Research on a BP Neural Network Slope Safety Coefficient Prediction Model Based on Improved Sparrow Algorithm Optimization

Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 13; číslo 14; s. 8446
Hlavní autori: Wang, Yiwen, Liu, Dongna, Dong, Haiyu, Lin, Junwei, Zhang, Qi, Zhang, Xiaohui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.07.2023
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R2 of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA–BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA–BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control.
AbstractList Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R2 of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA–BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA–BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control.
Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured. This work proposes an improved sparrow search algorithm to optimize the slope safety factor prediction model (ISSA–BP) of a BP neural network, through an improvement in two aspects: introducing dynamic weight factors and reverse learning strategies to realize adaptive searches. The optimal value improves a defect in the traditional model, preventing it from easily falling into the local minimum. First, combined with 352 sets of actual slope data, three machine learning models were used to predict the safety factor of the slope. Then, the accuracy index was used for evaluation. Compared with other models, the MAPE, RMSE, and R[sup.2] of the ISSA-BP model were 1.64%, 0.0296, and 0.99, respectively, and the error was reduced by 78% compared with the BP neural network, showing better accuracy. Finally, the three models were applied to the slope stability analysis of Tianbao Port in Wenshan Prefecture. The research shows that the predicted value of the ISSA–BP model was the closest to the actual safety factor, which verified the experimental results. The improved ISSA–BP model can effectively predict the safety factor of slopes under different conditions, and it provides a new technology for slope disaster warning and control.
Audience Academic
Author Zhang, Qi
Wang, Yiwen
Zhang, Xiaohui
Liu, Dongna
Dong, Haiyu
Lin, Junwei
Author_xml – sequence: 1
  givenname: Yiwen
  orcidid: 0000-0003-0458-9927
  surname: Wang
  fullname: Wang, Yiwen
– sequence: 2
  givenname: Dongna
  orcidid: 0000-0002-3234-6415
  surname: Liu
  fullname: Liu, Dongna
– sequence: 3
  givenname: Haiyu
  orcidid: 0009-0001-8154-6026
  surname: Dong
  fullname: Dong, Haiyu
– sequence: 4
  givenname: Junwei
  orcidid: 0000-0001-7810-4588
  surname: Lin
  fullname: Lin, Junwei
– sequence: 5
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 6
  givenname: Xiaohui
  surname: Zhang
  fullname: Zhang, Xiaohui
BookMark eNptkcFOGzEQhlcVlUopJ17AUo9VwF571_YxRKWNBAU1cLYGexyc7q63XqcInr4OaSVU1T7MaDTfr5n531cHQxywqk4YPeVc0zMYR8aZUEK0b6rDmsp2xgWTB6_yd9XxNG1oeZpxxehh9fwdJ4RkH0gcCJDzG_INtwm6EvJjTD_IqosjkhV4zE9kEdH7YAMOmdwkdMHmULir6LAj5zCh28ks-zHFXyVfjZBSfCTzbh1TyA89uR5z6MMz7LAP1VsP3YTHf-JRdXfx-XbxdXZ5_WW5mF_OrKA8zwRIbMGBa5SvtRcto652rfaN0xQRPBXMNkJKj6pW1irKRYsMC9d6Kxt-VC33ui7Cxowp9JCeTIRgXgoxrQ2kHGyHBnRTI957UC0TWnPlGw7cNa2VvgalitbHvVbZ8OcWp2w2cZuGMr6plai1LPfXpet037WGIhoGH3MCW77DPtjimg-lPpeNUo1knBaA7QGb4jQl9MaG_HKkAobOMGp2FptXFhfm0z_M39X-1_0b-_-pdw
CitedBy_id crossref_primary_10_1108_RIA_04_2024_0097
crossref_primary_10_1177_14727978251364452
crossref_primary_10_3390_app131910837
Cites_doi 10.1016/j.knosys.2021.106924
10.1007/s12665-013-2531-8
10.1080/19475705.2016.1144655
10.1016/j.measurement.2016.01.009
10.1007/s12665-018-7268-y
10.1007/s10706-015-9970-9
10.1016/j.physa.2019.124046
10.1007/s00366-015-0400-7
10.1109/4235.585892
10.1016/j.enggeo.2009.06.010
10.1007/s00366-015-0415-0
10.1007/s00366-019-00791-4
10.1007/s00521-013-1367-1
10.1080/21642583.2019.1708830
10.1016/j.scient.2011.03.007
10.1007/BF00332914
10.1016/j.measurement.2018.09.019
10.1016/j.cageo.2012.09.003
10.1007/s00521-016-2359-8
10.1007/s00366-018-0644-0
10.1109/NABIC.2009.5393690
10.1007/s10462-011-9208-z
10.1016/j.geomorph.2017.12.008
10.1007/s12517-015-2094-y
10.1016/j.compgeo.2005.06.002
10.1007/s12524-010-0020-z
10.1016/j.ssci.2019.104572
10.1109/ACCESS.2022.3182241
10.1007/s00521-019-04109-9
10.3390/app9245534
10.3390/s21041224
10.1007/s12517-013-1174-0
10.1016/j.aej.2021.12.057
10.1109/ACCESS.2022.3141432
10.1016/j.measurement.2014.09.075
10.1007/s00366-011-0241-y
10.1016/j.ijhydene.2020.12.107
10.1109/ICICN51133.2020.9205072
10.1007/s00521-016-2728-3
10.1007/s00366-017-0545-7
10.1680/jgeot.16.P.158
10.1016/j.jallcom.2020.154047
10.1007/s00366-015-0404-3
10.3390/ijgi8090391
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13148446
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Geology
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_a952eebfa86149938f53a3d56c7f2a88
A758857130
10_3390_app13148446
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-4a7e6adad58f29f4610d2d69f5d90eeaf041c5477fe828cc80346e1e4a76fc753
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035004900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:52:33 EDT 2025
Sun Sep 07 03:24:15 EDT 2025
Tue Nov 04 18:44:27 EST 2025
Sat Nov 29 07:16:31 EST 2025
Tue Nov 18 21:58:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-4a7e6adad58f29f4610d2d69f5d90eeaf041c5477fe828cc80346e1e4a76fc753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0458-9927
0000-0001-7810-4588
0000-0002-3234-6415
0009-0001-8154-6026
OpenAccessLink https://doaj.org/article/a952eebfa86149938f53a3d56c7f2a88
PQID 2842971489
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_a952eebfa86149938f53a3d56c7f2a88
proquest_journals_2842971489
gale_infotracacademiconefile_A758857130
crossref_citationtrail_10_3390_app13148446
crossref_primary_10_3390_app13148446
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mohamad (ref_47) 2018; 30
Cheng (ref_51) 2012; 21
Zang (ref_52) 2019; 28
Safa (ref_13) 2020; 550
Faradonbeh (ref_60) 2016; 32
Zhang (ref_34) 2007; 185
Raftari (ref_4) 2013; 18
Zhu (ref_37) 2021; 46
Gao (ref_43) 2022; 10
Erzin (ref_8) 2013; 51
Yang (ref_30) 2014; 24
Banimahd (ref_44) 2005; 32
Khajehzadeh (ref_14) 2022; 10
Pei (ref_3) 2019; 131
Saghatforoush (ref_59) 2016; 32
ref_25
Gandomi (ref_31) 2013; 29
Armaghani (ref_39) 2014; 7
ref_24
Prakash (ref_7) 2018; 77
Zhang (ref_38) 2022; 8
ref_21
Ausilio (ref_11) 2017; 104
Hongtao (ref_22) 2020; 123
Samui (ref_48) 2011; 18
Feng (ref_50) 1995; 4
Sun (ref_56) 2021; 21
ref_29
Vakhshoori (ref_12) 2016; 7
Hong (ref_9) 2016; 9
Kahatadeniya (ref_27) 2009; 108
Friedli (ref_1) 2017; 67
ref_36
Wang (ref_58) 2019; 59
Vogl (ref_16) 1988; 59
Gordan (ref_15) 2016; 32
ref_32
Manouchehrian (ref_49) 2014; 71
Moayedi (ref_5) 2010; 15
Khandelwal (ref_23) 2016; 34
Zhai (ref_57) 2011; 33
Li (ref_46) 2022; 61
Mohamad (ref_18) 2017; 28
Xue (ref_53) 2007; 12
Moayedi (ref_17) 2020; 32
Pradhan (ref_10) 2010; 38
Xue (ref_35) 2020; 8
Yang (ref_54) 2006; 7
Dorigo (ref_26) 1997; 1
Yuan (ref_28) 2020; 36
Momeni (ref_19) 2015; 60
Wan (ref_41) 2020; 826
Zhang (ref_42) 2021; 220
ref_45
Wang (ref_55) 2021; 51
ref_40
Shariati (ref_33) 2019; 33
Pham (ref_6) 2018; 303
Moayedi (ref_61) 2018; 34
Ding (ref_20) 2011; 36
Moayedi (ref_2) 2019; 35
References_xml – volume: 220
  start-page: 106924
  year: 2021
  ident: ref_42
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 71
  start-page: 1267
  year: 2014
  ident: ref_49
  article-title: Development of a model for analysis of slope stability for circular mode failure using genetic algorithm
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2531-8
– volume: 7
  start-page: 1731
  year: 2016
  ident: ref_12
  article-title: Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2016.1144655
– volume: 8
  start-page: 739
  year: 2022
  ident: ref_38
  article-title: Research on neural network wind speed prediction model based on improved sparrow algorithm optimization
  publication-title: Energy Rep.
– volume: 104
  start-page: 294
  year: 2017
  ident: ref_11
  article-title: Landslide characterization using a multidisciplinary approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.01.009
– volume: 77
  start-page: 146
  year: 2018
  ident: ref_7
  article-title: Bagging based support vector machines for spatial prediction of landslides
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7268-y
– volume: 34
  start-page: 605
  year: 2016
  ident: ref_23
  article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-015-9970-9
– volume: 550
  start-page: 124046
  year: 2020
  ident: ref_13
  article-title: Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.124046
– volume: 32
  start-page: 85
  year: 2016
  ident: ref_15
  article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0400-7
– volume: 1
  start-page: 53
  year: 1997
  ident: ref_26
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585892
– volume: 108
  start-page: 133
  year: 2009
  ident: ref_27
  article-title: Determination of the critical failure surface for slope stability analysis using ant colony optimization
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.06.010
– volume: 32
  start-page: 255
  year: 2016
  ident: ref_59
  article-title: Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0415-0
– volume: 36
  start-page: 1705
  year: 2020
  ident: ref_28
  article-title: The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00791-4
– volume: 21
  start-page: 10
  year: 2012
  ident: ref_51
  article-title: Application of BP networks in the stability analysis of slopes in the open-pit mine
  publication-title: Min. Metall.
– volume: 24
  start-page: 169
  year: 2014
  ident: ref_30
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1367-1
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_35
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 15
  start-page: 93
  year: 2010
  ident: ref_5
  article-title: Optimization of shear behavior of reinforcement through the reinforced slope
  publication-title: Electron. J. Geotech. Eng.
– volume: 28
  start-page: 144
  year: 2019
  ident: ref_52
  article-title: Slope stability prediction of open-pit mine based on GA-BP model
  publication-title: China Min. Mag.
– volume: 185
  start-page: 1026
  year: 2007
  ident: ref_34
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– volume: 18
  start-page: 53
  year: 2011
  ident: ref_48
  article-title: Utilization of a least square support vector machine (LSSVM) for slope stability analysis
  publication-title: Sci. Iran.
  doi: 10.1016/j.scient.2011.03.007
– volume: 59
  start-page: 257
  year: 1988
  ident: ref_16
  article-title: Accelerating the convergence of the back-propagation method
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00332914
– volume: 131
  start-page: 686
  year: 2019
  ident: ref_3
  article-title: Slope stability analysis based on real-time displacement measurements
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.09.019
– volume: 51
  start-page: 305
  year: 2013
  ident: ref_8
  article-title: The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.09.003
– volume: 28
  start-page: 393
  year: 2017
  ident: ref_18
  article-title: An optimized ANN model based on genetic algorithm for predicting ripping production
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2359-8
– volume: 35
  start-page: 967
  year: 2019
  ident: ref_2
  article-title: Modification of landslide susceptibility mapping using optimized PSO-ANN technique
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-018-0644-0
– ident: ref_45
– ident: ref_29
  doi: 10.1109/NABIC.2009.5393690
– volume: 36
  start-page: 153
  year: 2011
  ident: ref_20
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9208-z
– volume: 18
  start-page: 797
  year: 2013
  ident: ref_4
  article-title: Settlement of shallow foundations near reinforced slopes
  publication-title: Electron. J. Geotech. Eng.
– volume: 303
  start-page: 256
  year: 2018
  ident: ref_6
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.008
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_9
  article-title: GIS-based landslide spatial modeling in Ganzhou City, China
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2094-y
– volume: 33
  start-page: 6
  year: 2011
  ident: ref_57
  article-title: Prediction of slope safety factor based on the RS-GP model
  publication-title: J. Univ. Sci. Technol. Beijing
– volume: 32
  start-page: 377
  year: 2005
  ident: ref_44
  article-title: Artificial neural network for stress–strain behavior of sandy soils: Knowledge based verification
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2005.06.002
– volume: 38
  start-page: 301
  year: 2010
  ident: ref_10
  article-title: Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-010-0020-z
– volume: 33
  start-page: 319
  year: 2019
  ident: ref_33
  article-title: Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures
  publication-title: Steel Compos. Struct.
– volume: 123
  start-page: 104572
  year: 2020
  ident: ref_22
  article-title: Smart safety early warning model of landslide geological hazard based on BP neural network
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.104572
– volume: 10
  start-page: 62520
  year: 2022
  ident: ref_43
  article-title: Research on Multistrategy Improved Evolutionary Sparrow Search Algorithm and its Application
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3182241
– volume: 32
  start-page: 495
  year: 2020
  ident: ref_17
  article-title: A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04109-9
– ident: ref_21
– ident: ref_32
  doi: 10.3390/app9245534
– volume: 4
  start-page: 54
  year: 1995
  ident: ref_50
  article-title: Neural network estimation of slope stability
  publication-title: J. Eng. Geol.
– volume: 51
  start-page: 140
  year: 2021
  ident: ref_55
  article-title: Study on stability prediction of high cutting slope based on GM-RBF combination model
  publication-title: Build. Struct.
– ident: ref_36
  doi: 10.3390/s21041224
– volume: 7
  start-page: 5383
  year: 2014
  ident: ref_39
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-013-1174-0
– ident: ref_25
– volume: 61
  start-page: 7141
  year: 2022
  ident: ref_46
  article-title: Evaluation of urban green space landscape planning scheme based on PSO-BP neural network model
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.12.057
– volume: 12
  start-page: 2643
  year: 2007
  ident: ref_53
  article-title: Evaluation of slope stability based on genetic algorithm and fuzzy neural network
  publication-title: Rock Soil Mech.
– volume: 10
  start-page: 5660
  year: 2022
  ident: ref_14
  article-title: An Effective Artificial Intelligence Approach for Slope Stability Evaluation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3141432
– volume: 60
  start-page: 50
  year: 2015
  ident: ref_19
  article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.075
– volume: 29
  start-page: 17
  year: 2013
  ident: ref_31
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– volume: 7
  start-page: 75
  year: 2006
  ident: ref_54
  article-title: Study on the Application of Mixed Genetic-Neural Network in Slope Stability Evaluation
  publication-title: China Rural Water Hydropower
– volume: 46
  start-page: 9541
  year: 2021
  ident: ref_37
  article-title: Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.12.107
– ident: ref_24
  doi: 10.1109/ICICN51133.2020.9205072
– volume: 30
  start-page: 1635
  year: 2018
  ident: ref_47
  article-title: Rock strength estimation: A PSO-based BP approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2728-3
– volume: 34
  start-page: 347
  year: 2018
  ident: ref_61
  article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0545-7
– volume: 67
  start-page: 890
  year: 2017
  ident: ref_1
  article-title: Lateral earth pressures in constrained landslides
  publication-title: Géotechnique
  doi: 10.1680/jgeot.16.P.158
– volume: 21
  start-page: 12234
  year: 2021
  ident: ref_56
  article-title: Application of Relevance Vector Machine Model in Slope Stability Prediction
  publication-title: Sci. Technol. Eng.
– volume: 59
  start-page: 94
  year: 2019
  ident: ref_58
  article-title: Prediction of Slope Stability Coefficient Based on Grid Search Support Vector Machine
  publication-title: Railw. Eng.
– volume: 826
  start-page: 154047
  year: 2020
  ident: ref_41
  article-title: Research on hot deformation behavior of Zr-4 alloy based on PSO-BP artificial neural network
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154047
– volume: 32
  start-page: 123
  year: 2016
  ident: ref_60
  article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0404-3
– ident: ref_40
  doi: 10.3390/ijgi8090391
SSID ssj0000913810
Score 2.3051703
Snippet Through the stability evaluation of a slope, a landslide geological disaster can be identified, and the safety and risk control of a project can be ensured....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8446
SubjectTerms Accuracy
Algorithms
Analysis
Back propagation
BP neural network
Economic development
Food
Foraging behavior
Geology
Intelligence
Landslides
Landslides & mudslides
Learning strategies
Machine learning
Mathematical functions
neural network optimization
Neural networks
Optimization algorithms
Research methodology
Sensors
slope safety factor
sparrow search algorithm
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BC1I5AA0gAgXtoRIPyarfuz6hpGrhFCICUm-r9e5sQUrjNDFI5dczY29CDsCFm2WvV2PNeF478w3AcaXIjDibRVJhHuV17COFXDSuDMXPqSGTZLthE3IyURcX1TQk3NahrHKjEztF7RrLOfITUqNpJcl5r94tryOeGsWnq2GExm3YZ6QykvP98dlk-mmbZWHUS5XEfWNeRvE9nwsnGW2Ts8u7Y4o6xP6_6eXO2Jw_-F8yH8L94GaKUS8Xh3ALFwO4twM-OIC777uhvjcDOAw_-Fq8DijUbx7Bz01NnmgWwojxVDCOB-056QvHxWzeLFHMjMf2Rpw22GFRkAkT0xUf_jDDBU9am4sxWUrH2_QZDLqeLTvsRzGaXxLx7dcr8ZFU11XoCX0MX87PPp9-iMKghsjmcdZGuZFYGmdcoXxaeYZwd6krK1-4KkY0Ps4TW-RSeqQAz1oVZ3mJCdJ73GpUZE9gb9Es8CkIabxixPda1TKvE1SxL9MYE2uRq13VEN5ueKZtQDHnYRpzTdEMM1jvMHgIx9vFyx6848_Lxsz87RJG3O5uNKtLHX5gbaoiRay9UeTQkFOnfJGZzBWllT41igh7xaKjWS8QQdaE9gb6LEbY0iMKzFQhyWUYwtFGdHRQGGv9W26e_fvxczjgifd9xfAR7LWr7_gC7tgf7bf16mWQ_1-H2Q-E
  priority: 102
  providerName: ProQuest
Title Research on a BP Neural Network Slope Safety Coefficient Prediction Model Based on Improved Sparrow Algorithm Optimization
URI https://www.proquest.com/docview/2842971489
https://doaj.org/article/a952eebfa86149938f53a3d56c7f2a88
Volume 13
WOSCitedRecordID wos001035004900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQywEOVVtAbCmVD5V4SBF5OLF93K1awYElYkEqJ8txxlBpu1ntBiT49cw43ioHEBduSeRYE8_Ynyee-Yaxc60QRlpXJFKBSEST-kQBBY0ri_5zbhGSXCg2IedzdX2t61GpL4oJG-iBh4F7Y3WZAzTeKgQSBFPly8IWbVk56XOrQppvKvXImQprsM6IumpIyCvQr6fz4KzAvb-gre4IggJT_9_W4wAyV4fsIO4O-XSQ6ojdg9UxezjiDDxmR3E2bvnLSBn96hH7tQug492KWz6rOZFuYE_zIcqbL5bdGvjCeuh_8osOAnEE4g2vN3RSQ9rhVBZtyWcIay11M_xuwOvFOhA18unya7e56b_d8g-4ztzGBM7H7PPV5aeLt0msqpA4kRZ9IqyEyra2LZXPtSe-9TZvK-3LVqcA1qcic6WQ0gN6Y86ptBAVZIDvUV5QWTxhe6tuBU8Zl9YromdvVCNFk4FKfZWnkDkHFJqqJuz1bqCNi5TjVPliadD1IK2YkVYm7Pyu8Xpg2vhzsxlp7K4J0WOHB2g0JhqN-ZfRTNgL0rehSYwCORtzEfCziA7LTNGLUiX67-mEne5MwsTZvTUI6bmWKI8--R_SPGMPqIj9EAR8yvb6zXd4zu67H_3NdnPG9meX8_rjWTBwvKvfva-__AYUiQCh
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKYhyABqoCBTYQxEPycJeP3Z9QCgplEZtg6UUqZzMer1bkNI4JAYUfhS_kRk_Qg7ArQdukbOx1pvP89id-T6AvViiG8m17whpAifIXOtIQ0XjUmH-zBW6JF2JTYjRSJ6dxckG_Gx7YaissrWJlaHOC0175C_QjPJYYPAev5p9cUg1ik5XWwmNGhZHZvkdU7bFy-Fr_H8fc37w5nT_0GlUBRwduH7pBEqYSOUqD6XlsSW-8ZznUWzDPHaNUdYNPB0GQliD2YjW0vWDyHgGf0d9MaQSgSZ_MyCwd2AzGZ4kH1a7OsSyKT23bgT0_dilc2jPx2kHFGKvub5KIeBvfqBybgc3_7dluQU3mjCa9Wvcb8OGmXbh-hq5Yheuvq1Ei5dd2G4M2II9bVi2n92GH23NISumTLFBwoinBO85qgvj2XhSzAwbK2vKJdsvTMW1gS6aJXM63CJAM1KSm7ABRgI53abeocHP41nFbcn6k3NcrPLTBXuHpvmi6Xm9A-8vZW12oDMtpuYuMKGsJEb7TGYiyDwjXRtx13haG6rmlT143mIk1Q1LO4mFTFLM1ghQ6RqgerC3GjyryUn-PGxAYFsNIUbx6kIxP08bA5WqOOTGZFZJDNgwaJU29JWfh5EWliuJE3tCUE3J7uGEtGraN_CxiEEs7WPiKUOBIVEPdluopo1BXKS_cXrv318_gmuHpyfH6fFwdHQftjjGlHV19C50yvlX8wCu6G_l58X8YfPuMfh42bj-BWTKbaY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKaByABpADRTYQxEfklV7_bU-IJS0BKJCsBSQysms17sFKY1DYkDhp_HrmLHXIQfg1gO3yFlb9vr5zczuzBuAg0SgGSmU78RCB06Qu8YRmpLGhcT4mUs0SapuNhGPx-L0NEm34GdbC0NplS0n1kRdlIrWyA-RRnkSo_OeHBqbFpEeD5_PvzjUQYp2Wtt2Gg1ETvTqO4Zvy2ejY3zXDzkfvnh39MqxHQYcFbh-5QQy1pEsZBEKwxND2uMFL6LEhEXiai2NG3gqDOLYaIxMlBKuH0Ta03ge1chQxwik_210yQPege109Cb9sF7hIcVN4blNUaDvJy7tSXs-PkJA7vaGGay7BfzNJtSGbnj9f56iG3DNutes33wPu7ClZ124uiG62IXLL-tmxqsu7FpiW7LHVn37yU340eYisnLGJBukjPRL8JrjJmGeTablXLOJNLpasaNS1xocaLpZuqBNLwI6ow5zUzZAD6GgyzQrN_h7Mq81L1l_eoaTVX06Z2-Rss9tLewteH8hc3MbOrNypveAxdIIUrrPRR4HuaeFayLuak8pTVm-ogdPW7xkyqq3UxORaYZRHIEr2wBXDw7Wg-eNaMmfhw0IeOshpDReHygXZ5klrkwmIdc6N1KgI4fOrDChL_0ijFRsuBR4Y48IthnxId6QkrasAx-LlMWyPgakIozRVerBfgvbzBLlMvuN2Tv__vsBXEEwZ69H45O7sMPR1WySpvehUy2-6ntwSX2rPi8X9-1nyODjRcP6FwmodmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+a+BP+Neural+Network+Slope+Safety+Coefficient+Prediction+Model+Based+on+Improved+Sparrow+Algorithm+Optimization&rft.jtitle=Applied+sciences&rft.au=Yiwen+Wang&rft.au=Dongna+Liu&rft.au=Haiyu+Dong&rft.au=Junwei+Lin&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=14&rft.spage=8446&rft_id=info:doi/10.3390%2Fapp13148446&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a952eebfa86149938f53a3d56c7f2a88
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon