Research on a BP Neural Network Slope Safety Coefficient Prediction Model Based on Improved Sparrow Algorithm Optimization
Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network,...
Saved in:
| Published in: | Applied sciences Vol. 13; no. 14; p. 8446 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.07.2023
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R2 of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA–BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA–BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control. |
|---|---|
| AbstractList | Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R2 of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA–BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA–BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control. Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R[sup.2] of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA–BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA–BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control. |
| Audience | Academic |
| Author | Zhang, Qi Wang, Yiwen Zhang, Xiaohui Liu, Dongna Dong, Haiyu Lin, Junwei |
| Author_xml | – sequence: 1 givenname: Yiwen orcidid: 0000-0003-0458-9927 surname: Wang fullname: Wang, Yiwen – sequence: 2 givenname: Dongna orcidid: 0000-0002-3234-6415 surname: Liu fullname: Liu, Dongna – sequence: 3 givenname: Haiyu orcidid: 0009-0001-8154-6026 surname: Dong fullname: Dong, Haiyu – sequence: 4 givenname: Junwei orcidid: 0000-0001-7810-4588 surname: Lin fullname: Lin, Junwei – sequence: 5 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 6 givenname: Xiaohui surname: Zhang fullname: Zhang, Xiaohui |
| BookMark | eNptkcFOGzEQhlcVlUopJ17AUo9VwF571_YxRKWNBAU1cLYGexyc7q63XqcInr4OaSVU1T7MaDTfr5n531cHQxywqk4YPeVc0zMYR8aZUEK0b6rDmsp2xgWTB6_yd9XxNG1oeZpxxehh9fwdJ4RkH0gcCJDzG_INtwm6EvJjTD_IqosjkhV4zE9kEdH7YAMOmdwkdMHmULir6LAj5zCh28ks-zHFXyVfjZBSfCTzbh1TyA89uR5z6MMz7LAP1VsP3YTHf-JRdXfx-XbxdXZ5_WW5mF_OrKA8zwRIbMGBa5SvtRcto652rfaN0xQRPBXMNkJKj6pW1irKRYsMC9d6Kxt-VC33ui7Cxowp9JCeTIRgXgoxrQ2kHGyHBnRTI957UC0TWnPlGw7cNa2VvgalitbHvVbZ8OcWp2w2cZuGMr6plai1LPfXpet037WGIhoGH3MCW77DPtjimg-lPpeNUo1knBaA7QGb4jQl9MaG_HKkAobOMGp2FptXFhfm0z_M39X-1_0b-_-pdw |
| CitedBy_id | crossref_primary_10_1108_RIA_04_2024_0097 crossref_primary_10_1177_14727978251364452 crossref_primary_10_3390_app131910837 |
| Cites_doi | 10.1016/j.knosys.2021.106924 10.1007/s12665-013-2531-8 10.1080/19475705.2016.1144655 10.1016/j.measurement.2016.01.009 10.1007/s12665-018-7268-y 10.1007/s10706-015-9970-9 10.1016/j.physa.2019.124046 10.1007/s00366-015-0400-7 10.1109/4235.585892 10.1016/j.enggeo.2009.06.010 10.1007/s00366-015-0415-0 10.1007/s00366-019-00791-4 10.1007/s00521-013-1367-1 10.1080/21642583.2019.1708830 10.1016/j.scient.2011.03.007 10.1007/BF00332914 10.1016/j.measurement.2018.09.019 10.1016/j.cageo.2012.09.003 10.1007/s00521-016-2359-8 10.1007/s00366-018-0644-0 10.1109/NABIC.2009.5393690 10.1007/s10462-011-9208-z 10.1016/j.geomorph.2017.12.008 10.1007/s12517-015-2094-y 10.1016/j.compgeo.2005.06.002 10.1007/s12524-010-0020-z 10.1016/j.ssci.2019.104572 10.1109/ACCESS.2022.3182241 10.1007/s00521-019-04109-9 10.3390/app9245534 10.3390/s21041224 10.1007/s12517-013-1174-0 10.1016/j.aej.2021.12.057 10.1109/ACCESS.2022.3141432 10.1016/j.measurement.2014.09.075 10.1007/s00366-011-0241-y 10.1016/j.ijhydene.2020.12.107 10.1109/ICICN51133.2020.9205072 10.1007/s00521-016-2728-3 10.1007/s00366-017-0545-7 10.1680/jgeot.16.P.158 10.1016/j.jallcom.2020.154047 10.1007/s00366-015-0404-3 10.3390/ijgi8090391 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app13148446 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Geology |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_a952eebfa86149938f53a3d56c7f2a88 A758857130 10_3390_app13148446 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c403t-4a7e6adad58f29f4610d2d69f5d90eeaf041c5477fe828cc80346e1e4a76fc753 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035004900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:52:33 EDT 2025 Sun Sep 07 03:24:15 EDT 2025 Tue Nov 04 18:44:27 EST 2025 Sat Nov 29 07:16:31 EST 2025 Tue Nov 18 21:58:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-4a7e6adad58f29f4610d2d69f5d90eeaf041c5477fe828cc80346e1e4a76fc753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0458-9927 0000-0001-7810-4588 0000-0002-3234-6415 0009-0001-8154-6026 |
| OpenAccessLink | https://www.proquest.com/docview/2842971489?pq-origsite=%requestingapplication% |
| PQID | 2842971489 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a952eebfa86149938f53a3d56c7f2a88 proquest_journals_2842971489 gale_infotracacademiconefile_A758857130 crossref_citationtrail_10_3390_app13148446 crossref_primary_10_3390_app13148446 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mohamad (ref_47) 2018; 30 Cheng (ref_51) 2012; 21 Zang (ref_52) 2019; 28 Safa (ref_13) 2020; 550 Faradonbeh (ref_60) 2016; 32 Zhang (ref_34) 2007; 185 Raftari (ref_4) 2013; 18 Zhu (ref_37) 2021; 46 Gao (ref_43) 2022; 10 Erzin (ref_8) 2013; 51 Yang (ref_30) 2014; 24 Banimahd (ref_44) 2005; 32 Khajehzadeh (ref_14) 2022; 10 Pei (ref_3) 2019; 131 Saghatforoush (ref_59) 2016; 32 ref_25 Gandomi (ref_31) 2013; 29 Armaghani (ref_39) 2014; 7 ref_24 Prakash (ref_7) 2018; 77 Zhang (ref_38) 2022; 8 ref_21 Ausilio (ref_11) 2017; 104 Hongtao (ref_22) 2020; 123 Samui (ref_48) 2011; 18 Feng (ref_50) 1995; 4 Sun (ref_56) 2021; 21 ref_29 Vakhshoori (ref_12) 2016; 7 Hong (ref_9) 2016; 9 Kahatadeniya (ref_27) 2009; 108 Friedli (ref_1) 2017; 67 ref_36 Wang (ref_58) 2019; 59 Vogl (ref_16) 1988; 59 Gordan (ref_15) 2016; 32 ref_32 Manouchehrian (ref_49) 2014; 71 Moayedi (ref_5) 2010; 15 Khandelwal (ref_23) 2016; 34 Zhai (ref_57) 2011; 33 Li (ref_46) 2022; 61 Mohamad (ref_18) 2017; 28 Xue (ref_53) 2007; 12 Moayedi (ref_17) 2020; 32 Pradhan (ref_10) 2010; 38 Xue (ref_35) 2020; 8 Yang (ref_54) 2006; 7 Dorigo (ref_26) 1997; 1 Yuan (ref_28) 2020; 36 Momeni (ref_19) 2015; 60 Wan (ref_41) 2020; 826 Zhang (ref_42) 2021; 220 ref_45 Wang (ref_55) 2021; 51 ref_40 Shariati (ref_33) 2019; 33 Pham (ref_6) 2018; 303 Moayedi (ref_61) 2018; 34 Ding (ref_20) 2011; 36 Moayedi (ref_2) 2019; 35 |
| References_xml | – volume: 220 start-page: 106924 year: 2021 ident: ref_42 article-title: A stochastic configuration network based on chaotic sparrow search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106924 – volume: 71 start-page: 1267 year: 2014 ident: ref_49 article-title: Development of a model for analysis of slope stability for circular mode failure using genetic algorithm publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2531-8 – volume: 7 start-page: 1731 year: 2016 ident: ref_12 article-title: Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2016.1144655 – volume: 8 start-page: 739 year: 2022 ident: ref_38 article-title: Research on neural network wind speed prediction model based on improved sparrow algorithm optimization publication-title: Energy Rep. – volume: 104 start-page: 294 year: 2017 ident: ref_11 article-title: Landslide characterization using a multidisciplinary approach publication-title: Measurement doi: 10.1016/j.measurement.2016.01.009 – volume: 77 start-page: 146 year: 2018 ident: ref_7 article-title: Bagging based support vector machines for spatial prediction of landslides publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7268-y – volume: 34 start-page: 605 year: 2016 ident: ref_23 article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-015-9970-9 – volume: 550 start-page: 124046 year: 2020 ident: ref_13 article-title: Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2019.124046 – volume: 32 start-page: 85 year: 2016 ident: ref_15 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Eng. Comput. doi: 10.1007/s00366-015-0400-7 – volume: 1 start-page: 53 year: 1997 ident: ref_26 article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585892 – volume: 108 start-page: 133 year: 2009 ident: ref_27 article-title: Determination of the critical failure surface for slope stability analysis using ant colony optimization publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.06.010 – volume: 32 start-page: 255 year: 2016 ident: ref_59 article-title: Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting publication-title: Eng. Comput. doi: 10.1007/s00366-015-0415-0 – volume: 36 start-page: 1705 year: 2020 ident: ref_28 article-title: The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition publication-title: Eng. Comput. doi: 10.1007/s00366-019-00791-4 – volume: 21 start-page: 10 year: 2012 ident: ref_51 article-title: Application of BP networks in the stability analysis of slopes in the open-pit mine publication-title: Min. Metall. – volume: 24 start-page: 169 year: 2014 ident: ref_30 article-title: Cuckoo search: Recent advances and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1367-1 – volume: 8 start-page: 22 year: 2020 ident: ref_35 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 15 start-page: 93 year: 2010 ident: ref_5 article-title: Optimization of shear behavior of reinforcement through the reinforced slope publication-title: Electron. J. Geotech. Eng. – volume: 28 start-page: 144 year: 2019 ident: ref_52 article-title: Slope stability prediction of open-pit mine based on GA-BP model publication-title: China Min. Mag. – volume: 185 start-page: 1026 year: 2007 ident: ref_34 article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training publication-title: Appl. Math. Comput. – volume: 18 start-page: 53 year: 2011 ident: ref_48 article-title: Utilization of a least square support vector machine (LSSVM) for slope stability analysis publication-title: Sci. Iran. doi: 10.1016/j.scient.2011.03.007 – volume: 59 start-page: 257 year: 1988 ident: ref_16 article-title: Accelerating the convergence of the back-propagation method publication-title: Biol. Cybern. doi: 10.1007/BF00332914 – volume: 131 start-page: 686 year: 2019 ident: ref_3 article-title: Slope stability analysis based on real-time displacement measurements publication-title: Measurement doi: 10.1016/j.measurement.2018.09.019 – volume: 51 start-page: 305 year: 2013 ident: ref_8 article-title: The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.09.003 – volume: 28 start-page: 393 year: 2017 ident: ref_18 article-title: An optimized ANN model based on genetic algorithm for predicting ripping production publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2359-8 – volume: 35 start-page: 967 year: 2019 ident: ref_2 article-title: Modification of landslide susceptibility mapping using optimized PSO-ANN technique publication-title: Eng. Comput. doi: 10.1007/s00366-018-0644-0 – ident: ref_45 – ident: ref_29 doi: 10.1109/NABIC.2009.5393690 – volume: 36 start-page: 153 year: 2011 ident: ref_20 article-title: An optimizing BP neural network algorithm based on genetic algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9208-z – volume: 18 start-page: 797 year: 2013 ident: ref_4 article-title: Settlement of shallow foundations near reinforced slopes publication-title: Electron. J. Geotech. Eng. – volume: 303 start-page: 256 year: 2018 ident: ref_6 article-title: Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.12.008 – volume: 9 start-page: 1 year: 2016 ident: ref_9 article-title: GIS-based landslide spatial modeling in Ganzhou City, China publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-2094-y – volume: 33 start-page: 6 year: 2011 ident: ref_57 article-title: Prediction of slope safety factor based on the RS-GP model publication-title: J. Univ. Sci. Technol. Beijing – volume: 32 start-page: 377 year: 2005 ident: ref_44 article-title: Artificial neural network for stress–strain behavior of sandy soils: Knowledge based verification publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2005.06.002 – volume: 38 start-page: 301 year: 2010 ident: ref_10 article-title: Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-010-0020-z – volume: 33 start-page: 319 year: 2019 ident: ref_33 article-title: Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures publication-title: Steel Compos. Struct. – volume: 123 start-page: 104572 year: 2020 ident: ref_22 article-title: Smart safety early warning model of landslide geological hazard based on BP neural network publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.104572 – volume: 10 start-page: 62520 year: 2022 ident: ref_43 article-title: Research on Multistrategy Improved Evolutionary Sparrow Search Algorithm and its Application publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3182241 – volume: 32 start-page: 495 year: 2020 ident: ref_17 article-title: A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04109-9 – ident: ref_21 – ident: ref_32 doi: 10.3390/app9245534 – volume: 4 start-page: 54 year: 1995 ident: ref_50 article-title: Neural network estimation of slope stability publication-title: J. Eng. Geol. – volume: 51 start-page: 140 year: 2021 ident: ref_55 article-title: Study on stability prediction of high cutting slope based on GM-RBF combination model publication-title: Build. Struct. – ident: ref_36 doi: 10.3390/s21041224 – volume: 7 start-page: 5383 year: 2014 ident: ref_39 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab. J. Geosci. doi: 10.1007/s12517-013-1174-0 – ident: ref_25 – volume: 61 start-page: 7141 year: 2022 ident: ref_46 article-title: Evaluation of urban green space landscape planning scheme based on PSO-BP neural network model publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.12.057 – volume: 12 start-page: 2643 year: 2007 ident: ref_53 article-title: Evaluation of slope stability based on genetic algorithm and fuzzy neural network publication-title: Rock Soil Mech. – volume: 10 start-page: 5660 year: 2022 ident: ref_14 article-title: An Effective Artificial Intelligence Approach for Slope Stability Evaluation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3141432 – volume: 60 start-page: 50 year: 2015 ident: ref_19 article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks publication-title: Measurement doi: 10.1016/j.measurement.2014.09.075 – volume: 29 start-page: 17 year: 2013 ident: ref_31 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – volume: 7 start-page: 75 year: 2006 ident: ref_54 article-title: Study on the Application of Mixed Genetic-Neural Network in Slope Stability Evaluation publication-title: China Rural Water Hydropower – volume: 46 start-page: 9541 year: 2021 ident: ref_37 article-title: Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.12.107 – ident: ref_24 doi: 10.1109/ICICN51133.2020.9205072 – volume: 30 start-page: 1635 year: 2018 ident: ref_47 article-title: Rock strength estimation: A PSO-based BP approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2728-3 – volume: 34 start-page: 347 year: 2018 ident: ref_61 article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil publication-title: Eng. Comput. doi: 10.1007/s00366-017-0545-7 – volume: 67 start-page: 890 year: 2017 ident: ref_1 article-title: Lateral earth pressures in constrained landslides publication-title: Géotechnique doi: 10.1680/jgeot.16.P.158 – volume: 21 start-page: 12234 year: 2021 ident: ref_56 article-title: Application of Relevance Vector Machine Model in Slope Stability Prediction publication-title: Sci. Technol. Eng. – volume: 59 start-page: 94 year: 2019 ident: ref_58 article-title: Prediction of Slope Stability Coefficient Based on Grid Search Support Vector Machine publication-title: Railw. Eng. – volume: 826 start-page: 154047 year: 2020 ident: ref_41 article-title: Research on hot deformation behavior of Zr-4 alloy based on PSO-BP artificial neural network publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154047 – volume: 32 start-page: 123 year: 2016 ident: ref_60 article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation publication-title: Eng. Comput. doi: 10.1007/s00366-015-0404-3 – ident: ref_40 doi: 10.3390/ijgi8090391 |
| SSID | ssj0000913810 |
| Score | 2.3050752 |
| Snippet | Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured.... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 8446 |
| SubjectTerms | Accuracy Algorithms Analysis Back propagation BP neural network Economic development Food Foraging behavior Geology Intelligence Landslides Landslides & mudslides Learning strategies Machine learning Mathematical functions neural network optimization Neural networks Optimization algorithms Research methodology Sensors slope safety factor sparrow search algorithm Velocity |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5y-KAP4p2Ke56ShwN_QLFNmjZ53D08fJB1YVXuLWSTiR7sbZfdKuhf70yaPfqg-OJbKWmZZib5ZpqZbxg7dzp4cguKUMuyqEE1hVFlWYgoQkD4iSERz3_50M7n-urKLEatvignbKAHHiburTNKAKyi0wgkCKY6KulkUI1vo3A6lfmWrRkFU2kPNhVRVw0FeRLjejoPriT6_jW5uiMISkz9f9uPE8hcPmQPsnfIp4NUx-wObE7Y_RFn4Ak7zqtxz19lyujXj9ivQwId7zbc8dmCE-kGvmk-ZHnz5brbAl-6CP1PftFBIo5AvOGLHZ3UkHY4tUVb8xnCWqDXDL8b8Hq5TUSNfLr-2u2u-283_CPuMze5gPMx-3z57tPF-yJ3VSh8Xcq-qF0LjQsuKB2FicS3HkRoTFTBlAAulnXlVd22ETAa816Xsm6gAnyO6oKUfMKONt0GnjIOzaoV2lUrtyJeQ-li1E4KAx7Qb4xywt4cJtr6TDlOnS_WFkMP0oodaWXCzm8HbwemjT8Pm5HGbocQPXa6gUZjs9HYfxnNhL0kfVtaxCiQd7kWAT-L6LDsFKMorTB-Lyfs7GASNq_uvUVIF6ZFeczp_5DmGbtHTeyHJOAzdtTvvsNzdtf_6K_3uxfJsH8DhcL-Bw priority: 102 providerName: Directory of Open Access Journals |
| Title | Research on a BP Neural Network Slope Safety Coefficient Prediction Model Based on Improved Sparrow Algorithm Optimization |
| URI | https://www.proquest.com/docview/2842971489 https://doaj.org/article/a952eebfa86149938f53a3d56c7f2a88 |
| Volume | 13 |
| WOSCitedRecordID | wos001035004900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFiQ4UBpABEq1h0o8JKu212uvT1VStYAEwSKAymm12UdBSuOQGKTy6ztjb0IOwIWbH-vVWjM7r535BuBQS2vILIhsxuMocyKPShHHUepTa1H9eNsCz39-W4xG8vy8rELAbRnSKlcysRXUtjYUIz9CMZqWBRrv5fH8e0Rdo-h0NbTQuAE7hFSGfL4zPB1VH9ZRFkK9lEncFeZx9O_pXDjhOE1GJu-GKmoR-_8ml1tlc7b7v8u8B3eDmckGHV_swZab9eDOBvhgD269apv6XvVgL2zwJXseUKhf3Idfq5w8Vs-YZsOKEY4HzjnqEsfZeFrPHRtr75ordlK7FosCVRirFnT4QwRn1GltyoaoKS1N00Uw8Ho8b7Ef2WB6gYtvvl6y9yi6LkNN6AP4dHb68eR1FBo1RCaLeRNlunC5ttoK6dPSE4S7TW1eemHL2Dnt4ywxIisK79DBM0bGPMtd4vA7KjUS_CFsz-qZewTM5ZMilTqZ6AlBJXLtvdQ8LZ1xaIp63oeXK5opE1DMqZnGVKE3QwRWGwTuw-F68LwD7_jzsCERfz2EELfbB_XiQoUNrHQpUucmXks0aNCok15wza3ITeFTLWUfnhHrKJILuCCjQ3kD_hYhbKkBOmZSFGgy9GF_xToqCIyl-s03j__9-gncpo73XcbwPmw3ix_uKdw0P5tvy8VB4P-DNrSAd9Wbd9WXa9AGEuw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qUhBlATRQESgwiyIekoUz48d4gVBSKI2ahkhpUVmZyTwKUhqHxIDCR_GN3OtHyALYdcEucsaWPT4-98zjnguwp6TRJAs8EwjfC2wYeUno-x533BgMP84UxvPv-_FgIM_OkuEG_KxzYWhbZc2JBVGbTNMc-QukUZ7EKN6TV7MvHlWNotXVuoRGCYsju_yOQ7bFy95rfL-POT94c7J_6FVVBTwd-CL3AhXbSBllQul44shv3HATJS40iW-tcn7Q1mEQx87iaERr6Ysgsm2L51FeDFWJQMrfDAjsDdgc9o6HH1azOuSyKdt-mQgoROLTOnRb4G0HJLHXQl9RIeBvcaAIbgc3_7duuQU3KhnNOiXut2HDTptwfc1csQlX3xZFi5dN2K4IbMGeVi7bz27Dj3rPIcumTLHukJFPCV5zUG6MZ6NJNrNspJzNl2w_s4XXBoZoNpzT4hYBmlEluQnrohIwdJlyhgZ_j2aFtyXrTM6xs_JPF-wdUvNFlfN6B04vpW92oDHNpvYuMBuNYy5Ve6zGZAUplHNSCZ5YbVFqO9GC5zVGUl25tFOxkEmKozUCVLoGqBbsrRrPSnOSPzfrEthWTchRvDiQzc_TiqBSlYTc2rFTEgUbilbpQqGECSMdO66kbMETgmpKvIc3pFWVvoGPRQ5iaQcHnjKMURK1YLeGaloR4iL9jdN7__77EVw7PDnup_3e4Og-bHHUlOXu6F1o5POv9gFc0d_yz4v5w-rbY_DxsnH9Czcrbmc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKSA4AA0gAgX2UMSHZNVZf60PCCUtgaglWAqgcjKb_ShIaRwSAwo_jV_HjL0OOQC3HrhFycaKN89v3u7OvAHYk0IrkgWeDgPfC00Ue2nk-x63XGsMP1ZXxvPvj5PRSJycpNkW_GxqYSitsuHEiqh1oWiPfB9plKcJivd037q0iOxw8Hz-xaMOUnTS2rTTqCFyZFbfcfm2fDY8xP_6IeeDF28PXnmuw4CnQj8ovVAmJpZa6khYnlryHtdcx6mNdOobI60fdlUUJok1uDJRSvhBGJuuwe9RjQx1jED630ZJHvIWbGfD19mH9Q4POW6Krl8XBQZB6tOZdDfAWwhJbm-EwapbwN9iQhXoBtf-5ym6DledvGa9-nnYgS0za8OVDdPFNlx8WTUzXrVhxxHbkj127ttPbsCPJheRFTMmWT9j5F-C1xzVCfNsPC3mho2lNeWKHRSm8uDA0M2yBR16EdAZdZibsj4qBE2XqXdu8PV4Xnlest70FCer_HTG3iBln7la2Jvw7lzm5ha0ZsXM3AZm4knChexO5IQsIgNprZABT40yKMFt0IGnDV5y5dzbqYnINMdVHIEr3wBXB_bWg-e1acmfh_UJeOsh5DRevVEsTnNHXLlMI27MxEqBQg7FrLBRIAMdxSqxXArRgUcE25z4EH-Qkq6sA2-LnMXyHi5IRZSgVOrAbgPb3BHlMv-N2Tv__vgBXEIw58fD0dFduMxRatZJ07vQKhdfzT24oL6Vn5eL--4xZPDxvGH9C9-5dyc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+a+BP+Neural+Network+Slope+Safety+Coefficient+Prediction+Model+Based+on+Improved+Sparrow+Algorithm+Optimization&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Yiwen&rft.au=Liu%2C+Dongna&rft.au=Dong%2C+Haiyu&rft.au=Lin%2C+Junwei&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=14&rft_id=info:doi/10.3390%2Fapp13148446&rft.externalDocID=A758857130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |