A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting

•A combined model based on advanced optimization algorithm is successfully proposed.•Design three experiments from the real wind farm to verify the effectiveness.•The proposed combined model can enhance the forecasting accuracy significantly.•Experiments demonstrate the availability and reliability...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 215; pp. 643 - 658
Main Authors: Song, Jingjing, Wang, Jianzhou, Lu, Haiyan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2018
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A combined model based on advanced optimization algorithm is successfully proposed.•Design three experiments from the real wind farm to verify the effectiveness.•The proposed combined model can enhance the forecasting accuracy significantly.•Experiments demonstrate the availability and reliability of the developed model. Short-term wind speed forecasting has a significant influence on enhancing the operation efficiency and increasing the economic benefits of wind power generation systems. A substantial number of wind speed forecasting models, which are aimed at improving the forecasting performance, have been proposed. However, some conventional forecasting models do not consider the necessity and importance of data preprocessing. Moreover, they neglect the limitations of individual forecasting models, leading to poor forecasting accuracy. In this study, a novel model combining a data preprocessing technique, forecasting algorithms, an advanced optimization algorithm, and no negative constraint theory is developed. This combined model successfully overcomes some limitations of the individual forecasting models and effectively improves the forecasting accuracy. To estimate the effectiveness of the proposed combined model, 10-min wind speed data from the wind farm in Peng Lai, China are used as case studies. The experiment results demonstrate that the developed combined model is definitely superior compared to all other conventional models. Furthermore, it can be used as an effective technique for smart grid planning.
AbstractList Short-term wind speed forecasting has a significant influence on enhancing the operation efficiency and increasing the economic benefits of wind power generation systems. A substantial number of wind speed forecasting models, which are aimed at improving the forecasting performance, have been proposed. However, some conventional forecasting models do not consider the necessity and importance of data preprocessing. Moreover, they neglect the limitations of individual forecasting models, leading to poor forecasting accuracy. In this study, a novel model combining a data preprocessing technique, forecasting algorithms, an advanced optimization algorithm, and no negative constraint theory is developed. This combined model successfully overcomes some limitations of the individual forecasting models and effectively improves the forecasting accuracy. To estimate the effectiveness of the proposed combined model, 10-min wind speed data from the wind farm in Peng Lai, China are used as case studies. The experiment results demonstrate that the developed combined model is definitely superior compared to all other conventional models. Furthermore, it can be used as an effective technique for smart grid planning.
•A combined model based on advanced optimization algorithm is successfully proposed.•Design three experiments from the real wind farm to verify the effectiveness.•The proposed combined model can enhance the forecasting accuracy significantly.•Experiments demonstrate the availability and reliability of the developed model. Short-term wind speed forecasting has a significant influence on enhancing the operation efficiency and increasing the economic benefits of wind power generation systems. A substantial number of wind speed forecasting models, which are aimed at improving the forecasting performance, have been proposed. However, some conventional forecasting models do not consider the necessity and importance of data preprocessing. Moreover, they neglect the limitations of individual forecasting models, leading to poor forecasting accuracy. In this study, a novel model combining a data preprocessing technique, forecasting algorithms, an advanced optimization algorithm, and no negative constraint theory is developed. This combined model successfully overcomes some limitations of the individual forecasting models and effectively improves the forecasting accuracy. To estimate the effectiveness of the proposed combined model, 10-min wind speed data from the wind farm in Peng Lai, China are used as case studies. The experiment results demonstrate that the developed combined model is definitely superior compared to all other conventional models. Furthermore, it can be used as an effective technique for smart grid planning.
Author Wang, Jianzhou
Lu, Haiyan
Song, Jingjing
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Song
  fullname: Song, Jingjing
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian, China
– sequence: 2
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wjz@lzu.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian, China
– sequence: 3
  givenname: Haiyan
  surname: Lu
  fullname: Lu, Haiyan
  organization: School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia
BookMark eNqFkE1PxCAQhonRxPXjL5gevbQOlG3ZxIPG-JWYeNEzoXS6smmhArtGf73U1YuXvcAMzPMm8xyRfessEnJGoaBAq4tVoUa06JefBQMqCmAF1LBHZlTULF9QKvbJDEqoclbRxSE5CmEFAIwymBG8zqzbYJ9pNzTGYpsNrk1to0Kqnc1Uu1FWT_UYzWC-VDTTa7903sS3Ieucz8Kb8zGP6Ifsw9g2CyMmIP2gViEauzwhB53qA57-3sfk9e725eYhf3q-f7y5fso1hzLmnCpacV6KrhUcBWOsa5umo23D02LA-VzV1bzEuaKoUdRC8XohFNPNosaKi_KYnG9zR-_e1xiiHEzQ2PfKolsHyYDPBavTkUar7aj2LgSPnRy9GZT_lBTk5FWu5J9XOXmVwGTymsDLf6A28cdK9Mr0u_GrLY7Jw8agl0EbnAybpCvK1pldEd945Zxi
CitedBy_id crossref_primary_10_1016_j_egyr_2023_01_094
crossref_primary_10_1016_j_jclepro_2024_144124
crossref_primary_10_1177_0958305X241228515
crossref_primary_10_1155_2021_9085617
crossref_primary_10_1016_j_chaos_2023_113692
crossref_primary_10_1016_j_energy_2024_133206
crossref_primary_10_1016_j_energy_2024_133208
crossref_primary_10_1016_j_energy_2022_126589
crossref_primary_10_3390_en17091996
crossref_primary_10_1007_s11771_022_5051_4
crossref_primary_10_1016_j_energy_2022_123990
crossref_primary_10_1155_2022_2721490
crossref_primary_10_1155_2020_9601763
crossref_primary_10_1016_j_apenergy_2022_118796
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1016_j_jclepro_2019_117774
crossref_primary_10_1016_j_ins_2020_08_053
crossref_primary_10_1016_j_renene_2023_05_006
crossref_primary_10_1002_for_3198
crossref_primary_10_1016_j_eswa_2019_113125
crossref_primary_10_1007_s00500_020_04680_7
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_1016_j_apenergy_2023_122553
crossref_primary_10_1016_j_energy_2022_123761
crossref_primary_10_1016_j_energy_2020_118980
crossref_primary_10_1049_rpg2_12384
crossref_primary_10_1016_j_energy_2020_119397
crossref_primary_10_1109_ACCESS_2020_2978169
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1016_j_jclepro_2020_120378
crossref_primary_10_1016_j_apenergy_2020_114850
crossref_primary_10_1007_s10489_023_04599_0
crossref_primary_10_1016_j_scs_2022_104034
crossref_primary_10_1016_j_apenergy_2019_05_016
crossref_primary_10_1016_j_renene_2020_01_062
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_3390_pr9101793
crossref_primary_10_3390_su11030650
crossref_primary_10_1007_s40998_020_00347_z
crossref_primary_10_1016_j_apenergy_2018_11_012
crossref_primary_10_1061_JHYEFF_HEENG_5946
crossref_primary_10_3390_pr9020387
crossref_primary_10_1016_j_apenergy_2022_119420
crossref_primary_10_3390_en16145281
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_1109_ACCESS_2022_3192433
crossref_primary_10_1016_j_apenergy_2018_09_062
crossref_primary_10_1016_j_knosys_2024_112943
crossref_primary_10_1080_15567036_2018_1495782
crossref_primary_10_1016_j_seta_2021_101346
crossref_primary_10_1016_j_apenergy_2019_03_044
crossref_primary_10_1016_j_energy_2022_123785
crossref_primary_10_3390_app8112293
crossref_primary_10_1111_joes_70005
crossref_primary_10_1016_j_energy_2022_125609
crossref_primary_10_1016_j_apenergy_2021_117992
crossref_primary_10_1109_ACCESS_2021_3055247
crossref_primary_10_1016_j_renene_2021_04_091
crossref_primary_10_1016_j_energy_2020_117794
crossref_primary_10_1016_j_energy_2022_124095
crossref_primary_10_1016_j_enconman_2018_11_006
crossref_primary_10_1016_j_energy_2022_126034
crossref_primary_10_1016_j_apenergy_2018_12_076
crossref_primary_10_1016_j_chaos_2022_112285
crossref_primary_10_1016_j_physa_2018_12_017
crossref_primary_10_1016_j_renene_2022_09_114
crossref_primary_10_1016_j_enconman_2021_113960
crossref_primary_10_1016_j_enconman_2021_114136
crossref_primary_10_3390_en11071712
crossref_primary_10_1002_ese3_1968
crossref_primary_10_1007_s00202_024_02681_5
crossref_primary_10_1016_j_apenergy_2019_114137
crossref_primary_10_3390_math12132105
crossref_primary_10_1007_s13131_022_1994_4
crossref_primary_10_1016_j_energy_2024_133510
crossref_primary_10_1088_1742_6596_1618_6_062071
crossref_primary_10_1016_j_jbi_2020_103575
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1177_0309524X19849843
crossref_primary_10_1016_j_eswa_2021_116450
crossref_primary_10_1016_j_knosys_2021_107297
crossref_primary_10_3390_en13236241
crossref_primary_10_1109_TVT_2019_2952605
crossref_primary_10_1016_j_knosys_2023_110297
crossref_primary_10_1007_s40864_023_00205_1
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_3390_atmos14020395
crossref_primary_10_1016_j_energy_2021_120904
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_1007_s10489_024_05331_2
crossref_primary_10_1016_j_energy_2022_126172
crossref_primary_10_1016_j_apm_2018_10_019
crossref_primary_10_1109_ACCESS_2019_2951153
crossref_primary_10_1016_j_enconman_2018_12_020
crossref_primary_10_1007_s12559_019_09698_0
crossref_primary_10_3390_en15030751
crossref_primary_10_1016_j_asoc_2018_09_005
crossref_primary_10_1007_s12145_023_01002_x
crossref_primary_10_1016_j_eswa_2023_120880
crossref_primary_10_1007_s00500_023_09197_3
crossref_primary_10_1016_j_energy_2024_130580
crossref_primary_10_1109_TSTE_2024_3477288
crossref_primary_10_1016_j_seta_2020_100946
crossref_primary_10_1016_j_apenergy_2018_05_043
crossref_primary_10_1016_j_jclepro_2024_143445
crossref_primary_10_1016_j_egyr_2023_05_034
crossref_primary_10_1016_j_energy_2021_122630
crossref_primary_10_1109_TETCI_2024_3400852
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_3390_su16010094
crossref_primary_10_1016_j_apenergy_2018_08_114
crossref_primary_10_1007_s13042_019_00922_9
crossref_primary_10_1007_s00521_023_09202_8
crossref_primary_10_1155_2020_7854286
crossref_primary_10_3390_app11114795
crossref_primary_10_1016_j_asoc_2022_109690
crossref_primary_10_1016_j_eswa_2022_118789
crossref_primary_10_4018_JOEUC_300762
crossref_primary_10_3390_en15186545
crossref_primary_10_1016_j_renene_2021_04_041
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_1109_ACCESS_2020_3011060
crossref_primary_10_1109_MCI_2021_3084416
crossref_primary_10_1016_j_apenergy_2018_11_063
crossref_primary_10_3390_modelling5030054
crossref_primary_10_1016_j_asoc_2020_106294
crossref_primary_10_1016_j_asoc_2021_107444
crossref_primary_10_1016_j_apenergy_2019_113353
crossref_primary_10_1016_j_energy_2023_129728
crossref_primary_10_1016_j_epsr_2022_108863
crossref_primary_10_1016_j_renene_2025_124028
crossref_primary_10_1007_s11869_020_00948_x
crossref_primary_10_1177_0958305X18787258
crossref_primary_10_1016_j_energy_2024_133826
crossref_primary_10_3390_app11209383
crossref_primary_10_1080_21642583_2024_2399057
crossref_primary_10_1016_j_jclepro_2021_125981
crossref_primary_10_1016_j_seta_2021_101853
crossref_primary_10_1016_j_energy_2019_115940
crossref_primary_10_3390_sym17010050
crossref_primary_10_1002_we_2763
crossref_primary_10_1016_j_enconman_2021_115086
crossref_primary_10_3390_en14123459
crossref_primary_10_3390_su10082627
crossref_primary_10_1016_j_apenergy_2021_117911
crossref_primary_10_1016_j_renene_2025_123965
crossref_primary_10_1016_j_epsr_2024_110156
crossref_primary_10_3390_en17143480
crossref_primary_10_1016_j_apenergy_2025_126615
crossref_primary_10_1186_s42162_025_00568_8
crossref_primary_10_1016_j_renene_2021_04_028
crossref_primary_10_1016_j_asoc_2019_105548
crossref_primary_10_1016_j_energy_2022_125208
crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_1016_j_gloei_2019_11_004
crossref_primary_10_1016_j_apm_2021_07_024
crossref_primary_10_3390_ijerph15091941
crossref_primary_10_1016_j_apenergy_2018_07_050
crossref_primary_10_1016_j_apenergy_2019_113686
crossref_primary_10_1016_j_energy_2019_02_194
crossref_primary_10_1016_j_ijepes_2022_108073
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_3390_math13050813
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1016_j_apenergy_2022_120601
crossref_primary_10_1002_we_2737
crossref_primary_10_1016_j_energy_2023_128048
crossref_primary_10_1007_s12652_022_04423_6
crossref_primary_10_1016_j_eswa_2021_115579
crossref_primary_10_3390_en16124766
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1186_s41601_021_00214_x
crossref_primary_10_1016_j_rineng_2024_103626
crossref_primary_10_1016_j_energy_2023_126778
crossref_primary_10_1093_ce_zkac011
crossref_primary_10_1016_j_rser_2020_109856
crossref_primary_10_3390_en11112976
crossref_primary_10_3390_math12162581
crossref_primary_10_1007_s00521_023_08807_3
crossref_primary_10_1016_j_aei_2021_101290
crossref_primary_10_1016_j_jobe_2022_104975
crossref_primary_10_1109_LGRS_2024_3436042
crossref_primary_10_1016_j_asoc_2020_106996
crossref_primary_10_1002_ep_14584
crossref_primary_10_1109_ACCESS_2019_2942040
crossref_primary_10_1016_j_aei_2022_101806
crossref_primary_10_3390_su16219486
crossref_primary_10_3390_pr12010191
crossref_primary_10_1007_s00500_021_06661_w
crossref_primary_10_1016_j_apenergy_2018_10_080
crossref_primary_10_1016_j_rser_2019_109570
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1111_mice_12654
crossref_primary_10_3389_fenrg_2021_836144
crossref_primary_10_1016_j_energy_2021_122128
crossref_primary_10_1016_j_ijepes_2021_107712
crossref_primary_10_3390_data9010013
crossref_primary_10_1016_j_apenergy_2018_03_180
crossref_primary_10_3390_su10093202
crossref_primary_10_1049_tje2_12151
crossref_primary_10_1016_j_apm_2019_07_001
crossref_primary_10_1016_j_seta_2021_101940
crossref_primary_10_1109_ACCESS_2020_2982839
crossref_primary_10_1109_ACCESS_2020_3046001
crossref_primary_10_3390_en12101931
Cites_doi 10.1016/j.apenergy.2009.12.013
10.1016/j.knosys.2013.11.015
10.1016/j.enconman.2017.06.021
10.1016/j.enconman.2017.04.007
10.1016/j.energy.2010.05.041
10.1016/j.apenergy.2012.03.054
10.1016/j.renene.2017.02.014
10.1016/j.epsr.2005.09.018
10.1016/j.rser.2014.12.012
10.1016/j.apenergy.2016.08.108
10.1016/j.apenergy.2017.10.031
10.1016/j.enconman.2017.01.022
10.1016/j.rser.2006.10.007
10.1016/j.energy.2015.01.063
10.1016/j.apenergy.2016.06.098
10.1016/j.renene.2008.09.006
10.1016/S0167-6105(00)00079-9
10.1098/rspa.1998.0193
10.1016/j.econmod.2013.09.033
10.1016/j.apenergy.2017.01.043
10.1016/j.enconman.2017.07.065
10.1016/j.apenergy.2010.10.031
10.1016/j.ins.2014.02.159
10.1016/j.rser.2008.02.002
10.1016/j.neucom.2016.03.061
10.1016/j.energy.2018.01.112
10.1016/j.advengsoft.2013.12.007
10.1016/j.apenergy.2015.10.145
10.1080/07350015.1995.10524599
10.1016/j.phpro.2012.03.338
10.1016/j.apenergy.2015.02.032
10.1016/j.enconman.2010.11.007
10.1016/j.enpol.2013.04.056
10.1016/j.renene.2018.01.113
10.1016/j.apenergy.2017.01.063
10.1142/S1793536909000047
10.1016/j.bspc.2014.06.009
10.1016/j.apenergy.2013.02.002
10.1016/j.ijforecast.2015.03.001
10.1016/j.apenergy.2015.08.014
10.1016/j.apenergy.2017.04.039
10.1016/j.apenergy.2012.04.037
10.1016/j.knosys.2011.04.019
10.1016/j.apenergy.2015.12.082
10.3390/e19020052
10.1016/j.rser.2013.12.054
10.1016/j.enpol.2012.05.026
10.1016/j.energy.2015.08.045
10.1016/j.atmosenv.2016.10.046
10.1016/j.rser.2014.03.033
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2018.02.070
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 658
ExternalDocumentID 10_1016_j_apenergy_2018_02_070
S0306261918301971
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c403t-41a164438fd84e8222fdbbf1db40180445a7653e5a1ece878a4798a2cb97e6483
ISICitedReferencesCount 216
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428974500052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 18:55:24 EDT 2025
Sat Nov 29 07:20:01 EST 2025
Tue Nov 18 21:45:44 EST 2025
Fri Feb 23 02:31:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combined model
Advanced optimization algorithm
Data preprocessing technique
Wind speed forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-41a164438fd84e8222fdbbf1db40180445a7653e5a1ece878a4798a2cb97e6483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2045827458
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2045827458
crossref_primary_10_1016_j_apenergy_2018_02_070
crossref_citationtrail_10_1016_j_apenergy_2018_02_070
elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_02_070
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiao, Wang, Hou, Wu (b0230) 2015; 82
Chen, Hou (b0280) 2002
Georgilakis (b0010) 2008; 12
Akçay, Filik (b0025) 2017; 191
Liu, Tian, Liang, Li (b0165) 2015; 157
Jung, Broadwater (b0120) 2014; 31
Xiao, Shao, Yu, Ma, Jin (b0175) 2017; 198
Colominas, Schlotthauer, Torres (b0205) 2014; 14
Wang, Du, Niu, Yang (b0215) 2017; 208
Li, Shi (b0130) 2010; 87
Huang, Shen, Long, Wu, Shih, Zheng (b0195) 1998; 454
Zhang, Qu, Zhang, Mao, Ma, Fan (b0190) 2017; 136
Wang, Wang, Li, Peng, Liu (b0015) 2016; 182
Ait Maatallah, Achuthan, Janoyan, Marzocca (b0105) 2015; 145
Chenthur Pandian, Duraiswamy, Rajan, Kanagaraj (b0155) 2006; 76
Mirjalili, Mirjalili, Lewis (b0265) 2014; 69
Zhao, Wei, Su (b0070) 2016; 178
Zhang, Zhou, Li, Fu, Peng (b0110) 2017; 143
Feng, Cui, Hodge, Zhang (b0220) 2017; 190
.
Du, Wang, Yang, Niu (b0135) 2018; 122
Wang, Hu (b0035) 2015; 93
Hong, Chang, Chiu (b0150) 2010; 35
Xiao, Wang, Dong, Wu (b0235) 2015; 44
Negnevitsky, Johnson, Santoso (b0055) 2007
Iversen, Morales, Møller, Madsen (b0225) 2015; 32
Wang, Zhang, Liu, Wang (b0250) 2012; 25
Kavasseri, Seetharaman (b0095) 2009; 34
Global Wind Energy Council. Global wind statistics (2016), p. 2017
Marvuglia, Messineo (b0255) 2012; 98
Zhang, Wei, Xie, Shen, Zhang (b0170) 2016; 205
Han, Meng, Hu, Chu (b0100) 2017; 148
Zhang, Sun, Cheng (b0030) 2013; 59
Cheng, Wei (b0140) 2014; 36
Wu, Huang (b0200) 2009; 2009
Guo, Wu, Lu, Wang (b0160) 2011; 24
Erdem, Shi (b0085) 2011; 88
Tascikaraoglu, Sanandaji, Poolla, Varaiya (b0115) 2016; 165
Wang, Zhang, Wang, Han, Kong (b0005) 2014; 273
Zhao, Guo, Su, Zhao, Xiao, Liu (b0045) 2016; 162
Landberg (b0050) 2001; 89
Yang, Wang, Wang (b0210) 2017; 19
Xu, Yang, Wang (b0270) 2017; 148
Liu, Tian, Pan, Li (b0125) 2013; 107
Cassola, Burlando (b0065) 2012; 99
Tascikaraoglu, Uzunoglu (b0185) 2014; 34
Torres, Colominas, Schlotthauer, Flandrin (b0260) 2011
Ren, An, Wang, Li, Hu, Shang (b0240) 2014; 56
Du, Wang, Guo, Yang (b0080) 2017; 150
Ramesh Babu, Jagan (b0145) 2015
Wang, Wang, Zhao, Dong (b0090) 2012; 48
Diebold, Mariano (b0275) 1995; 13
Zhou, Shi, Li (b0180) 2011; 52
Wang, Yang, Du, Li (b0245) 2018; 148
Soman, Zareipour, Malik, Mandal (b0075) 2010
Cheng, Liu, Bourgeois, Wu, Haupt (b0060) 2017; 107
Lei, Shiyan, Chuanwen, Hongling, Yan (b0040) 2009; 13
Zhao (10.1016/j.apenergy.2018.02.070_b0045) 2016; 162
Huang (10.1016/j.apenergy.2018.02.070_b0195) 1998; 454
Hong (10.1016/j.apenergy.2018.02.070_b0150) 2010; 35
Negnevitsky (10.1016/j.apenergy.2018.02.070_b0055) 2007
Xiao (10.1016/j.apenergy.2018.02.070_b0175) 2017; 198
Wang (10.1016/j.apenergy.2018.02.070_b0215) 2017; 208
Du (10.1016/j.apenergy.2018.02.070_b0135) 2018; 122
Jung (10.1016/j.apenergy.2018.02.070_b0120) 2014; 31
Wu (10.1016/j.apenergy.2018.02.070_b0200) 2009; 2009
Han (10.1016/j.apenergy.2018.02.070_b0100) 2017; 148
Zhang (10.1016/j.apenergy.2018.02.070_b0190) 2017; 136
Zhang (10.1016/j.apenergy.2018.02.070_b0170) 2016; 205
Wang (10.1016/j.apenergy.2018.02.070_b0005) 2014; 273
Li (10.1016/j.apenergy.2018.02.070_b0130) 2010; 87
Ren (10.1016/j.apenergy.2018.02.070_b0240) 2014; 56
Xiao (10.1016/j.apenergy.2018.02.070_b0235) 2015; 44
Zhang (10.1016/j.apenergy.2018.02.070_b0110) 2017; 143
Tascikaraoglu (10.1016/j.apenergy.2018.02.070_b0115) 2016; 165
Kavasseri (10.1016/j.apenergy.2018.02.070_b0095) 2009; 34
Ramesh Babu (10.1016/j.apenergy.2018.02.070_b0145) 2015
Feng (10.1016/j.apenergy.2018.02.070_b0220) 2017; 190
10.1016/j.apenergy.2018.02.070_b0020
Lei (10.1016/j.apenergy.2018.02.070_b0040) 2009; 13
Diebold (10.1016/j.apenergy.2018.02.070_b0275) 1995; 13
Wang (10.1016/j.apenergy.2018.02.070_b0015) 2016; 182
Soman (10.1016/j.apenergy.2018.02.070_b0075) 2010
Erdem (10.1016/j.apenergy.2018.02.070_b0085) 2011; 88
Landberg (10.1016/j.apenergy.2018.02.070_b0050) 2001; 89
Zhao (10.1016/j.apenergy.2018.02.070_b0070) 2016; 178
Liu (10.1016/j.apenergy.2018.02.070_b0165) 2015; 157
Mirjalili (10.1016/j.apenergy.2018.02.070_b0265) 2014; 69
Guo (10.1016/j.apenergy.2018.02.070_b0160) 2011; 24
Georgilakis (10.1016/j.apenergy.2018.02.070_b0010) 2008; 12
Cheng (10.1016/j.apenergy.2018.02.070_b0140) 2014; 36
Cassola (10.1016/j.apenergy.2018.02.070_b0065) 2012; 99
Wang (10.1016/j.apenergy.2018.02.070_b0035) 2015; 93
Marvuglia (10.1016/j.apenergy.2018.02.070_b0255) 2012; 98
Chen (10.1016/j.apenergy.2018.02.070_b0280) 2002
Ait Maatallah (10.1016/j.apenergy.2018.02.070_b0105) 2015; 145
Iversen (10.1016/j.apenergy.2018.02.070_b0225) 2015; 32
Tascikaraoglu (10.1016/j.apenergy.2018.02.070_b0185) 2014; 34
Du (10.1016/j.apenergy.2018.02.070_b0080) 2017; 150
Yang (10.1016/j.apenergy.2018.02.070_b0210) 2017; 19
Xiao (10.1016/j.apenergy.2018.02.070_b0230) 2015; 82
Colominas (10.1016/j.apenergy.2018.02.070_b0205) 2014; 14
Zhou (10.1016/j.apenergy.2018.02.070_b0180) 2011; 52
Liu (10.1016/j.apenergy.2018.02.070_b0125) 2013; 107
Chenthur Pandian (10.1016/j.apenergy.2018.02.070_b0155) 2006; 76
Akçay (10.1016/j.apenergy.2018.02.070_b0025) 2017; 191
Xu (10.1016/j.apenergy.2018.02.070_b0270) 2017; 148
Cheng (10.1016/j.apenergy.2018.02.070_b0060) 2017; 107
Wang (10.1016/j.apenergy.2018.02.070_b0250) 2012; 25
Zhang (10.1016/j.apenergy.2018.02.070_b0030) 2013; 59
Wang (10.1016/j.apenergy.2018.02.070_b0245) 2018; 148
Wang (10.1016/j.apenergy.2018.02.070_b0090) 2012; 48
Torres (10.1016/j.apenergy.2018.02.070_b0260) 2011
References_xml – volume: 34
  start-page: 243
  year: 2014
  end-page: 254
  ident: b0185
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
– volume: 208
  start-page: 344
  year: 2017
  end-page: 360
  ident: b0215
  article-title: A novel hybrid system based on a new proposed algorithm – multi-objective whale optimization algorithm for wind speed forecasting
  publication-title: Appl Energy
– volume: 19
  year: 2017
  ident: b0210
  article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting
  publication-title: Entropy
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0200
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adapt Data Anal
– volume: 190
  start-page: 1245
  year: 2017
  end-page: 1257
  ident: b0220
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl Energy
– volume: 148
  start-page: 239
  year: 2017
  end-page: 257
  ident: b0270
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos Environ
– volume: 93
  start-page: 41
  year: 2015
  end-page: 56
  ident: b0035
  article-title: A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
  publication-title: Energy
– volume: 89
  start-page: 235
  year: 2001
  end-page: 245
  ident: b0050
  article-title: Short-term prediction of local wind conditions
  publication-title: J Wind Eng Ind Aerodyn
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0145
  article-title: Fault classification in power systems using EMD and SVM
  publication-title: Ain Shams Eng J
– volume: 56
  start-page: 226
  year: 2014
  end-page: 239
  ident: b0240
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowledge-Based Syst
– volume: 148
  start-page: 554
  year: 2017
  end-page: 568
  ident: b0100
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers Manag
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0275
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
– volume: 107
  start-page: 340
  year: 2017
  end-page: 351
  ident: b0060
  article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation
  publication-title: Renew Energy
– start-page: 4144
  year: 2011
  end-page: 4147
  ident: b0260
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: ICASSP IEEE Int Conf Acoust Speech Signal Process – Proc
– volume: 87
  start-page: 2313
  year: 2010
  end-page: 2320
  ident: b0130
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
– volume: 150
  start-page: 90
  year: 2017
  end-page: 107
  ident: b0080
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers Manag
– volume: 36
  start-page: 136
  year: 2014
  end-page: 141
  ident: b0140
  article-title: A novel time-series model based on empirical mode decomposition for forecasting TAIEX
  publication-title: Econ Model
– volume: 145
  start-page: 191
  year: 2015
  end-page: 197
  ident: b0105
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl Energy
– volume: 44
  start-page: 271
  year: 2015
  end-page: 288
  ident: b0235
  article-title: Combined forecasting models for wind energy forecasting: a case study in China
  publication-title: Renew Sustain Energy Rev
– reference: Global Wind Energy Council. Global wind statistics (2016), p. 2017 <
– volume: 12
  start-page: 852
  year: 2008
  end-page: 863
  ident: b0010
  article-title: Technical challenges associated with the integration of wind power into power systems
  publication-title: Renew Sustain Energy Rev
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: b0095
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: b0180
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 148
  start-page: 59
  year: 2018
  end-page: 78
  ident: b0245
  article-title: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system
  publication-title: Energy
– start-page: 1
  year: 2007
  end-page: 4
  ident: b0055
  article-title: Short term wind power forecasting using hybrid intelligent systems
  publication-title: 2007 IEEE Power Eng Soc Gen Meet
– volume: 107
  start-page: 191
  year: 2013
  end-page: 208
  ident: b0125
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
  publication-title: Appl Energy
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b0065
  article-title: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
  publication-title: Appl Energy
– volume: 205
  start-page: 53
  year: 2016
  end-page: 63
  ident: b0170
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
– start-page: 1
  year: 2010
  end-page: 8
  ident: b0075
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
  publication-title: North Am Power Symp
– volume: 14
  start-page: 19
  year: 2014
  end-page: 29
  ident: b0205
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomed Signal Process Control
– volume: 178
  start-page: 886
  year: 2016
  end-page: 901
  ident: b0070
  article-title: One day ahead wind speed forecasting: A resampling-based approach
  publication-title: Appl Energy
– volume: 59
  start-page: 885
  year: 2013
  end-page: 897
  ident: b0030
  article-title: Potential of trading wind power as regulation services in the California short-term electricity market
  publication-title: Energy Policy
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0040
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 162
  start-page: 808
  year: 2016
  end-page: 826
  ident: b0045
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl Energy
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: b0085
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
– volume: 157
  start-page: 183
  year: 2015
  end-page: 194
  ident: b0165
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
– volume: 198
  start-page: 203
  year: 2017
  end-page: 222
  ident: b0175
  article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
  publication-title: Appl Energy
– volume: 25
  start-page: 1980
  year: 2012
  end-page: 1987
  ident: b0250
  article-title: Modifying wind speed data observed from manual observation system to automatic observation system using wavelet neural network
  publication-title: Phys Procedia
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: b0110
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers Manag
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0265
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: b0015
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
– volume: 24
  start-page: 1048
  year: 2011
  end-page: 1056
  ident: b0160
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowledge-Based Syst
– volume: 98
  start-page: 574
  year: 2012
  end-page: 583
  ident: b0255
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl Energy
– volume: 165
  start-page: 735
  year: 2016
  end-page: 747
  ident: b0115
  article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using wavelet transform
  publication-title: Appl Energy
– volume: 122
  start-page: 533
  year: 2018
  end-page: 550
  ident: b0135
  article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system
  publication-title: Renew Energy
– reference: >.
– volume: 48
  start-page: 284
  year: 2012
  end-page: 294
  ident: b0090
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
– volume: 32
  start-page: 981
  year: 2015
  end-page: 990
  ident: b0225
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int J Forecast
– volume: 35
  start-page: 3870
  year: 2010
  end-page: 3876
  ident: b0150
  article-title: Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
  publication-title: Energy
– volume: 136
  start-page: 439
  year: 2017
  end-page: 451
  ident: b0190
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 191
  start-page: 653
  year: 2017
  end-page: 662
  ident: b0025
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl Energy
– volume: 31
  start-page: 762
  year: 2014
  end-page: 777
  ident: b0120
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 82
  start-page: 524
  year: 2015
  end-page: 549
  ident: b0230
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
– start-page: 172
  year: 2002
  end-page: 180
  ident: b0280
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– volume: 76
  start-page: 541
  year: 2006
  end-page: 548
  ident: b0155
  article-title: Fuzzy approach for short term load forecasting
  publication-title: Electr Power Syst Res
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0195
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc A Math Phys Eng Sci
– volume: 273
  start-page: 304
  year: 2014
  end-page: 318
  ident: b0005
  article-title: A novel hybrid approach for wind speed prediction
  publication-title: Inf Sci (Ny)
– volume: 87
  start-page: 2313
  year: 2010
  ident: 10.1016/j.apenergy.2018.02.070_b0130
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.12.013
– volume: 56
  start-page: 226
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0240
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2013.11.015
– volume: 148
  start-page: 554
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0100
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.06.021
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0110
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.04.007
– volume: 35
  start-page: 3870
  year: 2010
  ident: 10.1016/j.apenergy.2018.02.070_b0150
  article-title: Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.041
– start-page: 172
  year: 2002
  ident: 10.1016/j.apenergy.2018.02.070_b0280
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.apenergy.2018.02.070_b0065
  article-title: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.03.054
– volume: 107
  start-page: 340
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0060
  article-title: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.02.014
– volume: 76
  start-page: 541
  year: 2006
  ident: 10.1016/j.apenergy.2018.02.070_b0155
  article-title: Fuzzy approach for short term load forecasting
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2005.09.018
– volume: 44
  start-page: 271
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0235
  article-title: Combined forecasting models for wind energy forecasting: a case study in China
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.12.012
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.070_b0015
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 208
  start-page: 344
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0215
  article-title: A novel hybrid system based on a new proposed algorithm – multi-objective whale optimization algorithm for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.031
– volume: 136
  start-page: 439
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0190
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.01.022
– volume: 12
  start-page: 852
  year: 2008
  ident: 10.1016/j.apenergy.2018.02.070_b0010
  article-title: Technical challenges associated with the integration of wind power into power systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2006.10.007
– start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0145
  article-title: Fault classification in power systems using EMD and SVM
  publication-title: Ain Shams Eng J
– volume: 82
  start-page: 524
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0230
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.063
– volume: 178
  start-page: 886
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.070_b0070
  article-title: One day ahead wind speed forecasting: A resampling-based approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.098
– volume: 34
  start-page: 1388
  year: 2009
  ident: 10.1016/j.apenergy.2018.02.070_b0095
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 89
  start-page: 235
  year: 2001
  ident: 10.1016/j.apenergy.2018.02.070_b0050
  article-title: Short-term prediction of local wind conditions
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(00)00079-9
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.apenergy.2018.02.070_b0195
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– start-page: 1
  year: 2007
  ident: 10.1016/j.apenergy.2018.02.070_b0055
  article-title: Short term wind power forecasting using hybrid intelligent systems
  publication-title: 2007 IEEE Power Eng Soc Gen Meet
– volume: 36
  start-page: 136
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0140
  article-title: A novel time-series model based on empirical mode decomposition for forecasting TAIEX
  publication-title: Econ Model
  doi: 10.1016/j.econmod.2013.09.033
– volume: 190
  start-page: 1245
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0220
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.043
– volume: 150
  start-page: 90
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0080
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.07.065
– volume: 88
  start-page: 1405
  year: 2011
  ident: 10.1016/j.apenergy.2018.02.070_b0085
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 273
  start-page: 304
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0005
  article-title: A novel hybrid approach for wind speed prediction
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2014.02.159
– volume: 13
  start-page: 915
  year: 2009
  ident: 10.1016/j.apenergy.2018.02.070_b0040
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 205
  start-page: 53
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.070_b0170
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.061
– volume: 148
  start-page: 59
  year: 2018
  ident: 10.1016/j.apenergy.2018.02.070_b0245
  article-title: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.112
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0265
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 162
  start-page: 808
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.070_b0045
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.145
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.apenergy.2018.02.070_b0275
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.1995.10524599
– volume: 25
  start-page: 1980
  year: 2012
  ident: 10.1016/j.apenergy.2018.02.070_b0250
  article-title: Modifying wind speed data observed from manual observation system to automatic observation system using wavelet neural network
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2012.03.338
– volume: 145
  start-page: 191
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0105
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.032
– volume: 52
  start-page: 1990
  year: 2011
  ident: 10.1016/j.apenergy.2018.02.070_b0180
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.11.007
– volume: 59
  start-page: 885
  year: 2013
  ident: 10.1016/j.apenergy.2018.02.070_b0030
  article-title: Potential of trading wind power as regulation services in the California short-term electricity market
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.04.056
– volume: 122
  start-page: 533
  year: 2018
  ident: 10.1016/j.apenergy.2018.02.070_b0135
  article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.01.113
– volume: 191
  start-page: 653
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0025
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.063
– start-page: 1
  year: 2010
  ident: 10.1016/j.apenergy.2018.02.070_b0075
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
  publication-title: North Am Power Symp
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.apenergy.2018.02.070_b0200
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adapt Data Anal
  doi: 10.1142/S1793536909000047
– volume: 14
  start-page: 19
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0205
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.06.009
– start-page: 4144
  year: 2011
  ident: 10.1016/j.apenergy.2018.02.070_b0260
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: ICASSP IEEE Int Conf Acoust Speech Signal Process – Proc
– volume: 107
  start-page: 191
  year: 2013
  ident: 10.1016/j.apenergy.2018.02.070_b0125
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.02.002
– volume: 32
  start-page: 981
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0225
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.03.001
– volume: 157
  start-page: 183
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0165
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.014
– volume: 198
  start-page: 203
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0175
  article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.039
– volume: 98
  start-page: 574
  year: 2012
  ident: 10.1016/j.apenergy.2018.02.070_b0255
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.04.037
– volume: 24
  start-page: 1048
  year: 2011
  ident: 10.1016/j.apenergy.2018.02.070_b0160
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2011.04.019
– volume: 165
  start-page: 735
  year: 2016
  ident: 10.1016/j.apenergy.2018.02.070_b0115
  article-title: Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using wavelet transform
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.082
– volume: 19
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0210
  article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting
  publication-title: Entropy
  doi: 10.3390/e19020052
– volume: 31
  start-page: 762
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0120
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.054
– ident: 10.1016/j.apenergy.2018.02.070_b0020
– volume: 48
  start-page: 284
  year: 2012
  ident: 10.1016/j.apenergy.2018.02.070_b0090
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.05.026
– volume: 93
  start-page: 41
  year: 2015
  ident: 10.1016/j.apenergy.2018.02.070_b0035
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.045
– volume: 148
  start-page: 239
  year: 2017
  ident: 10.1016/j.apenergy.2018.02.070_b0270
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.10.046
– volume: 34
  start-page: 243
  year: 2014
  ident: 10.1016/j.apenergy.2018.02.070_b0185
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.033
SSID ssj0002120
Score 2.6186383
Snippet •A combined model based on advanced optimization algorithm is successfully proposed.•Design three experiments from the real wind farm to verify the...
Short-term wind speed forecasting has a significant influence on enhancing the operation efficiency and increasing the economic benefits of wind power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 643
SubjectTerms Advanced optimization algorithm
algorithms
case studies
China
Combined model
Data preprocessing technique
electrical equipment
financial economics
planning
power generation
wind farms
wind power
wind speed
Wind speed forecasting
Title A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
URI https://dx.doi.org/10.1016/j.apenergy.2018.02.070
https://www.proquest.com/docview/2045827458
Volume 215
WOSCitedRecordID wos000428974500052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgc4IFhYsbxkJG5VoEmc2D5WqAg4rJBYpN4sJ7Fpqzapmra7_HvGrzRaQAtCXKzKiVO382VmPJ75jNBrnXAts4REMVyPwP_nkSx1GslMs1RyTbJK2sMm6MUFm83458HgKtTCHFa0rtn1Nd_8V1FDHwjblM7-hbi7h0IHfAahQwtih_aPBD8Z1c1BGdaPNax6wZ-0h92MjLmqzNZAt-vfgLZY-zLMkVx9a7aL3Xxt8w7bOXjlkdHao6uFiaxvwMiZK6qU7S5Yu0Be6x1ZZcsIu5BNyPWFu5dhhI3ch37wSufNvssI2lsrKBffPV59KCJmvQwWGx8LNTLHhCRblzXOI7NOcxbHqVlGE6NmWV8PJ3HW06S5Y2_yRjl3_O4_6XsXeli-kRv3G02uHrMkrO44khtc2l_MZMxcQJGBb2u4B04SmnE2RCeTj9PZp86IJ57RM0y-V1z-62_7nV9zw8Jbt-XyAbrv1xt44nDyEA1UfYru9VgoT9HZ9FjsCLd6bd8-QmqCLZRwgBK2UMIWSripcYAS7kMJd1DCABh8hBI2UMIWSrgHpcfo6_vp5bsPkT-WIyrJON1FJJawxiYp0xUjyjiYuioKHVcFMWxwhGSS5lmqMgnvv2KUSUI5k0lZcKpywtIzNKybWj1BuEiLUivF7Qa8rvKiSKRWcUErzWB0fo6y8KeK0nPWm6NTViIkJy5FEIYwwhDjRIAwztHbbtzGsbbcOoIHmQnvezqfUgDUbh37KghZgHI2O26yVs2-FeasB5ZQaJ7-w_OfobvHt-05Gu62e_UC3SkPu0W7femR-wOVEr2u
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+combined+model+based+on+advanced+optimization+algorithm+for+short-term+wind+speed+forecasting&rft.jtitle=Applied+energy&rft.au=Song%2C+Jingjing&rft.au=Wang%2C+Jianzhou&rft.au=Lu%2C+Haiyan&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=215&rft.spage=643&rft.epage=658&rft_id=info:doi/10.1016%2Fj.apenergy.2018.02.070&rft.externalDocID=S0306261918301971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon