Encoder–Decoder Structure Fusing Depth Information for Outdoor Semantic Segmentation

The semantic segmentation of outdoor images is the cornerstone of scene understanding and plays a crucial role in the autonomous navigation of robots. Although RGB–D images can provide additional depth information for improving the performance of semantic segmentation tasks, current state–of–the–art...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 13; H. 17; S. 9924
Hauptverfasser: Chen, Songnan, Tang, Mengxia, Dong, Ruifang, Kan, Jiangming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2023
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The semantic segmentation of outdoor images is the cornerstone of scene understanding and plays a crucial role in the autonomous navigation of robots. Although RGB–D images can provide additional depth information for improving the performance of semantic segmentation tasks, current state–of–the–art methods directly use ground truth depth maps for depth information fusion, which relies on highly developed and expensive depth sensors. Aiming to solve such a problem, we proposed a self–calibrated RGB-D image semantic segmentation neural network model based on an improved residual network without relying on depth sensors, which utilizes multi-modal information from depth maps predicted with depth estimation models and RGB image fusion for image semantic segmentation to enhance the understanding of a scene. First, we designed a novel convolution neural network (CNN) with an encoding and decoding structure as our semantic segmentation model. The encoder was constructed using IResNet to extract the semantic features of the RGB image and the predicted depth map and then effectively fuse them with the self–calibration fusion structure. The decoder restored the resolution of the output features with a series of successive upsampling structures. Second, we presented a feature pyramid attention mechanism to extract the fused information at multiple scales and obtain features with rich semantic information. The experimental results using the publicly available Cityscapes dataset and collected forest scene images show that our model trained with the estimated depth information can achieve comparable performance to the ground truth depth map in improving the accuracy of the semantic segmentation task and even outperforming some competitive methods.
AbstractList The semantic segmentation of outdoor images is the cornerstone of scene understanding and plays a crucial role in the autonomous navigation of robots. Although RGB–D images can provide additional depth information for improving the performance of semantic segmentation tasks, current state–of–the–art methods directly use ground truth depth maps for depth information fusion, which relies on highly developed and expensive depth sensors. Aiming to solve such a problem, we proposed a self–calibrated RGB-D image semantic segmentation neural network model based on an improved residual network without relying on depth sensors, which utilizes multi-modal information from depth maps predicted with depth estimation models and RGB image fusion for image semantic segmentation to enhance the understanding of a scene. First, we designed a novel convolution neural network (CNN) with an encoding and decoding structure as our semantic segmentation model. The encoder was constructed using IResNet to extract the semantic features of the RGB image and the predicted depth map and then effectively fuse them with the self–calibration fusion structure. The decoder restored the resolution of the output features with a series of successive upsampling structures. Second, we presented a feature pyramid attention mechanism to extract the fused information at multiple scales and obtain features with rich semantic information. The experimental results using the publicly available Cityscapes dataset and collected forest scene images show that our model trained with the estimated depth information can achieve comparable performance to the ground truth depth map in improving the accuracy of the semantic segmentation task and even outperforming some competitive methods.
Audience Academic
Author Chen, Songnan
Kan, Jiangming
Dong, Ruifang
Tang, Mengxia
Author_xml – sequence: 1
  givenname: Songnan
  orcidid: 0000-0003-0314-1194
  surname: Chen
  fullname: Chen, Songnan
– sequence: 2
  givenname: Mengxia
  surname: Tang
  fullname: Tang, Mengxia
– sequence: 3
  givenname: Ruifang
  surname: Dong
  fullname: Dong, Ruifang
– sequence: 4
  givenname: Jiangming
  surname: Kan
  fullname: Kan, Jiangming
BookMark eNptUctuFDEQtFCQCCEnfmAkjmiDXzMeH6M8YKVIOQS4Wh67vXi1Yw8ez4Fb_oE_5Evo7IAUIexDl7qrSv14TU5STkDIW0YvhND0g50mJpjSmssX5JRT1W2EZOrkGX5Fzud5T_FpJnpGT8nXm-Syh_Lr8ec1HFHzUMvi6lKguV3mmHbNNUz1W7NNIZfR1phTg6i5X6rPGB9gtKlGh2A3QqpHxhvyMtjDDOd_4hn5cnvz-erT5u7-4_bq8m7jJBV1I8Er5ZVslQahBqXo0HOPtT4wOVjX69B76y2WleJMd25wotPeatWqAbg4I9vV12e7N1OJoy0_TLbRHBO57Iwt2NwBzODdYG0QAlomAzgtAx06J9sAwUrWote71Wsq-fsCczX7vJSE7Rved5xzyqlG1sXK2lk0jbiUWqzD72GMDi8SIuYvVSd5J1vxJGCrwJU8zwWCcXFdEgrjwTBqns5nnp0PNe__0fwd7X_s36KInvE
CitedBy_id crossref_primary_10_1007_s11042_024_19051_9
crossref_primary_10_3390_f15010194
Cites_doi 10.1109/TITS.2017.2750080
10.1109/CVPR.2016.90
10.1016/j.neucom.2021.01.126
10.1109/34.868688
10.1109/LRA.2020.3007457
10.1109/CVPR.2017.660
10.3390/rs14132976
10.1109/TPAMI.2016.2644615
10.1177/01423312211062972
10.1109/TSMC.1979.4310076
10.1007/978-3-031-20056-4_2
10.1016/j.asoc.2020.106804
10.1016/j.compbiomed.2022.106231
10.1109/ICIP.2019.8803025
10.1109/CVPR.2019.01289
10.1109/TPAMI.2021.3132068
10.1109/TPAMI.2017.2699184
10.3390/electronics8030331
10.1007/s42979-021-00592-x
10.1109/CVPR.2017.189
10.1016/j.neucom.2023.126469
10.1109/ICIP.2019.8803360
10.1109/TPAMI.2008.132
10.1109/TPAMI.2015.2505283
10.1109/CVPR.2016.350
10.1109/TETCI.2022.3160720
10.1109/CVPR.2017.549
10.1109/ACCESS.2021.3055497
10.1109/ICCV.2015.123
10.1016/j.neucom.2023.03.006
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app13179924
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_bdcbaaf33e514fec94f0b6c45fefa415
A764264539
10_3390_app13179924
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-4ed77d74579e37b770b82dc408f14bac89f8dada79e772196cbc369da9757be23
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001060500200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:47:22 EDT 2025
Sun Nov 09 08:14:05 EST 2025
Tue Nov 04 18:36:49 EST 2025
Sat Nov 29 07:11:15 EST 2025
Tue Nov 18 21:58:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-4ed77d74579e37b770b82dc408f14bac89f8dada79e772196cbc369da9757be23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0314-1194
OpenAccessLink https://doaj.org/article/bdcbaaf33e514fec94f0b6c45fefa415
PQID 2862220209
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_bdcbaaf33e514fec94f0b6c45fefa415
proquest_journals_2862220209
gale_infotracacademiconefile_A764264539
crossref_citationtrail_10_3390_app13179924
crossref_primary_10_3390_app13179924
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Srivastava (ref_35) 2014; 15
Sun (ref_16) 2020; 5
Li (ref_22) 2021; 48
ref_36
ref_13
Li (ref_14) 2021; 44
ref_12
ref_34
ref_33
ref_31
ref_30
Cong (ref_6) 2016; 103
ref_19
Badrinarayanan (ref_32) 2017; 39
ref_17
ref_38
Zhou (ref_18) 2023; 7
ref_37
Chen (ref_39) 2018; 40
Tang (ref_25) 2021; 9
Liu (ref_21) 2016; 38
Long (ref_11) 2015; 39
Sarker (ref_10) 2021; 2
Yi (ref_4) 2022; 151
Awad (ref_8) 2022; 5
ref_24
Chen (ref_26) 2020; 97
Shi (ref_7) 2000; 22
ref_20
Otsu (ref_5) 1979; 9
ref_40
ref_1
He (ref_42) 2021; 440
Ge (ref_23) 2023; 550
ref_29
ref_28
ref_27
Karri (ref_3) 2022; 151
ref_9
Lin (ref_15) 2023; 535
Saxena (ref_43) 2009; 31
Romera (ref_41) 2017; 19
Fusic (ref_2) 2022; 44
References_xml – ident: ref_28
– volume: 19
  start-page: 263
  year: 2017
  ident: ref_41
  article-title: Erfnet: Efficient residual factorized convnet for real–time semantic segmentation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2750080
– ident: ref_24
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– volume: 440
  start-page: 251
  year: 2021
  ident: ref_42
  article-title: SOSD–Net: Joint semantic object segmentation and depth estimation from monocular images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.126
– volume: 103
  start-page: 3505
  year: 2016
  ident: ref_6
  article-title: Application of Watershed Algorithm for Segmenting Overlapping Cells in Microscopic Image
  publication-title: J. Image Graph.
– volume: 22
  start-page: 888
  year: 2000
  ident: ref_7
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 5
  start-page: 5558
  year: 2020
  ident: ref_16
  article-title: Real–Time Fusion Network for RGB–D Semantic Segmentation Incorporating Unexpected Obstacle Detection for Road–Driving Images
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3007457
– volume: 5
  start-page: 141
  year: 2022
  ident: ref_8
  article-title: Evaluation of Nonparametric Machine–Learning Algorithms for an Optimal Crop Classification Using Big Data Reduction Strategy
  publication-title: Remote Sens. Earth Syst. Sci.
– ident: ref_33
  doi: 10.1109/CVPR.2017.660
– ident: ref_9
  doi: 10.3390/rs14132976
– volume: 39
  start-page: 640
  year: 2015
  ident: ref_11
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_32
  article-title: SegNet: A Deep Convolutional Encoder–Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_40
– volume: 44
  start-page: 2574
  year: 2022
  ident: ref_2
  article-title: Scene terrain classification for autonomous vehicle navigation based on semantic segmentation method
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/01423312211062972
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_5
  article-title: A threshold selection method from gray–level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: ref_19
  doi: 10.1007/978-3-031-20056-4_2
– volume: 97
  start-page: 106804
  year: 2020
  ident: ref_26
  article-title: Monocular Image Depth Prediction without Depth Sensors: An Unsupervised Learning Method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106804
– ident: ref_37
– volume: 151
  start-page: 106231
  year: 2022
  ident: ref_3
  article-title: Explainable multi–module semantic guided attention based network for medical image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106231
– ident: ref_17
  doi: 10.1109/ICIP.2019.8803025
– ident: ref_38
  doi: 10.1109/CVPR.2019.01289
– volume: 44
  start-page: 9904
  year: 2021
  ident: ref_14
  article-title: CTNet: Context–Based Tandem Network for Semantic Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3132068
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_39
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref_1
  doi: 10.3390/electronics8030331
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_35
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 160
  year: 2021
  ident: ref_10
  article-title: Machine Learning: Algorithms, Real–World Applications and Research Directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– ident: ref_34
  doi: 10.1109/CVPR.2017.189
– volume: 550
  start-page: 126469
  year: 2023
  ident: ref_23
  article-title: Unsupervised domain adaptation via style adaptation and boundary enhancement for medical semantic segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126469
– ident: ref_12
– ident: ref_20
  doi: 10.1109/ICIP.2019.8803360
– volume: 31
  start-page: 824
  year: 2009
  ident: ref_43
  article-title: Make3D: Learning 3D Scene Structure from a Single Still Image
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.132
– volume: 38
  start-page: 2024
  year: 2016
  ident: ref_21
  article-title: Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2505283
– ident: ref_27
  doi: 10.1109/CVPR.2016.350
– volume: 7
  start-page: 598
  year: 2023
  ident: ref_18
  article-title: RFNet: Reverse Fusion Network with Attention Mechanism for RGB–D Indoor Scene Understanding
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3160720
– ident: ref_31
  doi: 10.1109/CVPR.2017.549
– ident: ref_13
– volume: 9
  start-page: 22640
  year: 2021
  ident: ref_25
  article-title: Encoder–Decoder Structure with the Feature Pyramid for Depth Estimation from a Single Image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3055497
– ident: ref_36
– ident: ref_30
  doi: 10.1109/ICCV.2015.123
– volume: 48
  start-page: 200069
  year: 2021
  ident: ref_22
  article-title: RGB–D object recognition algorithm based on improved double stream convolution recursive neural network
  publication-title: Opto–Electron. Eng.
– volume: 535
  start-page: 53
  year: 2023
  ident: ref_15
  article-title: Multi–stage context refinement network for semantic segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.03.006
– volume: 151
  start-page: 106231
  year: 2022
  ident: ref_4
  article-title: CCTseg: A cascade composite transformer semantic segmentation network for UAV visual perception
  publication-title: Measurement
SSID ssj0000913810
Score 2.2801592
Snippet The semantic segmentation of outdoor images is the cornerstone of scene understanding and plays a crucial role in the autonomous navigation of robots. Although...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9924
SubjectTerms Accuracy
Artificial intelligence
Deep learning
feature pyramid
fusion structure
Interdisciplinary subjects
Machine learning
Neural networks
predicted depth map
RGB–D image
Robots
semantic segmentation
Semantics
Sensors
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZgy4EegBZQFwrKAYkfKWpiO7F9qgrtCiQoKxWqcorssb1Uotlld8uZd-AN-yTMJN5SJODEKVbsg5NvPJ6xZ75h7AnoiNtYCTm3kucylHWupZQ5OhvcRldY39WMPH6rDg_1yYkZp_ToRQqrXOnETlH3bM8Ut41KeMdPgU7Mdzga4hz99sLszr7mVEOK7lpTQY3rbI2It_SArY3fvBt_ujxzIQ5MXRZ9mp5Ab59uiUtBpGhc_rYxdfz9f9PS3dYzuv1_J32H3UomaLbXy8wGuxbaTbZ-hZhwk22kJb_IniVe6ud32fFBSwnw84vvP_ZD18qOOvbZ83nIRhRAP8n2w2z5OUs5ToR5hq3s_fnST_F5FM4QyFPAxuQsJT2199jH0cGHV6_zVJYhB1mIJQLqlfJKVsoEoZxShdPcY5-OpXQWtInaW2-xG013XOHgQNTGW6Mq5QIX99mgnbZhi2Wu1BE4aACp0FML2lW11AYi_ikhlB2yFytMGkic5VQ640uDvgsB2FwBcIiStxo866k6_jzsJYF7OYT4tbsX0_mkScu1cR6ctVGIgAZlDGBkLFwNsoohWrR5huwpiUZDWgAnBDYlM-BnEZ9Ws6dqMjUrYYZseyUaTVIPi-aXJDz4d_dDdpPq2_dBbdtsgKiGR-wGfFueLuaPk3z_BIdVDbo
  priority: 102
  providerName: ProQuest
Title Encoder–Decoder Structure Fusing Depth Information for Outdoor Semantic Segmentation
URI https://www.proquest.com/docview/2862220209
https://doaj.org/article/bdcbaaf33e514fec94f0b6c45fefa415
Volume 13
WOSCitedRecordID wos001060500200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQy6EcKlqKWFoqH5CAShEb24ntYx-7AgmWFX2oPVn22G4r0bTa3XLuf-Af8ksYJ95qKxVx4RQntiJ7Hp4Z2fMNIW9BRTRjJRTMClaIUNaFEkIUGGwwG13f-rZm5MkXORqp01M9Xij1le6EdfDAHeE-Og_O2sh5QNMeA2gR-64GUcUQbZdeztDrWQim2j1Ylwm6qkvI4xjXp_Pgkif4MyYemKAWqf9v-3FrZIbPyWr2DuluN6s18iQ06-TZAmbgOlnL2jil7zNk9IcX5GTQpNz0ye-7XwehbdHDFhj2dhLoMN1tP6cH4WZ2QXP6UWIHxRb9djvz1_g8DFdI40vAxvlVzkdqNsjxcHC0_6nIFRMKEH0-Q1p7Kb0UldSBSydl3ynmsU_FUjgLSkflrbfYjV41Kh844LX2VstKusD4S7LUXDfhFaGuVBEYKAAhMYgKylW1UBoihkCcS9sjO3MiGshw4qmqxQ-DYUWiuFmgeA-FYj74pkPReHzYXuLG_ZAEfd1-QIEwWSDMvwSiR94lXpqkoDghsDnPAJeVoK7MrqyTF1hx3SNbc3abrLlTw3B9jKETrV__j9lskhX8mUjWrqy2yBLyPrwhT-Hn7HI62SbLe4PR-Pt2K7z4Nv78dXz2B8l9-Eo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELaqFAk4AC0gAgX2AOJHWrFre9f2AaFCGjVqGiK1VOVk_Bsq0U1IUhA33oH34KF4Esa73lIk4NYDp7VsH-ydz-MZ2_MNQg8M97CN5SbFiuKUurxMOaU0BWcDK68zZeuckQdDNhrxw0MxXkHf21iY8Kyy1Ym1orZTE87In2EwvTF46pl4MfuYhqxR4Xa1TaHRwGLHffkMLtvi-aAH8n2IcX9r_9V2GrMKpIZmZAnjsYxZRgsmHGGasUxzbKGN-5xqZbjw3CqroBksTwCo0YaUwirBCqZdIDoAlb9KAey8g1bHg93x29NTncCyyfOsCQQkRGThHjongXYN09-2vjpDwN_2gXpz61_9337LNXQlmtHJZoP7NbTiqnV0-Qy54jpai2prkTyO3NpPrqODrSoE8c9_fP3Wc3Up2asZdE_mLumHIIBJ0nOz5fskxmkF3CZQSl6fLO0UvnvuGMB4ZKAwOY6BW9UN9OZcZnsTdapp5W6hROfcG2y4MZSBt-m4LkrKhfEgGUKY6qKnrdSlibzrIf3HBwn-V4CIPAORLqyetvOsoRv5c7eXAT6nXQJHeF0xnU9kVDlSW6OV8oQ4MIq9M4L6TJeGFt55BXZbFz0K4JNBk8GAjIoBGTCtwAkmN1kZzOWCiC7aaMEno4pbyF_Iu_3v5vvo4vb-7lAOB6OdO-gS1JHmkd4G6oCE3V10wXxaHi3m9-JqStC780bqT1nDX-c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLWqFCFYAC0gAgW8APGQRp2xPbG9QKiQRkQtIVKhKivjZ6hEJyFJQez4B_6Gz-FLuJ7xlCIBuy5YjWV7YY-P78P2PRehe1YEUGOFzYhmJGO-6GWCMZaBs0F0MLl2dc7I_V0-GomDAzleQd_bWJj4rLKVibWgdlMbz8g3CZjeBDz1XG6G9Cxi3B88nX3MYgapeNPaptNoILLjv3wG923xZNiHtb5PyGD79fMXWcowkFmW0yWMzXHuOCu59JQbznMjiIM2EQpmtBUyCKedhmawQgGs1ljak05LXnLjI-kBiP9VMMkZ66DV8fDl-O3JCU9k3BRF3gQFUirzeCdd0EjBRthvarDOFvA3nVArusHl__kXXUGXknmNt5r9sIZWfLWOLp4iXVxHa0mcLfDDxLn96Cra365icP_8x9dvfV-X8F7NrHs893gQgwMmuO9ny_c4xW9FPGMo4VfHSzeF754_ApAeWihMjlJAV3UNvTmT2V5HnWpa-RsIm0IES6ywFtAhSy9M2WNC2gCrRCnXXfS4RYCyiY89pgX5oMAvi3BRp-DShV3Vdp41NCR_7vYsQumkS-QOryum84lKokgZZ43WgVIPxnLwVrKQm55lZfBBgz3XRQ8iEFWUcDAgq1OgBkwrcoWpLd6LZnRJZRdttEBUSfQt1C8U3vx38110HuCpdoejnVvoAlTR5u3eBurAAvvb6Jz9tDxczO-kjYXRu7MG6k9szmio
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoder%E2%80%93Decoder+Structure+Fusing+Depth+Information+for+Outdoor+Semantic+Segmentation&rft.jtitle=Applied+sciences&rft.au=Chen%2C+Songnan&rft.au=Tang%2C+Mengxia&rft.au=Dong%2C+Ruifang&rft.au=Kan%2C+Jiangming&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft_id=info:doi/10.3390%2Fapp13179924&rft.externalDocID=A764264539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon