Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions

The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomog...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance imaging Vol. 100; pp. 64 - 72
Main Authors: Nai, Ying-Hwey, Cheong, Dennis Lai Hong, Roy, Sharmili, Kok, Trina, Stephenson, Mary C., Schaefferkoetter, Josh, Totman, John J., Conti, Maurizio, Eriksson, Lars, Robins, Edward G., Wang, Ziting, Chua, Wynne Yuru, Ang, Bertrand Wei Leng, Singha, Arvind Kumar, Thamboo, Thomas Paulraj, Chiong, Edmund, Reilhac, Anthonin
Format: Journal Article
Language:English
Published: Netherlands Elsevier Inc 01.07.2023
Subjects:
ISSN:0730-725X, 1873-5894, 1873-5894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first