Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions

The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomog...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Magnetic resonance imaging Ročník 100; s. 64 - 72
Hlavní autori: Nai, Ying-Hwey, Cheong, Dennis Lai Hong, Roy, Sharmili, Kok, Trina, Stephenson, Mary C., Schaefferkoetter, Josh, Totman, John J., Conti, Maurizio, Eriksson, Lars, Robins, Edward G., Wang, Ziting, Chua, Wynne Yuru, Ang, Bertrand Wei Leng, Singha, Arvind Kumar, Thamboo, Thomas Paulraj, Chiong, Edmund, Reilhac, Anthonin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier Inc 01.07.2023
Predmet:
ISSN:0730-725X, 1873-5894, 1873-5894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.