Loewner chains and parametric representation in several complex variables
Let B be the unit ball of C n with respect to an arbitrary norm. We study certain properties of Loewner chains and their transition mappings on the unit ball B. We show that any Loewner chain f( z, t) and the transition mapping v( z, s, t) associated to f( z, t) satisfy locally Lipschitz conditions...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 281; číslo 2; s. 425 - 438 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
15.05.2003
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
B be the unit ball of
C
n
with respect to an arbitrary norm. We study certain properties of Loewner chains and their transition mappings on the unit ball
B. We show that any Loewner chain
f(
z,
t) and the transition mapping
v(
z,
s,
t) associated to
f(
z,
t) satisfy locally Lipschitz conditions in
t locally uniformly with respect to
z∈
B. Moreover, we prove that a mapping
f∈
H(
B) has parametric representation if and only if there exists a Loewner chain
f(
z,
t) such that the family {
e
−
t
f(
z,
t)}
t⩾0
is a normal family on
B and
f(
z)=
f(
z,0) for
z∈
B. Also we show that univalent solutions
f(
z,
t) of the generalized Loewner differential equation in higher dimensions are unique when {
e
−
t
f(
z,
t)}
t⩾0
is a normal family on
B. Finally we show that the set
S
0(
B) of mappings which have parametric representation on
B is compact. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/S0022-247X(03)00127-6 |