ref_23
  doi: 10.1109/ICRITO.2017.8342454
– volume: 16
  start-page: 645
  year: 2005
  ident: ref_35
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 8
  start-page: 5
  year: 1991
  ident: ref_51
  article-title: Efficient algorithms for divisive hierarchical clustering with the diameter criterion
  publication-title: J. Classif.
  doi: 10.1007/BF02616245
– volume: 25
  start-page: 456
  year: 2018
  ident: ref_4
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.018
– ident: ref_31
  doi: 10.1109/ICCIT52419.2022.9711641
– ident: ref_67
– ident: ref_92
– ident: ref_21
  doi: 10.1109/ICDI57181.2022.10007397
– volume: 73
  start-page: 123
  year: 2019
  ident: ref_85
  article-title: A review of the expectation maximization algorithm in data-driven process identification
  publication-title: J. Process Control.
  doi: 10.1016/j.jprocont.2018.12.010
– ident: ref_79
  doi: 10.1007/978-3-642-34166-3_6
– volume: 22
  start-page: 465
  year: 1986
  ident: ref_38
  article-title: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval
  publication-title: Inf. Process. Manag.
  doi: 10.1016/0306-4573(86)90097-X
– volume: 2
  start-page: 165
  year: 2015
  ident: ref_25
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 28
  start-page: 82
  year: 1985
  ident: ref_30
  article-title: A survey of algorithms for contiguity-constrained clustering and related problems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/28.1.82
– volume: 2
  start-page: 273
  year: 2020
  ident: ref_22
  article-title: Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2073-0
– volume: 41
  start-page: 578
  year: 1998
  ident: ref_66
  article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis
  publication-title: Comput. J.
  doi: 10.1093/comjnl/41.8.578
– ident: ref_93
  doi: 10.3390/bdcc2040032
– volume: 148
  start-page: 291
  year: 2019
  ident: ref_10
  article-title: A survey of clustering algorithms for an industrial context
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.022
– volume: 6
  start-page: 90
  year: 2004
  ident: ref_61
  article-title: Subspace clustering for high dimensional data: A review
  publication-title: Acm Sigkdd Explor. Newsl.
  doi: 10.1145/1007730.1007731
– ident: ref_45
  doi: 10.1109/DAC.1999.781339
– ident: ref_54
– ident: ref_12
  doi: 10.1109/CLUSTER51413.2022.00044
– volume: 20
  start-page: 364
  year: 1977
  ident: ref_37
  article-title: An efficient algorithm for a complete link method
  publication-title: Comput. J.
  doi: 10.1093/comjnl/20.4.364
– volume: 33
  start-page: 6247
  year: 2021
  ident: ref_8
  article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05395-4
– ident: ref_24
  doi: 10.1109/ICNAS.2019.8807822
– volume: 4
  start-page: 642
  year: 2015
  ident: ref_65
  article-title: Clustering methods for Big data analysis
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol.
– volume: 16
  start-page: 30
  year: 1973
  ident: ref_36
  article-title: SLINK: An optimally efficient algorithm for the single-link cluster method
  publication-title: Comput. J.
  doi: 10.1093/comjnl/16.1.30
– ident: ref_14
  doi: 10.1145/502512.502574
– volume: 11
  start-page: 167
  year: 2018
  ident: ref_74
  article-title: An evaluation of data stream clustering algorithms
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.11380
– volume: 76
  start-page: 491
  year: 2018
  ident: ref_81
  article-title: Robust clustering using a kNN mode seeking ensemble
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.023
– ident: ref_89
– ident: ref_64
– ident: ref_17
  doi: 10.1016/j.jksuci.2023.01.001
– volume: 11
  start-page: 5
  year: 2005
  ident: ref_69
  article-title: Automatic subspace clustering of high dimensional data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-005-1396-1
– volume: 63
  start-page: 503
  year: 2007
  ident: ref_57
  article-title: A k-mean clustering algorithm for mixed numeric and categorical data
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2007.03.016
– volume: 8
  start-page: 338
  year: 1965
  ident: ref_59
  article-title: Fuzzy sets
  publication-title: Inf. Sci.
SSID ssj0000913810
Score 2.4543407
SecondaryResourceType review_article
Snippet In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3529
SubjectTerms Algorithms
Artificial intelligence
Big Data
challenges in clustering algorithms
Cluster analysis
Clustering
clustering algorithms
Computer science
Data mining
Datasets
Machine learning
Methods
Middleware
Taxonomy
taxonomy of clustering algorithms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfOL6IgfBBxZt0zbpcV1cPKiIL7yFJk1UWHdlu4o_35k0q3tQvHgLJYd0Hpn5yMw3ADs8xTxBOB7llbMIUEQRSWN0pNE-jI7L0vjanPtzcXkpHx6Kq4lRX1QT1tADN4I7iuPcJFxYWSEWkSUmJK6QueY8rgqbNWTbmPVMgCl_BxcxUVc1DXkccT29B-N1jeHVJ5PfIcgz9f92H_sg012A-ZAdsnZzqkWYsv0lmJvgDFyCxeCNNdsLlNH7y3DTZrflh-9PYAPHLnyFpGWBPPWRdXpvRIhAy3bvcTB8Hj291IesM56kguuyX7GuJxhh15g8vtQrcNc9ve2cRWFcQmTSYz6KhHQW4YhLuRCEVDSKjmcobGsTl-sqs7qQaUYvhUYKaRJUjBOYAFSFSx2G7VWY7g_6dg1Ypc0xihrBhMjTOLElzbJxBsGIEVkidQsOxhJUJnCJ00iLnkJMQeJWE-Juwc7X5teGQuPnbSekiq8txHvtP6A1qGAN6i9raMEuKVKRd-KBTBmaDPC3iOdKtUVGRWIIQluwOda1Cm5bq0QUMTXjcr7-H6fZgFmaTt-UrG3C9Gj4ZrdgxryPnuvhtrfYT3dh62Q
  priority: 102
  providerName: Directory of Open Access Journals
Title A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms
URI https://www.proquest.com/docview/2791590133
https://doaj.org/article/116c237e8d1848a192f986b331d9e506
Volume 13
WOSCitedRecordID wos000957399100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB6xLYflwHtFeVQ-IPEQEU2c1M4JlYpqV4KqAnYFpyhx7C5SaaEpiJ_PjOMWDsCJW9Raiq2ZfJ7PnvkGYJeHGCcIw71mbjQSFBF7UqnMy9A_VOanqbK5Of_ORbcrb27iniuPLlxa5RQTLVCXas-Ut40gfJyPFJ2YHwci9qlqkvOTh0ePekjRXatrqPEDqiS8JStQ7f256N3OzlxIA1P6jbJMjyPbp1tiBHHcdG2I-bYxWf3-z1Dabj2dpe-d9DIsuhCUtUqfWYE5PVyFhXfChKuw4j75gu07XeqDNbhqsev0xRZBsJFhFzYNUzOn0Npn7cETqS7QY2vQxxdP_t8XR6w9bdeCz-kwZx2rYsIuMUK9L9bhb-fsuv3bcz0ZPBU2-MQT0mjkPCbkQhAdynwM6CK0qNaBaWZ5pLNYhhFdRyoppArQ-kZglJHHJjQYG_yCynA01BvA8kw1UgQAgZQn9AOdUsMco5DxKBEFMqvB4dQgiXKC5dQ3Y5AgcSHrJe-sV4Pd2eCHUqfj42GnZNnZEBLXtj-Mxv3EfatIipoq4ELLHOmvxCkGJsaVco6L0FGjWYM98ouEIAAnpFJXyYDLIjGtpCUiykRDpluD7alfJA4biuTNDTa__nsLflJz-zLjbRsqk_GT3oF59Ty5K8Z1qJ6edXuXdXuKUHeu_gpchgpa
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJwKLSAGiiwhyIewqq9a2fXB4RCIGrUJIogVOVk7PVuQEqTNk6h_VP8RmbsddoDcOuBm2Wv5B3v53nsznwDsCtC9BOkFV4rtwYDFBl7SuvMyxAfOgvSVJe5OYd9ORyqo6N4tAa_6loYSqusdWKpqPO5pj3yPS7jgOokhXh7cupR1yg6Xa1baFSwODAXPzFkK9703uP6PuO8-2Hc2fdcVwFPh75YelJZg167DYWU5NBnAbokEc7JGG5bWR6ZLFZhRAdqWkmlOc7fSrSTeWxDq6hLBKr89RCFUQ1YH_UGoy-rXR1i2VSBXxUCChH7dA6NZgLfUDqxl6av7BDwNztQGrfunf_ts9yFDedGs3aF-01YM7MtuH2FXHELNp3aKtgLx6398h58arNxel4WcrC5ZYMyldQwxzI7YZ3pGTFH0GV7OkFBl9-Oi9esU7ecwet0lrNuycTCPqKXfVzch8_XIuoDaMzmM7MNLM-0n6ISkxi2hQE3KTX9sRqjNi0jrrImvKqXPNGOdJ16f0wTDL4IH8kVfDRhdzX4pOIa-fOwd4Sd1RAiCC9vzBeTxOkbDOxamgtpVI4hvMIpchujpEKgECbyW014TshLSI3hhHTqqjFQLCIES9oyomw6jNabsFMjL3H6rUguYffw34-fws398aCf9HvDg0dwi6OLWGXw7UBjuTgzj-GG_rH8XiyeuF-JwdfrhulvRhhWjA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKUJwKLRQESiwhyI-hFV7186uDwiFlIiobRRBQe1psde7ASlN2jjl46_x65ix12kPwK0HblayUnbi55k33pk3ANsiRp4gnQg6hbOYoMg0UMbkQY74MHmUZaaqzfm0L4dDdXSUjlbgV9MLQ2WVjU-sHHUxM_SOfIfLNKI-SSF2nC-LGO32X5-eBTRBik5am3EaNUT27M_vmL6Vrwa7eK-fcN5_e9h7F_gJA4GJQ7EIpHIWGbyLhZRE7vMI6UmC-7OWu05eJDZPVZzQ4ZpRUhmOtjiJMbNIXewUTYxA97-KlDyOW7A6GhyMjpdveEhxU0Vh3RQoRBrSmTSGDPyFitBehMFqWsDfYkIV6Pq3_ue_6DaseXrNuvXzsA4rdroBNy-JLm7AundnJXvmNbef34EPXXaY_agaPNjMsYOqxNQyrz47Zr3JOSlK0GV3MkZDF19Oypes14yiwetsWrB-pdDC3iP7PinvwscrMXUTWtPZ1N4DVuQmzNC5SUzn4ojbjIYBOYPZnJEJV3kbXjS3Xxsvxk4zQSYakzLCir6ElTZsLxef1hokf172hnC0XELC4dUHs_lYez-ECV_HcCGtKjC1V7hF7lK0VAg0wiZhpw1PCYWa3BtuyGS-SwPNIqEw3ZUJVdlhFt-GrQaF2vu9Ul9A8P6_v34M1xGben8w3HsANzgyx7qwbwtai_m5fQjXzLfF13L-yD9VDD5fNUp_A0etX00
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Taxonomy+of+Machine+Learning+Clustering+Algorithms%2C+Challenges%2C+and+Future+Realms&rft.jtitle=Applied+sciences&rft.au=Pitafi%2C+Shahneela&rft.au=Anwar%2C+Toni&rft.au=Sharif%2C+Zubair&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=6&rft.spage=3529&rft_id=info:doi/10.3390%2Fapp13063529&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon