Nonlinear Dynamic Process Monitoring Based on Discriminative Denoising Autoencoder and Canonical Variate Analysis

Modern industrial processes are characterized by increasing complexity, often exhibiting pronounced dynamic behaviors and significant nonlinearity. Addressing these dynamic and nonlinear characteristics is essential for effective process monitoring. However, many existing methods for process monitor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Actuators Ročník 13; číslo 11; s. 440
Hlavní autori: Liang, Jun, Liu, Daoguang, Zhan, Yinxiao, Fan, Jiayu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2024
Predmet:
ISSN:2076-0825, 2076-0825
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modern industrial processes are characterized by increasing complexity, often exhibiting pronounced dynamic behaviors and significant nonlinearity. Addressing these dynamic and nonlinear characteristics is essential for effective process monitoring. However, many existing methods for process monitoring and fault diagnosis are insufficient in handling these challenges. In this article, we present a novel process monitoring approach, CVA-DisDAE, which integrates an improved Denoising Autoencoder (DAE) with Canonical Variate Analysis (CVA) to address the challenges posed by dynamic behaviors and nonlinear relationships in industrial processes. First, CVA is employed to reduce data dimensionality and minimize information redundancy by maximizing correlations between past and future observations, thereby effectively capturing process dynamics. Following this, we introduce a discriminative DAE model (DisDAE) designed to serve as a semi-supervised denoising autoencoder for precise feature extraction. This is achieved by incorporating both between-class separability and within-class variability into the traditional DAE framework. The key distinction between the proposed DisDAE and the conventional DAE lies in the integration of a linear discriminant analysis (LDA) penalty into the DAE’s loss function, resulting in extracted features that are more conducive to fault classification. Finally, we validate the effectiveness of the proposed semi-supervised dynamic process monitoring approach through its application to the Tennessee Eastman benchmark process, demonstrating its superior performance.
AbstractList Modern industrial processes are characterized by increasing complexity, often exhibiting pronounced dynamic behaviors and significant nonlinearity. Addressing these dynamic and nonlinear characteristics is essential for effective process monitoring. However, many existing methods for process monitoring and fault diagnosis are insufficient in handling these challenges. In this article, we present a novel process monitoring approach, CVA-DisDAE, which integrates an improved Denoising Autoencoder (DAE) with Canonical Variate Analysis (CVA) to address the challenges posed by dynamic behaviors and nonlinear relationships in industrial processes. First, CVA is employed to reduce data dimensionality and minimize information redundancy by maximizing correlations between past and future observations, thereby effectively capturing process dynamics. Following this, we introduce a discriminative DAE model (DisDAE) designed to serve as a semi-supervised denoising autoencoder for precise feature extraction. This is achieved by incorporating both between-class separability and within-class variability into the traditional DAE framework. The key distinction between the proposed DisDAE and the conventional DAE lies in the integration of a linear discriminant analysis (LDA) penalty into the DAE’s loss function, resulting in extracted features that are more conducive to fault classification. Finally, we validate the effectiveness of the proposed semi-supervised dynamic process monitoring approach through its application to the Tennessee Eastman benchmark process, demonstrating its superior performance.
Audience Academic
Author Liu, Daoguang
Fan, Jiayu
Zhan, Yinxiao
Liang, Jun
Author_xml – sequence: 1
  givenname: Jun
  surname: Liang
  fullname: Liang, Jun
– sequence: 2
  givenname: Daoguang
  surname: Liu
  fullname: Liu, Daoguang
– sequence: 3
  givenname: Yinxiao
  orcidid: 0000-0002-4001-5384
  surname: Zhan
  fullname: Zhan, Yinxiao
– sequence: 4
  givenname: Jiayu
  surname: Fan
  fullname: Fan, Jiayu
BookMark eNptUcFuGyEQRVUqNU1z6g8g9Vg5gYXdhaNrN02ktMmh7RXNwmBhbSABXMl_H1xXVVSVOYBG7715zHtLTmKKSMh7zi6E0OwSbOWCcyYle0VOOzYOC6a6_uTF-w05L2XL2tFcKCZOydO3FOcQETJd7yM8BEvvc7JYCv2aYqgph7ihn6CgoynSdSg2h4cQoYZfSNcYUygHxHJXE0abHGYK0dEVNHfBwkx_Qg5QkS4jzPsSyjvy2sNc8PzPfUZ-XH3-vrpe3N59uVktbxdWMlEXfT-NUlrWo_Pa83EEDU57NXg5CSedllJLB-M09V6xwemBS40O5TT4SXkUZ-TmqOsSbM1jcw15bxIE87uR8sZArsHOaHiHXDlpLRdCIptAjF0nrULNNZu4bVofjlqPOT3tsFSzTbvcPlSM4KJTfNB6bKiLI2oDTTREn2oG28ph22sLy4fWXyo-6k4pcSB8PBJsTqVk9H9tcmYOmZoXmTY0_wdtQ205pNjGhPm_nGezXabT
CitedBy_id crossref_primary_10_1080_00207543_2025_2513577
Cites_doi 10.1016/j.ces.2024.120196
10.1016/0169-7439(95)00076-3
10.1109/TAI.2021.3134186
10.1016/j.jprocont.2014.12.001
10.1016/j.automatica.2021.110148
10.1016/j.conengprac.2020.104500
10.1145/1390156.1390294
10.1109/TIFS.2015.2446438
10.1016/0098-1354(93)80018-I
10.1126/science.1127647
10.1021/acsomega.0c06039
10.1016/j.chemolab.2019.103814
10.3233/ICA-230728
10.1155/2016/6795352
10.1145/1273496.1273613
10.1021/acs.iecr.7b01721
10.1021/ie302069q
10.1002/cjce.23002
10.1016/j.knosys.2024.112093
10.1109/CISP.2015.7407967
10.1016/j.conengprac.2022.105156
10.1016/j.heliyon.2024.e27732
10.1016/j.asoc.2020.106525
10.1016/j.jprocont.2021.09.009
10.1016/0098-1354(94)00057-U
10.1109/34.908974
10.1109/ICEEPS62542.2024.10693186
10.1016/j.jprocont.2018.02.004
10.1016/j.chemolab.2020.104063
10.1016/j.ins.2019.03.068
10.1109/TIM.2020.3004681
10.1016/j.jfranklin.2021.07.041
10.1016/j.measurement.2023.113411
10.1016/j.jprocont.2017.03.004
10.1016/j.ifacol.2015.09.034
10.1016/j.psep.2019.05.018
10.1109/TCST.2019.2897946
10.1016/j.ces.2023.118581
10.1109/TNNLS.2021.3072491
10.1016/S0169-7439(00)00058-7
10.1109/TIE.2020.2972472
10.1002/aic.12392
10.1021/acsomega.2c01892
10.1007/s13369-021-05388-y
10.1016/j.neucom.2017.01.079
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/act13110440
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_12e18d4cc1334e0ba37224c8e9190b1c
A817928837
10_3390_act13110440
GeographicLocations Tennessee
United States--US
GeographicLocations_xml – name: Tennessee
– name: United States--US
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c403t-55b744c05edf9f177a9ad9f86f4b3d4d94494da7bb5f806d96149ede4b6fb8fe3
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363486500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-0825
IngestDate Fri Oct 03 12:52:29 EDT 2025
Fri Jul 25 11:54:17 EDT 2025
Tue Nov 04 18:27:22 EST 2025
Sat Nov 29 07:11:02 EST 2025
Tue Nov 18 20:54:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-55b744c05edf9f177a9ad9f86f4b3d4d94494da7bb5f806d96149ede4b6fb8fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4001-5384
OpenAccessLink https://www.proquest.com/docview/3132816997?pq-origsite=%requestingapplication%
PQID 3132816997
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_12e18d4cc1334e0ba37224c8e9190b1c
proquest_journals_3132816997
gale_infotracacademiconefile_A817928837
crossref_primary_10_3390_act13110440
crossref_citationtrail_10_3390_act13110440
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hu (ref_23) 2022; 123
Yin (ref_13) 2015; 4
He (ref_9) 2018; 2
Tang (ref_40) 2021; 106
Yu (ref_24) 2020; 28
Zhang (ref_43) 2021; 46
Yu (ref_26) 2020; 95
Samuel (ref_39) 2015; 48
Sheriffa (ref_8) 2017; 54
Alonso (ref_19) 2024; 31
Yu (ref_31) 2011; 57
Ji (ref_14) 2024; 295
Lou (ref_7) 2017; 46
Ge (ref_3) 2013; 52
Luo (ref_18) 2019; 192
Wang (ref_38) 2022; 7
Chen (ref_48) 2021; 33
Si (ref_1) 2021; 68
Fazai (ref_11) 2019; 128
Gao (ref_28) 2015; 10
Wu (ref_33) 2024; 5
Ma (ref_2) 2020; 69
Zhang (ref_20) 2023; 4
Shang (ref_16) 2023; 220
Downs (ref_45) 1993; 17
Zhu (ref_46) 2017; 51
Zhang (ref_22) 2018; 64
Peng (ref_10) 2020; 101
Martinez (ref_30) 2001; 23
Zhang (ref_25) 2020; 203
Wang (ref_17) 2021; 6
Benson (ref_36) 2024; 299
Hinton (ref_47) 2006; 313
ref_37
Li (ref_6) 2021; 15
Evan (ref_34) 2000; 51
Snoek (ref_21) 2013; 13
Lu (ref_32) 2023; 61
Zhang (ref_15) 2023; 271
Fu (ref_27) 2017; 241
Harkat (ref_12) 2019; 490
Lyman (ref_44) 1995; 19
Jiang (ref_35) 2015; 26
ref_42
ref_41
Ku (ref_5) 1995; 30
Huang (ref_29) 2016; 2016
ref_49
Lou (ref_4) 2022; 138
References_xml – volume: 295
  start-page: 120196
  year: 2024
  ident: ref_14
  article-title: Fault detection and isolation for dynamic non-stationary processes with stationary subspace-based canonical variate analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2024.120196
– volume: 30
  start-page: 179
  year: 1995
  ident: ref_5
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00076-3
– volume: 4
  start-page: 592
  year: 2023
  ident: ref_20
  article-title: Feature-Aligned Stacked Autoencoder: A Novel Semisupervised Deep Learning Model for Pattern Classification of Industrial Faults
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2021.3134186
– volume: 26
  start-page: 17
  year: 2015
  ident: ref_35
  article-title: Canonical variate analysis-based contributions for fault identification
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2014.12.001
– volume: 138
  start-page: 110148
  year: 2022
  ident: ref_4
  article-title: A novel multivariate statistical process monitoring algorithm: Orthonormal subspace analysis
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.110148
– volume: 61
  start-page: 1
  year: 2023
  ident: ref_32
  article-title: Unsupervised Linear Discriminant Analysis for Feature Extraction and Classification of Hyperspectral Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 101
  start-page: 104500
  year: 2020
  ident: ref_10
  article-title: Distributed process monitoring based on canonical correlation analysis with partly-connected topology
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104500
– ident: ref_41
  doi: 10.1145/1390156.1390294
– volume: 10
  start-page: 2108
  year: 2015
  ident: ref_28
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2446438
– volume: 17
  start-page: 245
  year: 1993
  ident: ref_45
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_47
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 6
  start-page: 9989
  year: 2021
  ident: ref_17
  article-title: Efficient Iterative Dynamic Kernel Principal Component Analysis Monitoring Method for the Batch Process with Super-large-scale Data Sets
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c06039
– volume: 192
  start-page: 103814
  year: 2019
  ident: ref_18
  article-title: Discriminant autoencoder for feature extraction in fault diagnosis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103814
– volume: 51
  start-page: 697
  year: 2017
  ident: ref_46
  article-title: Fault classification based on modified active learning and weighted SVM
  publication-title: J. Zhejiang Univ. (Eng. Sci.)
– volume: 31
  start-page: 157
  year: 2024
  ident: ref_19
  article-title: Gap imputation in related multivariate time series through recurrent neural network-based denoising autoencode
  publication-title: Integr. Comput.-Aid Eng.
  doi: 10.3233/ICA-230728
– volume: 2016
  start-page: 6795352
  year: 2016
  ident: ref_29
  article-title: Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face Recognition
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2016/6795352
– ident: ref_37
  doi: 10.1145/1273496.1273613
– volume: 46
  start-page: 13800
  year: 2017
  ident: ref_7
  article-title: Multimode continuous processes monitoring based on hidden semi-markov model and principal component analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01721
– volume: 52
  start-page: 3534
  year: 2013
  ident: ref_3
  article-title: Review of Recent Research on Data-Based Process Monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302069q
– volume: 2
  start-page: 444
  year: 2018
  ident: ref_9
  article-title: Modified partial least square for diagnosing key-performance-indicator-related faults
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23002
– volume: 4
  start-page: 1480
  year: 2015
  ident: ref_13
  article-title: Data-driven process monitoring based on modified orthogonal projections to latent structures
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 299
  start-page: 112093
  year: 2024
  ident: ref_36
  article-title: Linear discriminant analysis with trimmed and difference distribution modeling
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112093
– ident: ref_42
  doi: 10.1109/CISP.2015.7407967
– volume: 123
  start-page: 105156
  year: 2022
  ident: ref_23
  article-title: Low-rank reconstruction-based autoencoder for robust fault detection
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105156
– volume: 5
  start-page: 27732
  year: 2024
  ident: ref_33
  article-title: Near-infrared spectroscopy combined with fuzzy fast pseudoinverse linear discriminant analysis to discriminate mee tea grades
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e27732
– volume: 95
  start-page: 106525
  year: 2020
  ident: ref_26
  article-title: Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106525
– volume: 106
  start-page: 221
  year: 2021
  ident: ref_40
  article-title: Dynamic process monitoring based on canonical global and local preserving projection analysis
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2021.09.009
– volume: 19
  start-page: 321
  year: 1995
  ident: ref_44
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)00057-U
– volume: 23
  start-page: 228
  year: 2001
  ident: ref_30
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.908974
– ident: ref_49
  doi: 10.1109/ICEEPS62542.2024.10693186
– volume: 64
  start-page: 49
  year: 2018
  ident: ref_22
  article-title: Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.02.004
– volume: 203
  start-page: 104063
  year: 2020
  ident: ref_25
  article-title: Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104063
– volume: 490
  start-page: 265
  year: 2019
  ident: ref_12
  article-title: Fault detection of uncertain chemical processes using interval partial least squares-based generalized likelihood ratio test
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.03.068
– volume: 13
  start-page: 2567
  year: 2013
  ident: ref_21
  article-title: Nonparametric Guidance of Autoencoder Representations using Label Information
  publication-title: J. Mach. Learn Res.
– volume: 69
  start-page: 9535
  year: 2020
  ident: ref_2
  article-title: Multi- step dynamic slow feature analysis for industrial process monitoring
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3004681
– volume: 15
  start-page: 7900
  year: 2021
  ident: ref_6
  article-title: Multivariate statistical process monitoring based on principal discriminative component analysis
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2021.07.041
– volume: 220
  start-page: 113411
  year: 2023
  ident: ref_16
  article-title: Recursive ensemble canonical variate analysis for online incipient fault detection in dynamic processes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113411
– volume: 54
  start-page: 47
  year: 2017
  ident: ref_8
  article-title: Fault detection using multiscale pca-based moving window GLRT
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.03.004
– volume: 48
  start-page: 605
  year: 2015
  ident: ref_39
  article-title: Kernel Canonical Variate Analysis for Nonlinear Dynamic Process Monitoring
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.034
– volume: 128
  start-page: 228
  year: 2019
  ident: ref_11
  article-title: Online reduced kernel pls combined with glrt for fault detection in chemical systems
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.05.018
– volume: 28
  start-page: 1083
  year: 2020
  ident: ref_24
  article-title: Robust Monitoring and Fault Isolation of Nonlinear Industrial Processes Using Denoising Autoencoder and Elastic Net
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2019.2897946
– volume: 271
  start-page: 118581
  year: 2023
  ident: ref_15
  article-title: Common canonical variate analysis (CCVA) based modeling and monitoring for multimode processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118581
– volume: 33
  start-page: 6158
  year: 2021
  ident: ref_48
  article-title: A comparative study of deep neural network-aided canonical correlation analysis-based process monitoring and fault detection methods
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3072491
– volume: 51
  start-page: 81
  year: 2000
  ident: ref_34
  article-title: Braatz, Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(00)00058-7
– volume: 68
  start-page: 2626
  year: 2021
  ident: ref_1
  article-title: Key-performance-indicator- related process monitoring based on improved kernel partial least squares
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2972472
– volume: 57
  start-page: 1817
  year: 2011
  ident: ref_31
  article-title: Localized Fisher discriminant analysis based complex chemical process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.12392
– volume: 7
  start-page: 18904
  year: 2022
  ident: ref_38
  article-title: Nonlinear Dynamic Process Monitoring Based on Ensemble Kernel Canonical Variate Analysis and Bayesian Inference
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01892
– volume: 46
  start-page: 10125
  year: 2021
  ident: ref_43
  article-title: Incipient Fault Diagnosis of Batch Process Based on Deep Time Series Feature Extraction
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05388-y
– volume: 241
  start-page: 18
  year: 2017
  ident: ref_27
  article-title: Combine HowNet lexicon to train phrase recursive autoencoder for sentence-level sentiment analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.079
SSID ssj0000913803
Score 2.2796266
Snippet Modern industrial processes are characterized by increasing complexity, often exhibiting pronounced dynamic behaviors and significant nonlinearity. Addressing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 440
SubjectTerms canonical variate analysis (CVA)
Classification
Correlation analysis
Data processing
denoising autoencoder (DAE)
Discriminant analysis
dynamics
Effectiveness
Fault diagnosis
Feature extraction
Methods
Monitoring
Noise reduction
Nonlinear dynamics
nonlinear process
Nonlinearity
process monitoring
Redundancy
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSxxBEICbIB7iQTRRXB-hD0JAGJzZrt7uPq5uJIew5JAEb00_YUFmdR3z-1M1PSsrKLl4HQqmp7q6HkPXV4yde8iYqMZcjQWWKCBUXTkpZSVgnCWQz_Q9Z_aHms_17a35uTHqi-6EFTxwUdxlM06NjhACFlOQau-EwqgTdDIYynwTyPvWymwUU70PNo3QtSgNeQLr-ksXOiLL0ITlFyGoJ_W_5Y_7IHOzx3aH7JBPy6r22YfUfmI7G8zAz-xhXuAWbsVnZZo8Hy7783I-SYxfYXCKfNny2YL8At13Ib_GZ6ldLuj3AJ8-dUuCWMa04q6N_Nq1y75Hkv_B8hkzUL7mlRyw3zfffl1_r4a5CVWAWnSVlF4BhFqmmE1ulHLGRZP1JIMXEaIBMBCd8l5mXU-iwRBtUkzgJ9nrnMQh28JXpiPGvYw6eOi5hBBk9DETcD5k30gdlRmxi7UqbRig4jTb4s5icUF6txt6H7HzZ-H7wtJ4XeyK9uRZhADY_QM0CzuYhf2fWYzYV9pRS8cUFxTc0G2An0XAKzvV6Ilo0rIasdP1ptvh_D5aAlrqZmKMOn6P1Zywj2NMhkoP4ynb6lZP6Yxth7_d4nH1pTfdf3jR83k
  priority: 102
  providerName: Directory of Open Access Journals
Title Nonlinear Dynamic Process Monitoring Based on Discriminative Denoising Autoencoder and Canonical Variate Analysis
URI https://www.proquest.com/docview/3132816997
https://doaj.org/article/12e18d4cc1334e0ba37224c8e9190b1c
Volume 13
WOSCitedRecordID wos001363486500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: M7S
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oiFsvKhEhJS1DzstX1Cu91WIGAV8VLhEvmJVkJJm035_cw43qVIwIWLD_FIcTTjzzMTzzeEHBoWwFF1ISsrCFFYJfJMc86zipWBM8RME3lm34rVSp6dqTol3DbpWuUWEyNQu85ijvwIKQZlMVNKvDy_yLBrFP5dTS00rpN9ZEko4tW9D7scC3JeytgcuYRwPcNoaCzRqyDSP9J2QK4Z7Ln826EUufv_htDx2Dm9878LvktuJ4eTzkcLuUeu-fY-uXWFhvABuViNfBm6p8uxQT1N9QN03PIoRhdw3jnatXS5RqjBKzQIlXTp226NGQc6vxw65MV0vqe6dfRYt10su6SfISIHp5ZuKVAekk-nJx-PX2WpFUNmWV4NGedGMGZz7l1QoRBCK-1UkLPATOWYU4wp5rQwhgeZz5yCU19555mZBSODrx6RPXilf0yo4U5awyLVIbPcGReQw94GU3DphJqQF1tdNDbxlGO7jO8NxCuouOaK4ibkcCd8PtJz_FlsgUrdiSCndnzQ9d-atEWbovSFdMxaCNuZz42uBPg3VnoFTpMp7IQ8R5NocOfDgqxOBQzwWcih1cwlgBs2bxYTcrA1iSZBwqb5ZQ9P_j39lNwswXMaCx4PyN7QX_pn5Ib9Maw3_ZTsL05W9ftpTB7A-EZk02j1MNb8K8zXr9_VX34Ca74KDw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCvhQhIQUNYnttX1AaNularXLikNBvQU_0UqQtNkU1D_Fb8STx1Ik4NYD18TKyzPfzDie7wPYNizERNWFJKexRGFUpInmnCeU5YEzxEzT8szOxWIhj4_V-w34MfTC4LbKARNboHaVxTXyHaQYlNlYKfHm5DRB1Sj8uzpIaHRmMfPn32PJtnp9OI3z-yLP998e7R0kvapAYllKm4RzIxizKfcuqJAJoZV2KshxYIY65hRjijktjOFBpmOnYgBT3nlmxsHI4Gm87hW4yqgU6FczkazXdJBjU7ZizHkqYqEeq6-uJZBSle5o2yC3DWo8_xYEW62Av0WENszt3_7fPtAduNUn1GTSecBd2PDlPbh5gWbxPpwuOj4QXZPpeam_Li3p-yNIB2k4jOzGeO5IVZLpEqEUtwhhKCBTX1ZLXFEhk7OmQt5P52uiS0f2dFm1baXko45-3HgyULw8gA-X8s4PYTPe0j8CYriT1rCWypFZ7owLyNFvg8m4dEKN4NUw94XtedhRDuRLEesxNJTigqGMYHs9-KSjH_nzsF00ovUQ5AxvD1T156KHoCLLfSYdszajlPnUaCpi_malVzEpNJkdwUs0wQKRLT6Q1X2DRnwt5AgrJjKCN4pTixFsDSZY9JC3Kn7Z3-N_n34O1w-O3s2L-eFi9gRu5DFL7Jo7t2Czqc_8U7hmvzXLVf2s9S4Cny7bWn8CPudjFA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOPIu6UMCHIiSkaJPYXtsHhLYNK6pWqz0AqrgYP9FKNGmzKah_jV-HJ4-lSMCtB66JlcTJ529mnJlvENo1NERH1YUkJzFEoYSniWaMJYTmgVHgTNPqzB7x-VwcH8vFBvox1MJAWuXAiS1Ru8rCHvkYJAZFNpGSj0OfFrEoZm9OzxLoIAV_Wod2Gh1EDv3F9xi-rV4fFPFbv8jz2dv3---SvsNAYmlKmoQxwym1KfMuyJBxrqV2MohJoIY46iSlkjrNjWFBpBMnozGT3nlqJsGI4Em87jV0nccYE9IJF-zTen8H9DZF25g5T3kM2mMk1pUHEiLTsbYN6NxAv-ffDGLbN-Bv1qE1ebO7__PLuofu9I42nnYr4z7a8OUDdPuS_OJDdDbvdEJ0jYuLUp8sLe7rJnBHdTAM70U773BV4mIJFAupQ2AicOHLagk7LXh63lSgB-p8jXXp8L4uq7bcFH_UcX03Hg_SL1vow5XM-RHajLf02wgb5oQ1tJV4pJY54wJo99tgMiYclyP0asCBsr0-O7QJ-apinAagUZdAM0K768GnnSzJn4ftAaDWQ0BLvD1Q1V9UT00qy30mHLU2I4T61GjCo19nhZfRWTSZHaGXAEcFjBcfyOq-cCNOC7TD1FREUoem1XyEdgY4qp4KV-oXFh__-_RzdDOCVB0dzA-foFt5dB67ms8dtNnU5_4pumG_NctV_axdaBh9vmqw_gR9QWw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Dynamic+Process+Monitoring+Based+on+Discriminative+Denoising+Autoencoder+and+Canonical+Variate+Analysis&rft.jtitle=Actuators&rft.au=Liang%2C+Jun&rft.au=Liu%2C+Daoguang&rft.au=Zhan%2C+Yinxiao&rft.au=Fan%2C+Jiayu&rft.date=2024-11-01&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=13&rft.issue=11&rft.spage=440&rft_id=info:doi/10.3390%2Fact13110440&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_act13110440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon