A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms
In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, ar...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 13; číslo 6; s. 3529 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.03.2023
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. This research provides a modern, thorough review of both classic and cutting-edge clustering methods. The taxonomy of clustering is presented in this review from an applied angle and the compression of some hierarchical and partitional clustering algorithms with various parameters. We also discuss the open challenges in clustering such as computational complexity, refinement of clusters, speed of convergence, data dimensionality, effectiveness and scalability, data object representation, evaluation measures, data streams, and knowledge extraction; scientists and professionals alike will be able to use it as a benchmark as they strive to advance the state-of-the-art in clustering techniques. |
|---|---|
| AbstractList | In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most of them locate high-quality or optimum clustering outcomes in the field of computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. This research provides a modern, thorough review of both classic and cutting-edge clustering methods. The taxonomy of clustering is presented in this review from an applied angle and the compression of some hierarchical and partitional clustering algorithms with various parameters. We also discuss the open challenges in clustering such as computational complexity, refinement of clusters, speed of convergence, data dimensionality, effectiveness and scalability, data object representation, evaluation measures, data streams, and knowledge extraction; scientists and professionals alike will be able to use it as a benchmark as they strive to advance the state-of-the-art in clustering techniques. |
| Audience | Academic |
| Author | Sharif, Zubair Anwar, Toni Pitafi, Shahneela |
| Author_xml | – sequence: 1 givenname: Shahneela orcidid: 0000-0003-3640-961X surname: Pitafi fullname: Pitafi, Shahneela – sequence: 2 givenname: Toni surname: Anwar fullname: Anwar, Toni – sequence: 3 givenname: Zubair surname: Sharif fullname: Sharif, Zubair |
| BookMark | eNptUcFq3DAQFSWFJtuc-gOGHpNNJcu2pOOyJG1gQ6FNz0Irj7xabGkryZD8fSbdBkKIdNAwvPfmjd4ZOQkxACFfGL3iXNFv5nBgnHa8rdUHclpT0S15w8TJq_oTOc95T_EoxiWjp-T3qro3DzHE6bGKrrozducDVBswKfgwVOtxzgXSc7kah5h82U35slrvzDhCGABrE_rqZi5zguoXmHHKn8lHZ8YM5__fBflzc32__rHc_Px-u15tlrahvCyFdNDRzjVcCEplt2UMzRsrAWrXbfsWtko2LfrsrBTS4hbKiZqyXrnGyZYvyO1Rt49mrw_JTyY96mi8_teIadAmFW9H0Chtay5A9kw20jBVO4UTOUcxaPHTFuTrUeuQ4t8ZctH7OKeA9nUtFGsVZZwj6uqIGgyK-uBiScbi7WHyFuNwHvsr0TIlkUGRwI4Em2LOCZy2vpjiY0CiHzWj-jk7_So75Fy84bys9h76CSgamKY |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_01_105 crossref_primary_10_1016_j_ress_2024_110593 crossref_primary_10_1080_09537325_2025_2464042 crossref_primary_10_1080_15567036_2024_2334923 crossref_primary_10_3390_math13182958 crossref_primary_10_3390_s24227219 crossref_primary_10_1371_journal_pone_0326095 crossref_primary_10_1016_j_asoc_2025_112791 crossref_primary_10_3390_app14146039 crossref_primary_10_3390_math13142272 crossref_primary_10_1002_srin_202300736 crossref_primary_10_1111_jsr_14349 crossref_primary_10_3233_JIFS_234148 crossref_primary_10_1016_j_enbuild_2024_115232 crossref_primary_10_3390_eng5030102 crossref_primary_10_1109_ACCESS_2023_3318600 crossref_primary_10_1016_j_asoc_2025_112789 crossref_primary_10_1177_10434631251327035 crossref_primary_10_3390_s24175693 crossref_primary_10_1016_j_ins_2024_121575 crossref_primary_10_3390_app14209162 crossref_primary_10_1016_j_compeleceng_2025_110697 crossref_primary_10_1371_journal_pone_0313890 crossref_primary_10_1016_j_scitotenv_2024_171901 |
| Cites_doi | 10.1109/MSP.2010.939739 10.1016/j.patcog.2005.01.025 10.1109/CICT.2013.6558109 10.1007/978-3-030-10674-4 10.1109/TETC.2014.2330519 10.4137/BBI.S38316 10.1016/j.procs.2020.06.032 10.1109/COMITCon.2019.8862451 10.1016/0031-3203(78)90018-3 10.1109/34.1000236 10.1137/1.9781611974348.42 10.1007/BF01246100 10.1016/j.neucom.2017.06.053 10.1093/comjnl/26.4.354 10.1016/j.patcog.2009.10.020 10.1016/j.csda.2007.03.013 10.1111/j.2517-6161.1985.tb01331.x 10.1145/331499.331504 10.1016/j.patrec.2010.04.001 10.1016/0167-8191(95)00017-I 10.1016/j.ins.2021.04.076 10.1109/TIT.1975.1055330 10.2307/2413593 10.1016/0031-3203(83)90022-5 10.1016/j.csda.2011.01.011 10.1002/widm.53 10.1007/BF01890115 10.1038/2021034a0 10.2307/2257249 10.1137/1.9781611972726.18 10.1023/A:1009740529316 10.1007/978-981-15-1209-4_1 10.1016/j.asoc.2015.12.001 10.1016/j.patrec.2009.09.011 10.1145/3458817.3476181 10.1007/3-540-73679-4 10.1016/j.knosys.2018.09.013 10.1016/j.eswa.2018.09.050 10.1007/s10462-020-09918-2 10.1016/j.patrec.2008.07.002 10.1109/ICRITO.2017.8342454 10.1109/TNN.2005.845141 10.1007/BF02616245 10.1016/j.jocs.2017.07.018 10.1109/ICCIT52419.2022.9711641 10.1109/ICDI57181.2022.10007397 10.1016/j.jprocont.2018.12.010 10.1007/978-3-642-34166-3_6 10.1016/0306-4573(86)90097-X 10.1007/s40745-015-0040-1 10.1093/comjnl/28.1.82 10.1007/s42452-020-2073-0 10.1093/comjnl/41.8.578 10.3390/bdcc2040032 10.1016/j.procs.2019.01.022 10.1145/1007730.1007731 10.1109/DAC.1999.781339 10.1109/CLUSTER51413.2022.00044 10.1093/comjnl/20.4.364 10.1007/s00521-020-05395-4 10.1109/ICNAS.2019.8807822 10.1093/comjnl/16.1.30 10.1145/502512.502574 10.1002/sam.11380 10.1016/j.patcog.2017.11.023 10.1016/j.jksuci.2023.01.001 10.1007/s10618-005-1396-1 10.1016/j.datak.2007.03.016 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app13063529 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Computer Science |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_116c237e8d1848a192f986b331d9e506 A751989010 10_3390_app13063529 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c403t-78fe606f43770086b11635ac8ee2f6bd5eb98453816c878c2079f7201d9f4f853 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957399100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:04:27 EDT 2025 Mon Jun 30 07:30:53 EDT 2025 Tue Nov 04 17:44:44 EST 2025 Tue Nov 18 21:57:43 EST 2025 Sat Nov 29 07:12:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-78fe606f43770086b11635ac8ee2f6bd5eb98453816c878c2079f7201d9f4f853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3640-961X |
| OpenAccessLink | https://www.proquest.com/docview/2791590133?pq-origsite=%requestingapplication% |
| PQID | 2791590133 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_116c237e8d1848a192f986b331d9e506 proquest_journals_2791590133 gale_infotracacademiconefile_A751989010 crossref_citationtrail_10_3390_app13063529 crossref_primary_10_3390_app13063529 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chavent (ref_44) 2007; 52 ref_93 ref_92 Olson (ref_28) 1995; 21 Sibson (ref_36) 1973; 16 ref_90 ref_14 Boley (ref_43) 1998; 2 ref_58 Dafir (ref_16) 2021; 54 Wharton (ref_63) 1983; 16 ref_12 ref_11 ref_55 Defays (ref_37) 1977; 20 ref_54 Wang (ref_50) 1996; 13 Gowda (ref_33) 1978; 10 Williams (ref_53) 1959; 47 Liao (ref_73) 2005; 38 ref_18 ref_17 Sanse (ref_65) 2015; 4 Murtagh (ref_30) 1985; 28 Xu (ref_35) 2005; 16 Comaniciu (ref_76) 2002; 24 Ezugwu (ref_8) 2021; 33 Xu (ref_25) 2015; 2 Murtagh (ref_39) 1983; 26 Fraley (ref_66) 1998; 41 (ref_68) 2016; 41 Zhou (ref_3) 2019; 163 Chang (ref_6) 2010; 43 ref_24 ref_23 ref_67 ref_21 ref_20 ref_64 ref_62 Ezugwu (ref_22) 2020; 2 Aliniya (ref_7) 2019; 117 Benabdellah (ref_10) 2019; 148 Williams (ref_48) 1964; 202 Sammaknejad (ref_85) 2019; 73 ref_72 Saxena (ref_15) 2017; 267 ref_70 Singh (ref_26) 2020; 173 Hansen (ref_51) 1991; 8 Jain (ref_1) 2010; 31 ref_79 ref_34 ref_78 Agrawal (ref_69) 2005; 11 ref_32 ref_31 ref_75 Voorhees (ref_38) 1986; 22 Fukunaga (ref_77) 1975; 21 Grira (ref_84) 2004; 1 Abualigah (ref_4) 2018; 25 Zadeh (ref_59) 1965; 8 ref_83 Zhong (ref_46) 2008; 29 ref_80 Myhre (ref_81) 2018; 76 Hartigan (ref_71) 1979; 28 Aitkin (ref_82) 1985; 47 ref_45 Mansalis (ref_74) 2018; 11 ref_89 ref_88 ref_87 ref_42 ref_86 Oyelade (ref_19) 2016; 10 ref_41 Day (ref_40) 1984; 1 Parsons (ref_61) 2004; 6 Murtagh (ref_27) 2012; 2 Feng (ref_47) 2010; 31 ref_2 Fahad (ref_13) 2014; 2 Kim (ref_56) 2011; 55 Jain (ref_29) 1999; 31 ref_49 Sneath (ref_52) 1995; 44 Vidal (ref_60) 2011; 28 ref_9 ref_5 Dinh (ref_91) 2021; 571 Ahmad (ref_57) 2007; 63 |
| References_xml | – volume: 28 start-page: 100 year: 1979 ident: ref_71 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C – ident: ref_9 – volume: 28 start-page: 52 year: 2011 ident: ref_60 article-title: Subspace clustering publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939739 – ident: ref_78 – ident: ref_49 – volume: 38 start-page: 1857 year: 2005 ident: ref_73 article-title: Clustering of time series data—A survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.025 – ident: ref_5 – ident: ref_32 – ident: ref_55 – ident: ref_80 – ident: ref_18 doi: 10.1109/CICT.2013.6558109 – ident: ref_2 doi: 10.1007/978-3-030-10674-4 – volume: 2 start-page: 267 year: 2014 ident: ref_13 article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2014.2330519 – volume: 10 start-page: 237 year: 2016 ident: ref_19 article-title: Clustering algorithms: Their application to gene expression data publication-title: Bioinform. Biol. Insights doi: 10.4137/BBI.S38316 – volume: 173 start-page: 272 year: 2020 ident: ref_26 article-title: Review of Clustering Techniques in Control System: Review of Clustering Techniques in Control System publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.06.032 – ident: ref_88 – ident: ref_70 doi: 10.1109/COMITCon.2019.8862451 – volume: 10 start-page: 105 year: 1978 ident: ref_33 article-title: Agglomerative clustering using the concept of mutual nearest neighbourhood publication-title: Pattern Recognit. doi: 10.1016/0031-3203(78)90018-3 – volume: 24 start-page: 603 year: 2002 ident: ref_76 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – ident: ref_90 doi: 10.1137/1.9781611974348.42 – volume: 13 start-page: 231 year: 1996 ident: ref_50 article-title: The weighted sum of split and diameter clustering publication-title: J. Classif. doi: 10.1007/BF01246100 – volume: 267 start-page: 664 year: 2017 ident: ref_15 article-title: A review of clustering techniques and developments publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.053 – volume: 26 start-page: 354 year: 1983 ident: ref_39 article-title: A survey of recent advances in hierarchical clustering algorithms publication-title: Comput. J. doi: 10.1093/comjnl/26.4.354 – volume: 43 start-page: 1346 year: 2010 ident: ref_6 article-title: A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.10.020 – volume: 52 start-page: 687 year: 2007 ident: ref_44 article-title: DIVCLUS-T: A monothetic divisive hierarchical clustering method publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.03.013 – volume: 47 start-page: 67 year: 1985 ident: ref_82 article-title: Estimation and hypothesis testing in finite mixture models publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1985.tb01331.x – ident: ref_83 – ident: ref_87 – volume: 31 start-page: 264 year: 1999 ident: ref_29 article-title: Data clustering: A review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – ident: ref_41 – volume: 31 start-page: 1216 year: 2010 ident: ref_47 article-title: A fast divisive clustering algorithm using an improved discrete particle swarm optimizer publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.04.001 – volume: 21 start-page: 1313 year: 1995 ident: ref_28 article-title: Parallel algorithms for hierarchical clustering publication-title: Parallel Comput. doi: 10.1016/0167-8191(95)00017-I – ident: ref_62 – volume: 571 start-page: 418 year: 2021 ident: ref_91 article-title: Clustering mixed numerical and categorical data with missing values publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.076 – volume: 21 start-page: 32 year: 1975 ident: ref_77 article-title: The estimation of the gradient of a density function, with applications in pattern recognition publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1975.1055330 – volume: 44 start-page: 281 year: 1995 ident: ref_52 article-title: Thirty years of numerical taxonomy publication-title: Syst. Biol. doi: 10.2307/2413593 – volume: 16 start-page: 193 year: 1983 ident: ref_63 article-title: A generalized histogram clustering scheme for multidimensional image data publication-title: J Pattern Recognition doi: 10.1016/0031-3203(83)90022-5 – volume: 55 start-page: 2250 year: 2011 ident: ref_56 article-title: A polythetic clustering process and cluster validity indexes for histogram-valued objects publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.01.011 – ident: ref_72 – volume: 2 start-page: 86 year: 2012 ident: ref_27 article-title: Algorithms for hierarchical clustering: An overview publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.53 – ident: ref_20 – volume: 1 start-page: 7 year: 1984 ident: ref_40 article-title: Efficient algorithms for agglomerative hierarchical clustering methods publication-title: J. Classif. doi: 10.1007/BF01890115 – volume: 202 start-page: 1034 year: 1964 ident: ref_48 article-title: Dissimilarity analysis: A new technique of hierarchical sub-division publication-title: Nature doi: 10.1038/2021034a0 – volume: 47 start-page: 83 year: 1959 ident: ref_53 article-title: Multivariate methods in plant ecology: I. Association-analysis in plant communities publication-title: J. Ecol. doi: 10.2307/2257249 – ident: ref_42 doi: 10.1137/1.9781611972726.18 – volume: 2 start-page: 325 year: 1998 ident: ref_43 article-title: Principal direction divisive partitioning publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009740529316 – ident: ref_58 doi: 10.1007/978-981-15-1209-4_1 – volume: 1 start-page: 9 year: 2004 ident: ref_84 article-title: Unsupervised and semi-supervised clustering: A brief survey publication-title: A Rev. Mach. Learn. Tech. Process. Multimed. Content – volume: 41 start-page: 192 year: 2016 ident: ref_68 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.001 – volume: 31 start-page: 651 year: 2010 ident: ref_1 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – ident: ref_11 doi: 10.1145/3458817.3476181 – ident: ref_34 – ident: ref_75 doi: 10.1007/3-540-73679-4 – volume: 163 start-page: 546 year: 2019 ident: ref_3 article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.09.013 – volume: 117 start-page: 243 year: 2019 ident: ref_7 article-title: A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.050 – ident: ref_86 – volume: 54 start-page: 2411 year: 2021 ident: ref_16 article-title: A survey on parallel clustering algorithms for big data publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09918-2 – volume: 29 start-page: 2067 year: 2008 ident: ref_46 article-title: DIVFRP: An automatic divisive hierarchical clustering method based on the furthest reference points publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.07.002 – ident: ref_23 doi: 10.1109/ICRITO.2017.8342454 – volume: 16 start-page: 645 year: 2005 ident: ref_35 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 8 start-page: 5 year: 1991 ident: ref_51 article-title: Efficient algorithms for divisive hierarchical clustering with the diameter criterion publication-title: J. Classif. doi: 10.1007/BF02616245 – volume: 25 start-page: 456 year: 2018 ident: ref_4 article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.018 – ident: ref_31 doi: 10.1109/ICCIT52419.2022.9711641 – ident: ref_67 – ident: ref_92 – ident: ref_21 doi: 10.1109/ICDI57181.2022.10007397 – volume: 73 start-page: 123 year: 2019 ident: ref_85 article-title: A review of the expectation maximization algorithm in data-driven process identification publication-title: J. Process Control. doi: 10.1016/j.jprocont.2018.12.010 – ident: ref_79 doi: 10.1007/978-3-642-34166-3_6 – volume: 22 start-page: 465 year: 1986 ident: ref_38 article-title: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval publication-title: Inf. Process. Manag. doi: 10.1016/0306-4573(86)90097-X – volume: 2 start-page: 165 year: 2015 ident: ref_25 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 28 start-page: 82 year: 1985 ident: ref_30 article-title: A survey of algorithms for contiguity-constrained clustering and related problems publication-title: Comput. J. doi: 10.1093/comjnl/28.1.82 – volume: 2 start-page: 273 year: 2020 ident: ref_22 article-title: Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2073-0 – volume: 41 start-page: 578 year: 1998 ident: ref_66 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: Comput. J. doi: 10.1093/comjnl/41.8.578 – ident: ref_93 doi: 10.3390/bdcc2040032 – volume: 148 start-page: 291 year: 2019 ident: ref_10 article-title: A survey of clustering algorithms for an industrial context publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.01.022 – volume: 6 start-page: 90 year: 2004 ident: ref_61 article-title: Subspace clustering for high dimensional data: A review publication-title: Acm Sigkdd Explor. Newsl. doi: 10.1145/1007730.1007731 – ident: ref_45 doi: 10.1109/DAC.1999.781339 – ident: ref_54 – ident: ref_12 doi: 10.1109/CLUSTER51413.2022.00044 – volume: 20 start-page: 364 year: 1977 ident: ref_37 article-title: An efficient algorithm for a complete link method publication-title: Comput. J. doi: 10.1093/comjnl/20.4.364 – volume: 33 start-page: 6247 year: 2021 ident: ref_8 article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05395-4 – ident: ref_24 doi: 10.1109/ICNAS.2019.8807822 – volume: 4 start-page: 642 year: 2015 ident: ref_65 article-title: Clustering methods for Big data analysis publication-title: Int. J. Adv. Res. Comput. Eng. Technol. – volume: 16 start-page: 30 year: 1973 ident: ref_36 article-title: SLINK: An optimally efficient algorithm for the single-link cluster method publication-title: Comput. J. doi: 10.1093/comjnl/16.1.30 – ident: ref_14 doi: 10.1145/502512.502574 – volume: 11 start-page: 167 year: 2018 ident: ref_74 article-title: An evaluation of data stream clustering algorithms publication-title: Stat. Anal. Data Min. ASA Data Sci. J. doi: 10.1002/sam.11380 – volume: 76 start-page: 491 year: 2018 ident: ref_81 article-title: Robust clustering using a kNN mode seeking ensemble publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.11.023 – ident: ref_89 – ident: ref_64 – ident: ref_17 doi: 10.1016/j.jksuci.2023.01.001 – volume: 11 start-page: 5 year: 2005 ident: ref_69 article-title: Automatic subspace clustering of high dimensional data publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-005-1396-1 – volume: 63 start-page: 503 year: 2007 ident: ref_57 article-title: A k-mean clustering algorithm for mixed numeric and categorical data publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2007.03.016 – volume: 8 start-page: 338 year: 1965 ident: ref_59 article-title: Fuzzy sets publication-title: Inf. Sci. |
| SSID | ssj0000913810 |
| Score | 2.4543407 |
| SecondaryResourceType | review_article |
| Snippet | In the field of data mining, clustering has shown to be an important technique. Numerous clustering methods have been devised and put into practice, and most... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3529 |
| SubjectTerms | Algorithms Artificial intelligence Big Data challenges in clustering algorithms Cluster analysis Clustering clustering algorithms Computer science Data mining Datasets Machine learning Methods Middleware Taxonomy taxonomy of clustering algorithms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbhMxEB2hqAc4IFqoCKTIh0pAxYp47V3bxxA14gAVghb1Zq29dqmUJiibID6fGa9TcqDqhZu18sE7Hnvek2feAByrRte1DLJwgcdCok8VjleuqLWvuOKIYFOvw--f1NmZvrw0X3ZafVFOWC8P3BvuPee1L4UKukUuohsEJNHo2gnBWxOqXmwbUc8OmUp3sOEkXdUX5Ank9fQejNc1htcEJv-GoKTUf9d9nILM7Ak8zuiQTfpV7cODsDiARzuagQewn09jx95kyei3T-HbhJ03v1N9AltG9jllSAaWxVOv2HS-IUEEGk7mV8vV9frHTfeOTbedVHDcLFo2SwIj7CuCx5vuGVzMTs-nH4vcLqHwcizWhdIxIB2JUihFTMWh6UTVeB1CGWvXVsEZLSt6KfRaaV-OlYkKAUBroowYtg9hsFguwnNgpdbRKecV915WThrexlbU3kWta-X4EE62FrQ-a4lTS4u5RU5B5rY75h7C8e3kn72Exr-nfaCtuJ1CutfpA3qDzd5g7_OGIbymjbR0OnFBvslFBvhbpHNlJ6qiJDEkoUMYbffa5mPb2VIZTsW4Qrz4H6t5CQ-pO32fsjaCwXq1CUew53-tr7vVq-SxfwDSG-tQ priority: 102 providerName: Directory of Open Access Journals |
| Title | A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms |
| URI | https://www.proquest.com/docview/2791590133 https://doaj.org/article/116c237e8d1848a192f986b331d9e506 |
| Volume | 13 |
| WOSCitedRecordID | wos000957399100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-Cbgd2GGyA1m1MPkxiIKLVsRM7J9RVq0BiVTUGGqcoduwyqWu3pkP8-XvPdbsdgAs3J7EUW-_7-fn3AA5VpfNcOpkYx30ikacSwzOT5NpmXHH0YEOvw-9f1GCgLy-LYUy4NbGscqkTg6Kup5Zy5MepKjjdkxTi481tQl2j6HQ1ttB4CmuEVCZbsHZyOhier7IshHqpeWdxMU9gfE_nwqi20cwGp_LBFAXE_r_p5WBs-s__d5kvYDO6may74IsteOIm27DxCHxwG7aiWDfsKGJPv3sJX7vsovodLjqwqWdnodTSsYjCOmK98R0hK9CwOx7hj-c_r5sPrLdsyYLjalKzfkAqYefohV43r-Bb__Si9ymJfRcSKztinijtHcY1XgqlKOQxHJ22rLLaudTnps6cKbTM6MjRaqVt2lGFV-hJ1IWXHu3_a2hNphO3AyzV2htlrOLWyszIgte-Frk1XutcGd6G90sSlDaCklNvjHGJwQnRq3xErzYcribfLLA4_jzthGi5mkIA2uHFdDYqozxi4JPbVCinawxxdYV-ri9wp0LgJlzWydvwljihJDHHBdkq3lbAbRFgVtlVGVWbYTTbhv0lJ5RR_pvygQ12__15D55RA_tFVds-tOazO_cG1u2v-VUzO4jsfBAyBfg0_Hw2_HEPM-r-qw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRJwAFpALBTwoYiHiIhjJ3YOCG2Xrlp1u6rKUvUWYsdekLa7ZbPl8af4jczkse0BuPXALUosJZN8mfnG9nwDsKVynSTSycA47gOJmAoMj02QaBtzxZHBVr0OjwdqONQnJ-nhCvxqa2FoW2XrEytHXcwszZG_iVTKqU5SiHdnXwPqGkWrq20LjRoW--7nd0zZyrd77_H7Poui_s6otxs0XQUCK0OxCJT2Dlm7l0IpIvSGIyWJc6udi3xiitiZVMuYFtSsVtpGoUq9wjhZpF56TV0i0OWvSSEV_ldr2zvDw6PlrA6pbGoe1oWAQqQhrUNjmMA7VCT2IvRVHQL-Fgeq4Na__b-9ljtwq6HRrFvjfh1W3HQDbl4SV9yA9cZtlexFo6398i586LJR_qMq5GAzzw6qraSONSqzY9abnJNyBB12J2M0dPH5tHzNem3LGTzOpwXrV0os7AhZ9ml5Dz5eian3YXU6m7oHwCKtvVHGKm6tjI1MeeELkVjjtU6U4R141X7yzDai69T7Y5Jh8kX4yC7howNby8FntdbIn4dtE3aWQ0ggvDoxm4-zxt9gYpfYSCinC0zhdY483qdoqRBohIvDpAPPCXkZuTF8IJs31RhoFgmCZV0V0246zNY7sNkiL2v8W5ldwO7hvy8_heu7o4NBNtgb7j-CGxFSxHoH3yasLubn7jFcs98WX8r5k-ZXYvDpqmH6GyLfVkY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VLUL0ALSACBTYQxEfwqrXa3vXB4RCSkTUNoqgoHIy3vVuipQmJU75-Gv8OmbsddoDcOuBm5WslIz9duaNd-YNwLYsVJrGNg605S6IEVOB5okOUmUSLjky2HrW4cd9ORyqo6NstAK_2l4YKqtsfWLtqMuZoXfkO5HMOPVJCrHjfFnEaLf_6vRrQBOk6KS1HafRQGTP_vyO6Vv1crCLz_pxFPXfHPbeBn7CQGDiUCwCqZxFBu9iISWRe82RniSFUdZGLtVlYnWm4oQO14ySykShzJzEmFlmLnaKJkag-19DSh7jHlsbDQ5Gn5ZveEhxU_GwaQoUIgvpTBpDBv5CTWjPw2A9LeBvMaEOdP0b__MtugnXPb1m3WY_bMCKnW7C-gXRxU3Y8O6sYk-95vazW_C-yw6LH3WDB5s5dlCXmFrm1WfHrDc5I0UJuuxOxmjo4vikesF67SgavC6mJevXCi3sHbLvk-o2fLgUU-_A6nQ2tXeBRUo5LbWR3Jg40XHGS1eK1GinVCo178Dz9vHnxoux00yQSY5JGWElv4CVDmwvF582GiR_XvaacLRcQsLh9Qez-Tj3fggTvtREQlpVYmqvCuT3LkNLhUAjbBKmHXhCKMzJveEfMoXv0kCzSCgs78qEquwwi-_AVovC3Pu9Kj-H4L1_f_0IriI28_3BcO8-XIuQOTaFfVuwupif2QdwxXxbfKnmD_2uYvD5slH6G3SlXzg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Taxonomy+of+Machine+Learning+Clustering+Algorithms%2C+Challenges%2C+and+Future+Realms&rft.jtitle=Applied+sciences&rft.au=Pitafi%2C+Shahneela&rft.au=Anwar%2C+Toni&rft.au=Sharif%2C+Zubair&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=6&rft.spage=3529&rft_id=info:doi/10.3390%2Fapp13063529&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |