Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments

Handling suspended loads in cluttered environments is critical due to the oscillations arising while the load is traveling. Exploiting active control algorithms is often unviable in industrial applications, due to the necessity of installing sensors on the load side, which is expensive and often imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Actuators Ročník 13; číslo 5; s. 176
Hlavní autoři: Bettega, Jason, Richiedei, Dario, Tamellin, Iacopo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2024
Témata:
ISSN:2076-0825, 2076-0825
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Handling suspended loads in cluttered environments is critical due to the oscillations arising while the load is traveling. Exploiting active control algorithms is often unviable in industrial applications, due to the necessity of installing sensors on the load side, which is expensive and often impractical due to technological limitations. In this light, this paper proposes a trajectory planning method for underactuated, non-flat, non-minimum phase spatial gantry crane moving in structured cluttered environments. The method relies on model inversion. First, the system dynamics is partitioned into actuated and unactuated coordinates and then the load displacements are described as a non-linear separable function of these. The unactuated dynamic is unstable; hence, the displacement, velocity, and acceleration references are modified through the output redefinition technique. Finally, platform trajectory is computed, and the desired displacements of the load are obtained. The effectiveness of the proposed method is assessed through numerical and experimental tests performed on a laboratory testbed composed by an Adept Quattro robot moving a pendulum. The load is moved in a cluttered environment, and collisions are avoided while simultaneously tracking the prescribed trajectory effectively.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-0825
2076-0825
DOI:10.3390/act13050176