On the marginal likelihood and cross-validation

Summary In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrika Ročník 107; číslo 2; s. 489 - 496
Hlavní autoři: Fong, E, Holmes, C C
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford University Press 01.06.2020
Témata:
ISSN:0006-3444, 1464-3510
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-fold partitioning or leave-$p$-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-$p$-out crossvalidation averaged over all values of $p$ and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive score is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation, and highlights the potential sensitivity of the marginal likelihood to the choice of the prior. We suggest an alternative approach using cumulative cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors, but is motivated in a different way.
AbstractList Summary In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-fold partitioning or leave-$p$-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-$p$-out crossvalidation averaged over all values of $p$ and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive score is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation, and highlights the potential sensitivity of the marginal likelihood to the choice of the prior. We suggest an alternative approach using cumulative cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors, but is motivated in a different way.
Author Fong, E
Holmes, C C
Author_xml – sequence: 1
  givenname: E
  surname: Fong
  fullname: Fong, E
  email: edwin.fong@stats.ox.ac.uk
  organization: Department of Statistics, University of Oxford, 24–29 St Giles’, Oxford OX1 3LB, UK
– sequence: 2
  givenname: C C
  surname: Holmes
  fullname: Holmes, C C
  organization: Department of Statistics, University of Oxford, 24–29 St Giles’, Oxford OX1 3LB, UK
BookMark eNotj7FOwzAURS1UJNLCyJ6RxeQlfraTEVVAkSp1gTl6jh1qSO0qDkjw9bQK09VZrs5ZskWIwTF2W8J9CY0ojI8HNxWUfkHrC5aVqJALWcKCZQCguEDEK7ZM6eOMSqqMFbuQT3uXH2h894GGfPCfbvD7GG1OwebdGFPi3zR4S5OP4Zpd9jQkd_O_K_b29Pi63vDt7vll_bDlHYKYuHAkO6OlhRqF1oaMsVq4SpqKDNYnKWqs7KUCK6hCp3vnOrKq7qlrEBuxYnfzb_w6tsfRn_x-2hLac2g7h7ZzqPgDqwZKwQ
CitedBy_id crossref_primary_10_1007_s42113_023_00173_6
crossref_primary_10_1016_j_ejor_2023_04_034
crossref_primary_10_1371_journal_pone_0288000
crossref_primary_10_1093_jrsssb_qkad005
crossref_primary_10_1177_13548166241266912
crossref_primary_10_1007_s11229_021_03233_1
crossref_primary_10_1016_j_sigpro_2024_109735
crossref_primary_10_1111_rssc_12557
crossref_primary_10_1111_insr_12502
crossref_primary_10_1109_TPAMI_2023_3299568
crossref_primary_10_1016_j_dsp_2023_104103
crossref_primary_10_1016_j_eswa_2023_120705
crossref_primary_10_1016_j_gr_2022_07_011
crossref_primary_10_1007_s42113_020_00091_x
crossref_primary_10_7717_peerj_cs_904
crossref_primary_10_1093_biomet_asab005
crossref_primary_10_1016_j_jeconom_2023_105491
crossref_primary_10_1137_20M1310849
crossref_primary_10_1371_journal_pcbi_1009070
crossref_primary_10_1016_j_cogpsych_2023_101562
crossref_primary_10_1016_j_mex_2025_103336
crossref_primary_10_1371_journal_pone_0290331
crossref_primary_10_1093_jrsssb_qkaf015
crossref_primary_10_1186_s12711_022_00765_z
crossref_primary_10_1016_j_ejor_2022_04_029
crossref_primary_10_1093_jrsssb_qkad094
crossref_primary_10_1002_sta4_600
crossref_primary_10_1038_s41598_022_20872_7
crossref_primary_10_1016_j_compag_2025_110136
crossref_primary_10_1016_j_ress_2024_110094
crossref_primary_10_1111_bmsp_12314
crossref_primary_10_1287_mnsc_2023_4801
crossref_primary_10_1038_s41588_023_01583_9
crossref_primary_10_1007_s42113_022_00158_x
crossref_primary_10_1111_rssc_12488
crossref_primary_10_1007_s11222_023_10205_7
crossref_primary_10_1027_2151_2604_a000555
crossref_primary_10_1093_mnras_stac3532
crossref_primary_10_1073_pnas_2401230121
crossref_primary_10_1080_00031305_2023_2216239
crossref_primary_10_1016_j_neuroimage_2021_118780
ContentType Journal Article
Copyright 2020 Biometrika Trust 2020
Copyright_xml – notice: 2020 Biometrika Trust 2020
DBID TOX
DOI 10.1093/biomet/asz077
DatabaseName Oxford Journals Open Access Collection
DatabaseTitleList
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1464-3510
EndPage 496
ExternalDocumentID 10.1093/biomet/asz077
GroupedDBID -DZ
-E4
-~X
..I
.2P
.DC
.I3
0R~
1TH
23N
3R3
4.4
482
48X
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
ABDTM
ABEUO
ABFAN
ABIXL
ABJNI
ABLJU
ABNKS
ABPFR
ABPPZ
ABPTD
ABQLI
ABWST
ABXVV
ABYWD
ABZBJ
ACBEA
ACGFO
ACGFS
ACGOD
ACIPB
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFVYC
AFXEN
AFXHP
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
ESX
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JAS
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
ML0
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TEORI
TJP
TN5
TOX
WH7
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~02
~91
ID FETCH-LOGICAL-c403t-3ea5cb75d084377babbd73e25b2ab48351a9d5f560d3a24e7feecad68fac94493
IEDL.DBID TOX
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000558976700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-3444
IngestDate Wed Sep 11 04:40:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cross-validation
Prequential scoring
Marginal likelihood
Language English
License This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-3ea5cb75d084377babbd73e25b2ab48351a9d5f560d3a24e7feecad68fac94493
OpenAccessLink https://dx.doi.org/10.1093/biomet/asz077
PageCount 8
ParticipantIDs oup_primary_10_1093_biomet_asz077
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Biometrika
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0006656
Score 2.5969617
Snippet Summary In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of...
SourceID oup
SourceType Publisher
StartPage 489
Title On the marginal likelihood and cross-validation
Volume 107
WOSCitedRecordID wos000558976700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxGA1SFHpxqYo7EbyGTifb5Chi8SCthyq9DV82KNZR2irorzfLIIIeevsOWeAlJC_5-N5D6ErpeOxZTUBKRxgvQ-StIJJWBdOuAEh2b0_3cjSqplP10P53LP9J4SvaT3Xoqz4svwoZy8YHvIobejKe_hy5QiSb1hgRyhhrxTT_9M5VbL8ukOHO-lPvou2WJOLrvKp7aMM1PbSVbSM_e6gbGWIWWN5H_XGDA4nDL7BIDld4Pnt281lUK8bQWJyuQRL20yy7Jx2gx-Ht5OaOtC4IxLCCrgh1wI2W3BYVo1Jq0NpK6kquS9AsEKgBKMt9YC6WQsmc9M4ZsKLyYBRjih6iTvPauCOEPeVSSe4dhSjjJrQxYUQqmOcKqIBjdBngqd-yzkWd89O0zijUGYWTNdqcom4Zn6Xps-IMdVaLd3eONs1HwGZxkZbuG4dQmGc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+marginal+likelihood+and+cross-validation&rft.jtitle=Biometrika&rft.au=Fong%2C+E&rft.au=Holmes%2C+C+C&rft.date=2020-06-01&rft.pub=Oxford+University+Press&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=107&rft.issue=2&rft.spage=489&rft.epage=496&rft_id=info:doi/10.1093%2Fbiomet%2Fasz077&rft.externalDocID=10.1093%2Fbiomet%2Fasz077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon