Loewner chains and parametric representation in several complex variables

Let B be the unit ball of C n with respect to an arbitrary norm. We study certain properties of Loewner chains and their transition mappings on the unit ball  B. We show that any Loewner chain f( z, t) and the transition mapping v( z, s, t) associated to f( z, t) satisfy locally Lipschitz conditions...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 281; číslo 2; s. 425 - 438
Hlavní autoři: Graham, Ian, Kohr, Gabriela, Kohr, Mirela
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 15.05.2003
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let B be the unit ball of C n with respect to an arbitrary norm. We study certain properties of Loewner chains and their transition mappings on the unit ball  B. We show that any Loewner chain f( z, t) and the transition mapping v( z, s, t) associated to f( z, t) satisfy locally Lipschitz conditions in t locally uniformly with respect to z∈ B. Moreover, we prove that a mapping f∈ H( B) has parametric representation if and only if there exists a Loewner chain f( z, t) such that the family { e − t f( z, t)} t⩾0 is a normal family on B and f( z)= f( z,0) for z∈ B. Also we show that univalent solutions f( z, t) of the generalized Loewner differential equation in higher dimensions are unique when { e − t f( z, t)} t⩾0 is a normal family on  B. Finally we show that the set S 0( B) of mappings which have parametric representation on B is compact.
ISSN:0022-247X
1096-0813
DOI:10.1016/S0022-247X(03)00127-6