An Efficient Distributed Compressed Sensing Algorithm for Decentralized Sensor Network

We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 17; H. 4; S. 907
Hauptverfasser: Liu, Jing, Huang, Kaiyu, Zhang, Guoxian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 20.04.2017
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.
AbstractList We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.
We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.
Author Liu, Jing
Zhang, Guoxian
Huang, Kaiyu
AuthorAffiliation School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; huangkaiyu@stu.xjtu.edu.cn (K.H.); zgx3135@stu.xjtu.edu.cn (G.Z.)
AuthorAffiliation_xml – name: School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; huangkaiyu@stu.xjtu.edu.cn (K.H.); zgx3135@stu.xjtu.edu.cn (G.Z.)
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
– sequence: 2
  givenname: Kaiyu
  orcidid: 0000-0003-3452-5000
  surname: Huang
  fullname: Huang, Kaiyu
– sequence: 3
  givenname: Guoxian
  surname: Zhang
  fullname: Zhang, Guoxian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28425949$$D View this record in MEDLINE/PubMed
BookMark eNplkU1PGzEQhq0KVCDtoX8ArcSlHAL-2l37ghQFaJFQe-jH1XK842DYtYPtLYJfjxEJAnqa0fh5X73j2UNbPnhA6AvBR4xJfJxIizmWuP2AdgmnfCooxVuv-h20l9I1xpQxJj6iHSo4rSWXu-jvzFdn1jrjwOfq1KUc3WLM0FXzMKwipFTaX-CT88tq1i9DdPlqqGyI1SmYoom6dw9rpgx_QL4L8eYT2ra6T_B5XSfoz_nZ7_n36eXPbxfz2eXUcMzytMZasE5g3mIDjBNqpQUtdc1AatEYy4DUHWm5XtQdtB1uBZeNEbpgtiPAJujk2Xc1Lgbo1oHUKrpBx3sVtFNvX7y7UsvwT9WcNoKRYvB1bRDD7Qgpq8ElA32vPYQxKSIkwUJQXBf04B16Hcboy3qKFqZpWtG0hdp_neglyubLC3D8DJgYUopglXFZZxeeArpeEayejqpejloUh-8UG9P_2UeodKH2
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108747
crossref_primary_10_1007_s10462_022_10259_5
crossref_primary_10_1155_vib_5537870
crossref_primary_10_1049_joe_2019_1318
crossref_primary_10_1109_TII_2019_2925023
crossref_primary_10_1186_s13640_019_0460_5
crossref_primary_10_1007_s10971_025_06777_7
crossref_primary_10_1109_ACCESS_2019_2904596
Cites_doi 10.1109/TSP.2016.2523462
10.1016/j.acha.2008.07.002
10.1109/JSEN.2015.2504106
10.1016/j.sigpro.2013.08.009
10.1109/ACSSC.2013.6810309
10.1016/j.sigpro.2015.11.024
10.1109/WICOM.2010.5601180
10.3390/s16101547
10.1093/acprof:oso/9780198506263.001.0001
10.1109/TASLP.2016.2598306
10.1049/el.2013.3159
10.1109/ICASSP.2010.5496168
10.3390/s16040462
10.1109/TWC.2012.081612.111908
10.1109/IPSN.2006.243819
10.1016/j.sigpro.2013.11.039
10.1016/j.ins.2015.10.004
10.1016/j.sigpro.2015.03.002
10.1007/978-0-8176-4948-7
10.3390/s150100248
ContentType Journal Article
Copyright 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 by the authors. 2017
Copyright_xml – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/s17040907
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID PMC5426831
28425949
10_3390_s17040907
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c403t-50a83d80470ce3412f9fea9a53e9a86cf3e15d174ab5de7d078496c8a9fefd1e3
IEDL.DBID PIMPY
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400822900248&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Nov 04 01:50:56 EST 2025
Sun Nov 09 13:51:12 EST 2025
Tue Oct 07 06:57:18 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Sat Nov 29 07:13:50 EST 2025
Tue Nov 18 22:14:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords distributed compact sensing matrix pursuit (DCSMP) algorithm
JSM-1
distributed compressed sensing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-50a83d80470ce3412f9fea9a53e9a86cf3e15d174ab5de7d078496c8a9fefd1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3452-5000
OpenAccessLink https://www.proquest.com/publiccontent/docview/2108667867?pq-origsite=%requestingapplication%
PMID 28425949
PQID 2108667867
PQPubID 2032333
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426831
proquest_miscellaneous_1891088205
proquest_journals_2108667867
pubmed_primary_28425949
crossref_citationtrail_10_3390_s17040907
crossref_primary_10_3390_s17040907
PublicationCentury 2000
PublicationDate 2017-04-20
PublicationDateYYYYMMDD 2017-04-20
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-20
  day: 20
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tan (ref_9) 2016; 16
Liu (ref_19) 2015; 114
Sundman (ref_12) 2016; 64
ref_14
ref_13
Needell (ref_21) 2009; 26
ref_16
ref_15
Wang (ref_2) 2016; 24
Matamoros (ref_17) 2015; 1
Lin (ref_1) 2014; 103
Zeng (ref_8) 2011; 5
Zhang (ref_7) 2014; 50
ref_25
Wu (ref_10) 2016; 329
ref_24
ref_23
Liu (ref_18) 2014; 95
ref_20
Bu (ref_5) 2016; 122
ref_3
Chen (ref_22) 2012; 11
ref_4
Wu (ref_11) 2015; 15
ref_6
27043574 - Sensors (Basel). 2016 Apr 01;16(4):462
27669250 - Sensors (Basel). 2016 Sep 22;16(10):null
25609045 - Sensors (Basel). 2014 Dec 25;15(1):248-73
References_xml – volume: 64
  start-page: 2803
  year: 2016
  ident: ref_12
  article-title: Design and Analysis of a Greedy Pursuit for Distributed Compressed Sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2523462
– volume: 26
  start-page: 301
  year: 2009
  ident: ref_21
  article-title: COSAMP: Iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmonic Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 16
  start-page: 1708
  year: 2016
  ident: ref_9
  article-title: Data reduction in wireless sensor networks: A hierarchical LMS prediction approach
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2504106
– volume: 95
  start-page: 101
  year: 2014
  ident: ref_18
  article-title: Similar sensing matrix pursuit: An efficient reconstruction algorithm to cope with deterministic sensing matrix
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.08.009
– ident: ref_16
  doi: 10.1109/ACSSC.2013.6810309
– volume: 122
  start-page: 115
  year: 2016
  ident: ref_5
  article-title: Regularized Smoothed l0 Norm Algorithm and its Application to CS-based Radar Imaging
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.11.024
– ident: ref_24
  doi: 10.1109/WICOM.2010.5601180
– ident: ref_3
  doi: 10.3390/s16101547
– ident: ref_23
  doi: 10.1093/acprof:oso/9780198506263.001.0001
– volume: 1
  start-page: 225
  year: 2015
  ident: ref_17
  article-title: Distributed ADMM for In-Network Reconstruction of Sparse Signals With Innovations
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 5
  start-page: 37
  year: 2011
  ident: ref_8
  article-title: Distributed compressive spectrum sensing in cooperative multihop cognitive networks
  publication-title: IEEE Trans. Signal Process.
– volume: 24
  start-page: 2122
  year: 2016
  ident: ref_2
  article-title: Compressive Sensing-Based Speech Enhancement
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2598306
– ident: ref_6
– volume: 50
  start-page: 520
  year: 2014
  ident: ref_7
  article-title: Optimised projections for generalised distributed compressed sensing
  publication-title: Electron. Lett.
  doi: 10.1049/el.2013.3159
– ident: ref_14
  doi: 10.1109/ICASSP.2010.5496168
– ident: ref_4
  doi: 10.3390/s16040462
– volume: 11
  start-page: 3598
  year: 2012
  ident: ref_22
  article-title: A Frechet Mean Approach for Compressive Sensing Date Acquisition and Reconstruction in Wireless Sensor Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2012.081612.111908
– ident: ref_25
  doi: 10.1109/IPSN.2006.243819
– volume: 103
  start-page: 92
  year: 2014
  ident: ref_1
  article-title: Compressed Sensing by Collaborative Reconstruction on Overcomplete Dictionary
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.11.039
– volume: 329
  start-page: 800
  year: 2016
  ident: ref_10
  article-title: Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.10.004
– ident: ref_15
– volume: 114
  start-page: 150
  year: 2015
  ident: ref_19
  article-title: General similar sensing matrix pursuit: An efficient and rigorous reconstruction algorithm to cope with deterministic sensing matrix with high coherence
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.03.002
– ident: ref_20
  doi: 10.1007/978-0-8176-4948-7
– ident: ref_13
– volume: 15
  start-page: 248
  year: 2015
  ident: ref_11
  article-title: A Structure Fidelity Approach for Big Data Collection in Wireless Sensor Networks
  publication-title: Sensors
  doi: 10.3390/s150100248
– reference: 25609045 - Sensors (Basel). 2014 Dec 25;15(1):248-73
– reference: 27669250 - Sensors (Basel). 2016 Sep 22;16(10):null
– reference: 27043574 - Sensors (Basel). 2016 Apr 01;16(4):462
SSID ssj0023338
Score 2.2368963
Snippet We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 907
SubjectTerms Algorithms
Sparsity
Title An Efficient Distributed Compressed Sensing Algorithm for Decentralized Sensor Network
URI https://www.ncbi.nlm.nih.gov/pubmed/28425949
https://www.proquest.com/docview/2108667867
https://www.proquest.com/docview/1891088205
https://pubmed.ncbi.nlm.nih.gov/PMC5426831
Volume 17
WOSCitedRecordID wos000400822900248&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXQ70UN4QKCuDOHCJ1omd2D6hhW4Fh65WvLScIsd22pXabGm2PXDgtzNOvGELiBMXH-JR7GjG42_syTcALxXlpSt1FquK65gjBo8RN5tYM5lq3FG5VGVbbELMZnKxUPPwe3QT0io3PrF11B3bs8_bRic8tivjT8zHqS8QhH42F6_Pv8W-hpS_aw0FNXZg6Im36ACG8_dH8699AMYwHuvYhRiG-uMmEWjCyleS3d6T_gCav-dLbm1Ah7f_79TvwF4AomTSWc5duOHqe7C7RU94H75MajJtKSbwzeTAU-z66ljOEu9FWtZxSz76DPj6mExOj3GU9ckZQRhMDlz4iuX3IIMPZ13K-QP4fDj99PZdHOowxIZTto4zqiWzknJBjcNdL61U5bTSGXNKy9xUzCWZxdBGl5l1wiLq4Co3UqNYZRPHHsKgXtXuMRBjdZnI3DlpLXd5WpbalJkQqhSaV4pG8GqjicIEknJfK-O0wGDFK63olRbBi170vGPm-JvQ_kYlRVicTfFLAxE877txWfm7El271WVTJBJxFEYfNIvgUaf9fpTUX10qriIQ1-yiF_CU3dd76uVJS92dISCSLHny72k9hVupRw-UoxPbh8H64tI9g5vmar1sLkawIxaibeUIhm-ms_mHUXuUgO3Rj-koWP1P-zASXw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0IFDAIJC5RndiJ7QNCK7ZVV21XK1FQewqO7bQrlWxptiD4UfxGxnmxBcStB67xKIk945lv4sk3AC8U5bnLdRKqguuQIwYPETebUDMZa4yoXKq8bjYhJhO5v6-mK_Cj-xfGl1V2PrF21HZu_Dfy9di3BELPmoo3J59D3zXKn652LTQas9h2375iyla9Ho9Qvy_jeHNj7-1W2HYVCA2nbBEmVEtmJeWCGoc-PC5U4bTSCXNKy9QUzEWJRaCu88Q6YTGGcpUaqVGssJFjeN9LsMrR2OkAVqfj3elBn-IxzPga_iLGFF2vIoGbRPletctR7w8o-3tF5lKI27zxvy3OTbjegmkybKz_Fqy48jZcW6JYvAMfhiXZqGkycM5k5GmCfYcvZ4n3hDVzuiXvfBV_eUiGx4c4q8XRJ4JQnoxcu06z760MXpw0ZfN34f2FTOweDMp56R4AMVbnkUydk9Zyl8Z5rk2eCKFyoXmhaACvOl1npiVa9_0-jjNMuLxZZL1ZBPC8Fz1p2EX-JrTWKT1rHUyV_dJ4AM_6YXQN_rxHl25-VmWRRCyIGRRNArjf2Ff_lNgfvyquAhDnLK8X8LTj50fK2VFNP54gqJMsevjv13oKV7b2dneynfFk-xFcjT0aohyd8hoMFqdn7jFcNl8Ws-r0SbuHCHy8aMv8CfZEX9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwKG8IFDAIpF6iTWIntg8ILeyuqIqiFS_1FhzbaVcq2dJsQe1P669jnBdbQNx64BqPktgej7-JJ98H8FwGLLe5in1ZMOUzxOA-4mbtKyoihTsqEzKvxSZ4mordXTlbg7PuXxhXVtnFxDpQm4V238iHkZMEwsia8GHRlkXMxtNXh998pyDlTlo7OY3GRXbsyQ9M36qX22Oc6xdRNJ18fPPWbxUGfM0CuvTjQAlqRMB4oC3G86iQhVVSxdRKJRJdUBvGBkG7ymNjucH9lMlEC4VmhQktxftegnVOMekZwPrrSTp736d7FLO_hsuIUhkMq5DjgpFOt3Z1B_wD1v5enbmy3U2v_88DdQM2WpBNRs2quAlrtrwF11aoF2_D51FJJjV9BvafjB19sFP-soa4CFkzqhvywVX3l3tkdLCHvVrufyUI8cnYtmM2P21t8GLalNPfgU8X0rG7MCgXpb0PRBuVhyKxVhjDbBLludJ5zLnMuWKFDDzY6uY90y0Bu9MBOcgwEXMukvUu4sGz3vSwYR35m9Fm5wBZG3iq7Nfse_C0b8aQ4c6BVGkXx1UWCsSImFkFsQf3Gl_rnxK5Y1nJpAf8nBf2Bo6O_HxLOd-vacljBHuChg_-_VpP4Aq6Y_ZuO915CFcjB5IChrF6EwbLo2P7CC7r78t5dfS4XU4Evly0Y_4EgJtocg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Distributed+Compressed+Sensing+Algorithm+for+Decentralized+Sensor+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jing&rft.au=Huang%2C+Kaiyu&rft.au=Zhang%2C+Guoxian&rft.date=2017-04-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=4&rft_id=info:doi/10.3390%2Fs17040907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon