Gas–Liquid Two-Phase Flow Measurement Based on Optical Flow Method with Machine Learning Optimization Model

Gas–Liquid two-phase flows are a common flow in industrial production processes. Since these flows inherently consist of discrete phases, it is challenging to accurately measure the flow parameters. In this context, a novel approach is proposed that combines the pyramidal Lucas-Kanade (L–K) optical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 14; číslo 9; s. 3717
Hlavní autoři: Wang, Junxian, Huang, Zhenwei, Xu, Ya, Xie, Dailiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2024
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Gas–Liquid two-phase flows are a common flow in industrial production processes. Since these flows inherently consist of discrete phases, it is challenging to accurately measure the flow parameters. In this context, a novel approach is proposed that combines the pyramidal Lucas-Kanade (L–K) optical flow method with the Split Comparison (SC) model measurement method. In the proposed approach, videos of gas–liquid two-phase flows are captured using a camera, and optical flow data are acquired from the flow videos using the pyramid L–K optical flow detection method. To address the issue of data clutter in optical flow extraction, a dynamic median value screening method is introduced to optimize the corner point for optical flow calculations. Machine learning algorithms are employed for the prediction model, yielding high flow prediction accuracy in experimental tests. Results demonstrate that the gradient boosted regression (GBR) model is the most effective among the five preset models, and the optimized SC model significantly improves measurement accuracy compared to the GBR model, achieving an R2 value of 0.97, RMSE of 0.74 m3/h, MAE of 0.52 m3/h, and MAPE of 8.0%. This method offers a new approach for monitoring flows in industrial production processes such as oil and gas.
AbstractList Gas–Liquid two-phase flows are a common flow in industrial production processes. Since these flows inherently consist of discrete phases, it is challenging to accurately measure the flow parameters. In this context, a novel approach is proposed that combines the pyramidal Lucas-Kanade (L–K) optical flow method with the Split Comparison (SC) model measurement method. In the proposed approach, videos of gas–liquid two-phase flows are captured using a camera, and optical flow data are acquired from the flow videos using the pyramid L–K optical flow detection method. To address the issue of data clutter in optical flow extraction, a dynamic median value screening method is introduced to optimize the corner point for optical flow calculations. Machine learning algorithms are employed for the prediction model, yielding high flow prediction accuracy in experimental tests. Results demonstrate that the gradient boosted regression (GBR) model is the most effective among the five preset models, and the optimized SC model significantly improves measurement accuracy compared to the GBR model, achieving an R2 value of 0.97, RMSE of 0.74 m3/h, MAE of 0.52 m3/h, and MAPE of 8.0%. This method offers a new approach for monitoring flows in industrial production processes such as oil and gas.
Application to the monitoring of gas–liquid two-phase flow links. Gas–Liquid two-phase flows are a common flow in industrial production processes. Since these flows inherently consist of discrete phases, it is challenging to accurately measure the flow parameters. In this context, a novel approach is proposed that combines the pyramidal Lucas-Kanade (L–K) optical flow method with the Split Comparison (SC) model measurement method. In the proposed approach, videos of gas–liquid two-phase flows are captured using a camera, and optical flow data are acquired from the flow videos using the pyramid L–K optical flow detection method. To address the issue of data clutter in optical flow extraction, a dynamic median value screening method is introduced to optimize the corner point for optical flow calculations. Machine learning algorithms are employed for the prediction model, yielding high flow prediction accuracy in experimental tests. Results demonstrate that the gradient boosted regression (GBR) model is the most effective among the five preset models, and the optimized SC model significantly improves measurement accuracy compared to the GBR model, achieving an R[sup.2] value of 0.97, RMSE of 0.74 m[sup.3]/h, MAE of 0.52 m[sup.3]/h, and MAPE of 8.0%. This method offers a new approach for monitoring flows in industrial production processes such as oil and gas.
Featured ApplicationApplication to the monitoring of gas–liquid two-phase flow links.AbstractGas–Liquid two-phase flows are a common flow in industrial production processes. Since these flows inherently consist of discrete phases, it is challenging to accurately measure the flow parameters. In this context, a novel approach is proposed that combines the pyramidal Lucas-Kanade (L–K) optical flow method with the Split Comparison (SC) model measurement method. In the proposed approach, videos of gas–liquid two-phase flows are captured using a camera, and optical flow data are acquired from the flow videos using the pyramid L–K optical flow detection method. To address the issue of data clutter in optical flow extraction, a dynamic median value screening method is introduced to optimize the corner point for optical flow calculations. Machine learning algorithms are employed for the prediction model, yielding high flow prediction accuracy in experimental tests. Results demonstrate that the gradient boosted regression (GBR) model is the most effective among the five preset models, and the optimized SC model significantly improves measurement accuracy compared to the GBR model, achieving an R2 value of 0.97, RMSE of 0.74 m3/h, MAE of 0.52 m3/h, and MAPE of 8.0%. This method offers a new approach for monitoring flows in industrial production processes such as oil and gas.
Audience Academic
Author Wang, Junxian
Xie, Dailiang
Huang, Zhenwei
Xu, Ya
Author_xml – sequence: 1
  givenname: Junxian
  surname: Wang
  fullname: Wang, Junxian
– sequence: 2
  givenname: Zhenwei
  surname: Huang
  fullname: Huang, Zhenwei
– sequence: 3
  givenname: Ya
  surname: Xu
  fullname: Xu, Ya
– sequence: 4
  givenname: Dailiang
  surname: Xie
  fullname: Xie, Dailiang
BookMark eNptkc1q3DAUhU1JoGmSVV7A0GVxevXjHy3T0KSBGdJFsjbX0tWMBltyZA9Du-o79A37JFVnmhBKtZE4nPPpSuddduSDpyy7YHAphIKPOI5MghI1q99kJxzqqhCS1Uevzm-z82naQFqKiYbBSTbc4vTrx8-Fe9o6kz_sQvF1jRPlN33Y5UvCaRtpID_nn5Jq8uDz-3F2Gvtnx7wOJt-5eZ0vUa-dp3xBGL3zq71zcN9xdim2DIb6s-zYYj_R-d_9NHu8-fxw_aVY3N_eXV8tCi1BzIUgC2S6rgHiHFRXVkC2E42S3EosdUegDClZG4Wlaix0UDXc1GAbtBxBnGZ3B64JuGnH6AaM39qArt0LIa5ajOkZPbUlrxrkjIRhIKXmqFGKijWkK0U1E4n1_sAaY3ja0jS3m7CNPo3fCigFk1yUTXJdHlwrTFDnbZhjQmk0NDidirIu6Ve1EmWd6DIFPhwCOoZpimRfxmTQ_umzfdVncrN_3NrN-49N17j-v5nfQgGk5Q
CitedBy_id crossref_primary_10_1016_j_flowmeasinst_2024_102794
crossref_primary_10_53759_7669_jmc202505157
Cites_doi 10.1088/1361-6501/ac0c48
10.1016/j.ijheatmasstransfer.2021.122439
10.1109/ACCESS.2023.3274784
10.1109/TII.2020.2978944
10.1016/j.dche.2022.100012
10.7717/peerj-cs.798
10.1016/j.ijheatmasstransfer.2020.120689
10.1109/TCYB.2021.3084860
10.1109/JSEN.2023.3235954
10.1016/j.ijmultiphaseflow.2023.104421
10.1016/j.cej.2020.126401
10.1088/0957-0233/20/11/115601
10.3390/s22030996
10.1016/j.expthermflusci.2023.110979
10.1016/j.cherd.2023.11.057
10.1109/JSEN.2022.3193981
10.3390/s23063152
10.1007/s11222-009-9153-8
10.1109/LSP.2014.2301037
10.1109/TIP.2014.2331140
10.3390/mi14020462
10.1109/WSC.2010.5679076
10.1016/j.ijmultiphaseflow.2021.103811
10.1109/TNNLS.2019.2905082
10.1016/j.eswa.2022.117704
10.3390/pr11010177
10.1016/S1003-6326(13)62487-5
10.1016/j.ins.2020.11.033
10.1016/j.specom.2007.12.003
10.1109/ICEST49890.2020.9232768
10.1016/j.ijmultiphaseflow.2022.104067
10.1109/JSEN.2021.3085995
10.1007/s12182-020-00493-3
10.1007/978-3-662-01657-2
10.1016/j.isprsjprs.2022.01.003
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14093717
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_5268a21e3d1044c2aca43618ec69e713
A793576184
10_3390_app14093717
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-3ef0edbb80e2209b560efb38942f4a5cbe09de947d9a598f0b0682d70f8af2a03
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001219950100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:08:40 EDT 2025
Mon Jun 30 14:36:31 EDT 2025
Tue Nov 04 18:24:25 EST 2025
Sat Nov 29 07:11:25 EST 2025
Tue Nov 18 21:58:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-3ef0edbb80e2209b560efb38942f4a5cbe09de947d9a598f0b0682d70f8af2a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/5268a21e3d1044c2aca43618ec69e713
PQID 3053142358
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_5268a21e3d1044c2aca43618ec69e713
proquest_journals_3053142358
gale_infotracacademiconefile_A793576184
crossref_primary_10_3390_app14093717
crossref_citationtrail_10_3390_app14093717
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Paolinelli (ref_1) 2021; 16
Gao (ref_8) 2021; 17
Ooi (ref_17) 2022; 185
ref_14
Hu (ref_7) 2020; 31
ref_10
ref_30
Zhao (ref_4) 2022; 22
Yang (ref_2) 2024; 201
Chen (ref_23) 2023; 148
Zhang (ref_35) 2021; 552
Gao (ref_12) 2021; 70
ref_37
Niu (ref_28) 2014; 23
Wajman (ref_21) 2024; 72
Lucas (ref_26) 1981; 81
Gao (ref_13) 2021; 18
Nie (ref_11) 2022; 152
Li (ref_5) 2023; 162
Li (ref_6) 2021; 32
Harris (ref_31) 1988; 1988
Dowe (ref_39) 2013; 7070
Rana (ref_33) 2022; 184
Yamagishi (ref_40) 2008; 50
Dong (ref_34) 2013; 23
ref_25
Ni (ref_36) 2009; 20
Nnabuife (ref_18) 2021; 403
ref_24
Nnabuife (ref_19) 2023; 53
OuYang (ref_16) 2022; 205
Zhong (ref_27) 2023; 11
Florez (ref_20) 2021; 7
ref_29
Tan (ref_3) 2021; 144
Batur (ref_32) 2010; 10
Zhang (ref_22) 2023; 23
Kuang (ref_15) 2022; 22
Gao (ref_9) 2021; 16
Assi (ref_38) 2014; 21
Fushiki (ref_41) 2011; 21
References_xml – volume: 32
  start-page: 105306
  year: 2021
  ident: ref_6
  article-title: Gas–liquid intermittent flow rates measurement based on two-phase mass flow multiplier and neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac0c48
– ident: ref_30
– volume: 185
  start-page: 122439
  year: 2022
  ident: ref_17
  article-title: Brooks. Identification of flow regimes in boiling flows in a vertical annulus channel with machine learning techniques
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122439
– volume: 11
  start-page: 47179
  year: 2023
  ident: ref_27
  article-title: An Improved Visual Odometer Based on Lucas-Kanade Optical Flow and ORB Feature
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3274784
– volume: 17
  start-page: 6329
  year: 2021
  ident: ref_8
  article-title: Multitask-Based Temporal-Channelwise CNN for Parameter Prediction of Two-Phase Flows
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2978944
– volume: 22
  start-page: 100012
  year: 2022
  ident: ref_15
  article-title: Gas-liquid flow regimes identification using non-intrusive Doppler ultrasonic sensor and convolutional recurrent neural networks in an s-shaped riser
  publication-title: Digit. Chem. Eng.
  doi: 10.1016/j.dche.2022.100012
– volume: 7
  start-page: 798
  year: 2021
  ident: ref_20
  article-title: Machine learning applications to predict two-phase flow patterns
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.798
– volume: 16
  start-page: 120689
  year: 2021
  ident: ref_1
  article-title: Calculation of mass transfer coefficients for corrosion prediction in two-phase gas-liquid pipe flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120689
– volume: 53
  start-page: 3
  year: 2023
  ident: ref_19
  article-title: Development of Gas–Liquid Flow Regimes Identification Using a Noninvasive Ultrasonic Sensor, Belt-Shape Features, and Convolutional Neural Network in an S-Shaped Riser
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3084860
– volume: 23
  start-page: 4022
  year: 2023
  ident: ref_22
  article-title: Gas/Liquid Two-Phase Flow Pattern Identification Method Using Gramian Angular Field and Densely Connected Network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3235954
– volume: 162
  start-page: 104421
  year: 2023
  ident: ref_5
  article-title: Gas-liquid two-phase flow rates measurement using physics-guided deep learning
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2023.104421
– volume: 403
  start-page: 126401
  year: 2021
  ident: ref_18
  article-title: Non-intrusive classification of gas-liquid flow regimes in an S-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126401
– volume: 20
  start-page: 115601
  year: 2009
  ident: ref_36
  article-title: Identification and measurement of gas mixture by using the support vector regression technique
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/11/115601
– ident: ref_14
  doi: 10.3390/s22030996
– volume: 148
  start-page: 11097
  year: 2023
  ident: ref_23
  article-title: Robust CNN-based flow pattern identification for horizontal gas-liquid pipe flow using flow-induced vibration
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2023.110979
– volume: 201
  start-page: 257
  year: 2024
  ident: ref_2
  article-title: A review of gas-liquid separation technologies: Separation mechanism, application scope, research status, and development prospects
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2023.11.057
– volume: 22
  start-page: 17234
  year: 2022
  ident: ref_4
  article-title: The Gas-Liquid Flow Rate Measurement Based on Multisensors and Machine Learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3193981
– ident: ref_29
  doi: 10.3390/s23063152
– volume: 21
  start-page: 137
  year: 2011
  ident: ref_41
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– volume: 21
  start-page: 292
  year: 2014
  ident: ref_38
  article-title: Modified Large Margin Nearest Neighbor Metric Learning for Regression
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2301037
– volume: 23
  start-page: 3535
  year: 2014
  ident: ref_28
  article-title: Dynamically Removing False Features in Pyramidal Lucas-Kanade Registration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2331140
– ident: ref_10
  doi: 10.3390/mi14020462
– volume: 1988
  start-page: 147
  year: 1988
  ident: ref_31
  article-title: A combined corner and edge detector
  publication-title: Proc. Alvey Vis. Conf.
– volume: 10
  start-page: 1160
  year: 2010
  ident: ref_32
  article-title: Mean-variance based ranking and selection
  publication-title: Proc. 2010 Winter Simul. Conf.
  doi: 10.1109/WSC.2010.5679076
– volume: 144
  start-page: 103811
  year: 2021
  ident: ref_3
  article-title: Ultrasonic Doppler Technique for Application to Multiphase Flows: A Review
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2021.103811
– volume: 31
  start-page: 475
  year: 2020
  ident: ref_7
  article-title: Flow Adversarial Networks: Flowrate Prediction for Gas–Liquid Multiphase Flows Across Different Domains
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2905082
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_12
  article-title: A Deep Branch-Aggregation Network for Recognition of Gas–Liquid Two-Phase Flow Structure
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 205
  start-page: 117704
  year: 2022
  ident: ref_16
  article-title: A new deep neural network framework with multivariate time series for two-phase flow pattern identification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117704
– ident: ref_24
  doi: 10.3390/pr11010177
– volume: 23
  start-page: 472
  year: 2013
  ident: ref_34
  article-title: Prediction of rockburst classification using Random Forest
  publication-title: Trans. Nonferr. Met. Soc. China
  doi: 10.1016/S1003-6326(13)62487-5
– volume: 552
  start-page: 65
  year: 2021
  ident: ref_35
  article-title: MBSVR: Multiple birth support vector regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.033
– volume: 50
  start-page: 405
  year: 2008
  ident: ref_40
  article-title: Phone duration modeling using gradient tree boosting
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2007.12.003
– volume: 81
  start-page: 121
  year: 1981
  ident: ref_26
  article-title: An iterative image registration technique with an application to stereo vision. Proc. DARPA Image Understand
  publication-title: Workshop
– ident: ref_37
  doi: 10.1109/ICEST49890.2020.9232768
– volume: 152
  start-page: 104067
  year: 2022
  ident: ref_11
  article-title: Image identification for two-phase flow patterns based on CNN algorithms
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2022.104067
– volume: 7070
  start-page: 261
  year: 2013
  ident: ref_39
  article-title: MMLD Inference of Multilayer Perceptrons
  publication-title: Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence
– volume: 72
  start-page: 148842
  year: 2024
  ident: ref_21
  article-title: Machine learning for two-phase gas-liquid flow regime evaluation based on raw 3D ECT measurement data
  publication-title: Bull. Pol. Acad. Sci.
– volume: 16
  start-page: 18123
  year: 2021
  ident: ref_9
  article-title: Stage-Wise Densely Connected Network for Parameter Measurement of Two-Phase Flows
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3085995
– volume: 18
  start-page: 259
  year: 2021
  ident: ref_13
  article-title: A novel complex network-based deep learning method for characterizing gas–liquid two-phase flow
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-020-00493-3
– ident: ref_25
  doi: 10.1007/978-3-662-01657-2
– volume: 184
  start-page: 189
  year: 2022
  ident: ref_33
  article-title: Effect of feature standardization on reducing the requirements of field samples for individual tree species classification using ALS data
  publication-title: ISPRS J. Photo-Grammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.01.003
SSID ssj0000913810
Score 2.3093185
Snippet Gas–Liquid two-phase flows are a common flow in industrial production processes. Since these flows inherently consist of discrete phases, it is challenging to...
Application to the monitoring of gas–liquid two-phase flow links. Gas–Liquid two-phase flows are a common flow in industrial production processes. Since these...
Featured ApplicationApplication to the monitoring of gas–liquid two-phase flow links.AbstractGas–Liquid two-phase flows are a common flow in industrial...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3717
SubjectTerms Accuracy
Algorithms
Classification
Deep learning
Fourier transforms
Gases
gas–liquid two-phase flow
Lucas–Kanade optical flow detection
Machine learning
Measurement
Methods
Natural gas
Neural networks
Nuclear energy
Pattern recognition
Sensors
Ultrasonic imaging
SummonAdditionalLinks – databaseName: ProQuest Central (NC Live)
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5BywEOQAuIlBb5UIkfaYXX6-yuT6ipGji0IUJF6s3y2t4SKc2m2bS98g68IU_CjOMkPbRc2KN3Dl7N5_lbzzcA-zIXRe4MRm5dxRP0UCYxpqxRIVZ2lVW5TEOj8HExGJRnZ2oYC25tvFa5tInBULvGUo38U0ZokdTY-Xl6mdDUKPq7GkdoPIRNYipDnG_2jgbD76sqC7FelilfNOZlmN_Tf2HieMqKMKJs7YoCY_99djk4m_6z_93mc3gaw0x2sMDFFjzwk214cot8cBu24rFu2fvIPf3hBVx8Me2fX7-PR5dXI8dOb5pk-BP9HOuPmxt2sq4nsh6uOtZM2LdpqIYvJWgeNaPiLjsJ1zQ9iwyu50HyIrZ9MprBNn4JP_pHp4dfkziRIbGSZ_Mk8zX3rqpK7oXgqsJwydcVxjxS1NJ0beW5cl7JwinTVWXNK56XwhW8Lk0tDM9ewcakmfjXwDAzq1ztuZH0cG7S1FuMj6SgoEH4DnxcKkfbSFdOUzPGGtMW0qS-pckO7K-EpwuWjrvFeqTllQhRa4eFZnau40nVxH9jROozh5mqtMJYI7M8Lb3NlceUvgPvCCOaDABuyJrYx4CfRVRa-gAtHiZxmDl3YHeJER0tQ6vXANn59-s38FhgALW4XLkLG_PZld-DR_Z6PmpnbyPQ_wLYpgdQ
  priority: 102
  providerName: ProQuest
Title Gas–Liquid Two-Phase Flow Measurement Based on Optical Flow Method with Machine Learning Optimization Model
URI https://www.proquest.com/docview/3053142358
https://doaj.org/article/5268a21e3d1044c2aca43618ec69e713
Volume 14
WOSCitedRecordID wos001219950100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB4h2kN7qApt1W0B-YDUUimq43iT-Mgitq3EbiNEJXqyHNuhKy27lF3KlXfgDXkSZhwv7KGIC7nFmoPjGc-P4_k-gG2ZiyJ3BjO3ruIJRiiTGFM2qBAru8qqXKahUfigGA7L42NVLVF90Z2wFh64XbivBEdiROozh4WDtMJYI7M8Lb3NlS8CX63ghVoqpoIPVilBV7UNeRnW9fQ_mLCdsiJQk92HoIDU_5A_DkGm_xpexeyQ7bazWoMVP1mHl0uYgeuwFnfjjH2OkNE7b-D0m5ndXF0fjP5ejBw7upwm1R8MT6w_nl6ywf0xIOvhqGPTCft5Fg6xFxJEI83oTJYNwu1KzyLw6kmQPI3dmoyo08Zv4Vd__2jvexKJFBIreTZPMt9w7-q65F4IrmrMcnxTY6oiRSNN19aeK-eVLJwyXVU2vOZ5KVzBm9I0wvDsHaxOphP_HhgWVLVrPDeSHs5NmnqLaY0UFOuF78CXxdpqG1HGiexirLHaIEXoJUV0YPtO-KwF1_i_WI-UdCdCiNhhAO1ERzvRj9lJBz6RijXtW5yQNbH9AD-LELD0LjoqrL2w4O3AxsIKdNzQM52Rs5LUV_zhKWbzEV4IzI7am5MbsDo_v_Cb8Nz-m49m51vwrLc_rA63gk3jW_VjUP2-BZ_C-oQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFH8aHRJwADZAFAb4MMQfKcJx3CQ-ILQBZdXa0kORtpNxbGdU6pqu7ai48R34HnwoPgl-idPuANx2IEfnKUrsX94_-_0ewC6PWRIb5Ty3lqCBs1AqUCrN3YJo3hJaxDwsC4W7Sb-fHh2JwQb8rGth8FhlrRNLRW0KjTnyVxGihWNh55vpWYBdo3B3tW6hUcHi0H5bupBt_rrzzq3vU8ba74dvDwLfVSDQnEaLILI5tSbLUmoZoyJzJt_mmbPbnOVctXRmqTBW8MQI1RJpTjMap8wkNE9VzhSN3HOvwCZHsDdgc9DpDY5XWR1k2UxDWhUCRpGguA-NnFJRUrZEW5u-skPA3-xAadzat_63abkNN70bTfYq3G_Bhp1sw40L5IrbsOXV1pw899zaL-7A6Qc1__X9R3d0dj4yZLgsgsEXZ8dJe1wsSW-dLyX7btSQYkI-Tstsfy2B_bYJJq9JrzyGaolnqD0pJU99WSvBHnPju_DpUibhHjQmxcTeB-Iiz8zkliqOF6UqDK12_h9n6BQx24SXNRik9nTs2BVkLF1YhsiRF5DThN2V8LRiIfmz2D6iaiWC1OHlQDE7kV4TSeT3USy0kXGRONdMacWjOEytjoVNwqgJzxCTEhWceyGtfJ2G-yykCpN7TqO7IDVMeRN2akxKr_nmcg3IB_--_QSuHQx7Xdnt9A8fwnXmnMXqIOkONBazc_sIruqvi9F89tj_ZAQ-XzaAfwMD4GXJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCE4AC2gBgrsoYgfyep6vbG9B4RaSiBqEnIoUjmZ9XrdRkrjNEmJuPEOvA2Pw5MwY6-THoBbD_hojyx799v5251vAHZkKKIw0-i5tRT30EJpT-s4xwkxsqWMCqVfFgp3o34_Pj5WgzX4WdfC0LHKWieWijorDOXIdwNCi6TCzt3cHYsYHLTfTM496iBFO611O40KIof22wLDt9nrzgHO9TMh2u-O3n7wXIcBz0gezL3A5txmaRpzKwRXKZp_m6dow6XIpW6Z1HKVWSWjTOmWinOe8jAWWcTzWOdC8wDfew3W0SWXogHrg05v8HmZ4SHGzdjnVVFgEChOe9LELxVEZXu0lRksuwX8zSaUhq59538eortw27nXbK9aDxuwZsebcOsS6eImbDh1NmMvHOf2y3tw9l7Pfn3_0R2eXwwzdrQovMEp2nfWHhUL1lvlUdk-3s1YMWYfJ-UuQC1BfbgZJbVZrzyeapljrj0pJc9cuSuj3nOj-_DpSgbhATTGxdhuAcOINM1yy7Wki3Pt-9agXygFOUvCNuFVDYzEOJp26hYySjBcIxQll1DUhJ2l8KRiJ_mz2D4hbClClOLljWJ6kjgNlRDvjxa-DTKM0KUR2mgZhH5sTahs5AdNeE74TEjx4QcZ7eo38LeIQizZQ02PwasfyyZs1_hMnEacJStwPvz346dwA1GbdDv9w0dwU6APWZ0v3YbGfHphH8N183U-nE2fuPXG4MtV4_c33j1uiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas%E2%80%93Liquid+Two-Phase+Flow+Measurement+Based+on+Optical+Flow+Method+with+Machine+Learning+Optimization+Model&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Junxian&rft.au=Huang%2C+Zhenwei&rft.au=Xu%2C+Ya&rft.au=Xie%2C+Dailiang&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=9&rft_id=info:doi/10.3390%2Fapp14093717&rft.externalDocID=A793576184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon