A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC)

Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 10; no. 20; p. 7330
Main Authors: Farooq, Furqan, Nasir Amin, Muhammad, Khan, Kaffayatullah, Rehan Sadiq, Muhammad, Faisal Javed, Muhammad Faisal, Aslam, Fahid, Alyousef, Rayed
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2020
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient R2 = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model.
AbstractList Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient R2 = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model.
Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient [R.sup.2] = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model. Keywords: strength concrete; prediction; genetic engineering programming
Audience Academic
Author Alyousef, Rayed
Nasir Amin, Muhammad
Rehan Sadiq, Muhammad
Faisal Javed, Muhammad Faisal
Khan, Kaffayatullah
Farooq, Furqan
Aslam, Fahid
Author_xml – sequence: 1
  givenname: Furqan
  surname: Farooq
  fullname: Farooq, Furqan
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0001-6524-4389
  surname: Nasir Amin
  fullname: Nasir Amin, Muhammad
– sequence: 3
  givenname: Kaffayatullah
  orcidid: 0000-0001-7994-4642
  surname: Khan
  fullname: Khan, Kaffayatullah
– sequence: 4
  givenname: Muhammad
  surname: Rehan Sadiq
  fullname: Rehan Sadiq, Muhammad
– sequence: 5
  givenname: Muhammad Faisal
  orcidid: 0000-0001-5478-9324
  surname: Faisal Javed
  fullname: Faisal Javed, Muhammad Faisal
– sequence: 6
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
– sequence: 7
  givenname: Rayed
  orcidid: 0000-0002-3821-5491
  surname: Alyousef
  fullname: Alyousef, Rayed
BookMark eNptkcFu1DAQhi1UJMrSEy9giQuo2mLHWSc-rqK2W6kSiMI5mtjjrFcbOzhepD4HL1yHIKgQ9sHjXzOfx_O_Jmc-eCTkLWdXQij2EcaRs4JVQrAX5DwHci1KXp09i1-Ri2k6sLwUFzVn5-TnljZhGCFCcj-QPqSTeaTB0i_gTRjoTYg4JZov9BY9Jqfpte-dR4zO9_RzDH2EYZhjGyJNe8waGqeTC37mzPCMmBZ4RN-n_azvXL__KzTB64gJ6fvdQ_PhDXlp4Tjhxe9zRb7dXH9tduv7T7d3zfZ-rUsm0rqwdbcxXYeGg8JCis52peZcy0J0oDsutQbUCKqWRlmpStNxqKoaGAhRg1iRu4VrAhzaMboB4mMbwLW_hBD7FmL-8hFbtdEF15Uta4slFqZGZSqjjDZSlNKqzHq3sMYYvp_yzNpDOEWf22-LjSjzxMt8rsjVktVDhjpvQ4qg8zY4OJ3ttC7rW5mt2nDJilxwuRToGKYpov3TJmft7Hr7zPWczf_J1i7BbEV-xh3_W_ME68izRQ
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2021_125021
crossref_primary_10_1007_s13369_023_07996_2
crossref_primary_10_1016_j_mtcomm_2022_103964
crossref_primary_10_3390_ma15020647
crossref_primary_10_1016_j_mtcomm_2023_106953
crossref_primary_10_3390_buildings14020377
crossref_primary_10_1080_19648189_2024_2335343
crossref_primary_10_1007_s11069_023_05998_9
crossref_primary_10_3390_ma15103478
crossref_primary_10_1016_j_compag_2024_109011
crossref_primary_10_1016_j_istruc_2024_106285
crossref_primary_10_1007_s12517_021_08869_4
crossref_primary_10_1002_ep_14094
crossref_primary_10_1680_jgein_23_00016
crossref_primary_10_1016_j_jclepro_2022_131285
crossref_primary_10_1016_j_cscm_2023_e02766
crossref_primary_10_1016_j_istruc_2023_05_140
crossref_primary_10_1007_s00521_022_08042_2
crossref_primary_10_1016_j_jobe_2025_111874
crossref_primary_10_1038_s41598_024_79502_z
crossref_primary_10_3390_su13052867
crossref_primary_10_1016_j_jobe_2025_112965
crossref_primary_10_1007_s41939_023_00213_5
crossref_primary_10_3390_app11136167
crossref_primary_10_1016_j_mtcomm_2023_106147
crossref_primary_10_1016_j_conbuildmat_2023_134092
crossref_primary_10_1016_j_cplett_2022_139478
crossref_primary_10_1080_24705314_2025_2475591
crossref_primary_10_1155_2021_6618407
crossref_primary_10_1007_s41024_023_00337_8
crossref_primary_10_1007_s43503_024_00033_7
crossref_primary_10_3390_infrastructures7020024
crossref_primary_10_1007_s41939_024_00545_w
crossref_primary_10_1108_WJE_05_2024_0299
crossref_primary_10_1038_s41598_024_64204_3
crossref_primary_10_32604_jpm_2024_053859
crossref_primary_10_1007_s40996_025_02028_5
crossref_primary_10_3390_en15155518
crossref_primary_10_1016_j_jobe_2024_109377
crossref_primary_10_1061__ASCE_SC_1943_5576_0000683
crossref_primary_10_1007_s41062_023_01122_9
crossref_primary_10_1007_s41939_025_00863_7
crossref_primary_10_1038_s41598_023_28868_7
crossref_primary_10_3390_ma14092297
crossref_primary_10_1016_j_conbuildmat_2023_133540
crossref_primary_10_1108_EC_05_2024_0452
crossref_primary_10_1016_j_matpr_2023_04_090
crossref_primary_10_1038_s41598_024_57896_0
crossref_primary_10_3390_polym13162750
crossref_primary_10_1016_j_jobe_2023_107168
crossref_primary_10_3390_app13137770
crossref_primary_10_3390_polym14061074
crossref_primary_10_1016_j_istruc_2023_02_080
crossref_primary_10_1016_j_measurement_2025_118989
crossref_primary_10_1016_j_conbuildmat_2021_122869
crossref_primary_10_1016_j_cscm_2023_e02728
crossref_primary_10_3390_ma15113808
crossref_primary_10_1515_eng_2022_0604
crossref_primary_10_1007_s42107_023_00922_9
crossref_primary_10_1038_s41598_025_05288_3
crossref_primary_10_1016_j_cscm_2024_e03135
crossref_primary_10_1016_j_jobe_2023_108369
crossref_primary_10_1016_j_rineng_2024_103909
crossref_primary_10_1016_j_mtcomm_2025_112256
crossref_primary_10_1016_j_conbuildmat_2023_131851
crossref_primary_10_1016_j_conbuildmat_2023_131973
crossref_primary_10_3390_buildings14123851
crossref_primary_10_3390_ma18133110
crossref_primary_10_1016_j_cscm_2022_e01228
crossref_primary_10_1016_j_mtcomm_2024_108141
crossref_primary_10_1007_s41939_023_00315_0
crossref_primary_10_1016_j_conbuildmat_2023_131606
crossref_primary_10_3390_buildings14082476
crossref_primary_10_1007_s42107_023_00908_7
crossref_primary_10_3390_polym14081583
crossref_primary_10_1155_2022_5433474
crossref_primary_10_1016_j_cemconcomp_2022_104414
crossref_primary_10_1016_j_sciaf_2023_e01954
crossref_primary_10_3390_app11020485
crossref_primary_10_1007_s42107_023_00984_9
crossref_primary_10_1016_j_mtcomm_2024_108832
crossref_primary_10_3390_jcs5100271
crossref_primary_10_1038_s41598_023_47196_4
crossref_primary_10_1016_j_conbuildmat_2023_134443
crossref_primary_10_2478_ffp_2024_0007
crossref_primary_10_3390_pr11020390
crossref_primary_10_1016_j_conbuildmat_2022_127298
crossref_primary_10_3390_ma14227034
crossref_primary_10_1016_j_rineng_2024_103125
crossref_primary_10_1016_j_jobe_2024_109055
crossref_primary_10_1016_j_cscm_2022_e01805
crossref_primary_10_1155_2024_7854488
crossref_primary_10_3390_ma15124108
crossref_primary_10_3233_JIFS_220744
crossref_primary_10_1038_s41598_024_54513_y
crossref_primary_10_3390_polym14112270
crossref_primary_10_3390_polym16182680
crossref_primary_10_3390_ma14247531
crossref_primary_10_1016_j_jobe_2024_110417
crossref_primary_10_1016_j_apt_2025_105056
crossref_primary_10_1016_j_mtcomm_2023_105901
crossref_primary_10_1016_j_clema_2022_100072
crossref_primary_10_1016_j_conbuildmat_2024_138346
crossref_primary_10_4028_p_choO6l
crossref_primary_10_3390_polym17182541
crossref_primary_10_1007_s40996_024_01374_0
crossref_primary_10_1016_j_cscm_2023_e01831
crossref_primary_10_1016_j_mtcomm_2025_112572
crossref_primary_10_3390_ma17235831
crossref_primary_10_1016_j_mtcomm_2023_107639
crossref_primary_10_3390_su14031183
crossref_primary_10_3390_buildings12050690
crossref_primary_10_1016_j_istruc_2024_107882
crossref_primary_10_3390_ma15217412
crossref_primary_10_3390_ma14040794
crossref_primary_10_3389_fmats_2021_621163
crossref_primary_10_1002_suco_202300418
crossref_primary_10_3390_buildings12050698
crossref_primary_10_3390_buildings12091406
crossref_primary_10_1016_j_conbuildmat_2022_126694
crossref_primary_10_1515_rams_2025_0088
crossref_primary_10_3390_buildings14030591
crossref_primary_10_3390_polym14102128
crossref_primary_10_1016_j_rineng_2025_103975
crossref_primary_10_1016_j_istruc_2022_10_056
crossref_primary_10_1016_j_rineng_2024_101837
crossref_primary_10_1016_j_clema_2023_100211
crossref_primary_10_3390_app132111991
crossref_primary_10_1016_j_cscm_2021_e00840
crossref_primary_10_3390_ma15124311
crossref_primary_10_1016_j_conbuildmat_2023_132606
crossref_primary_10_1515_rams_2025_0097
crossref_primary_10_3390_buildings12122160
crossref_primary_10_3390_ma14195659
crossref_primary_10_3390_gels10020148
crossref_primary_10_1186_s40069_022_00554_4
crossref_primary_10_3390_buildings14123998
crossref_primary_10_1016_j_mtcomm_2023_107778
crossref_primary_10_3390_ma14154222
crossref_primary_10_1007_s41024_024_00445_z
crossref_primary_10_1007_s41062_025_01909_y
crossref_primary_10_3390_app122312487
crossref_primary_10_3233_JIFS_221342
crossref_primary_10_1007_s41939_024_00605_1
crossref_primary_10_3390_min12060731
crossref_primary_10_1002_suco_202100732
crossref_primary_10_1007_s42947_022_00223_5
crossref_primary_10_3390_polym13193389
crossref_primary_10_3390_su17188212
crossref_primary_10_1016_j_mtcomm_2023_107725
crossref_primary_10_1007_s42247_022_00409_4
crossref_primary_10_3390_infrastructures9100181
crossref_primary_10_1007_s10064_024_03629_6
crossref_primary_10_1016_j_cscm_2023_e02581
crossref_primary_10_3390_app12010361
crossref_primary_10_3390_mining2040034
crossref_primary_10_3390_polym14010030
crossref_primary_10_3390_ma15134512
crossref_primary_10_1016_j_asoc_2024_112490
crossref_primary_10_1016_j_jobe_2025_113577
crossref_primary_10_1016_j_mtcomm_2021_103117
crossref_primary_10_1007_s42107_025_01386_9
crossref_primary_10_3390_ma15082823
crossref_primary_10_3390_ma15155435
crossref_primary_10_1007_s42107_023_00707_0
crossref_primary_10_3390_app142210102
crossref_primary_10_1007_s42452_023_05447_z
crossref_primary_10_1109_ACCESS_2022_3157639
crossref_primary_10_3389_fmats_2022_1114510
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_cscm_2022_e01620
crossref_primary_10_3390_su13147515
crossref_primary_10_1186_s44147_024_00406_w
crossref_primary_10_3390_ma15124194
crossref_primary_10_1007_s41939_023_00223_3
crossref_primary_10_1016_j_mtcomm_2024_109525
crossref_primary_10_3390_buildings14113505
crossref_primary_10_1007_s42107_025_01266_2
crossref_primary_10_1016_j_mtcomm_2023_107066
crossref_primary_10_1016_j_conbuildmat_2021_125634
crossref_primary_10_1016_j_conbuildmat_2024_137276
crossref_primary_10_3390_buildings14072033
crossref_primary_10_1016_j_cscm_2025_e04207
crossref_primary_10_1080_21650373_2022_2093291
crossref_primary_10_1016_j_jobe_2022_104746
crossref_primary_10_3390_ma17184533
crossref_primary_10_15446_dyna_v91n231_107967
crossref_primary_10_1108_EC_07_2024_0635
crossref_primary_10_1007_s41939_024_00656_4
crossref_primary_10_1007_s42107_023_00746_7
crossref_primary_10_3390_ma15093166
crossref_primary_10_1016_j_istruc_2023_04_050
crossref_primary_10_1186_s44147_023_00266_w
crossref_primary_10_3390_ma16031286
crossref_primary_10_1016_j_jcsr_2025_109458
crossref_primary_10_1007_s42107_025_01278_y
Cites_doi 10.1016/j.istruc.2020.02.028
10.1007/s10706-012-9584-4
10.1016/j.conbuildmat.2013.12.016
10.1016/j.conbuildmat.2018.09.097
10.1016/j.conbuildmat.2007.04.004
10.1016/j.aei.2019.101030
10.1186/1471-2105-5-81
10.1016/j.conbuildmat.2019.03.189
10.1515/ace-2015-0014
10.1016/j.conbuildmat.2019.07.315
10.1016/j.conbuildmat.2019.02.165
10.12962/j23546026.y2017i6.3267
10.1016/j.conbuildmat.2019.02.071
10.1016/j.eswa.2014.10.031
10.1016/j.advengsoft.2019.03.003
10.1016/j.conbuildmat.2014.09.054
10.1021/ci034160g
10.1016/j.conbuildmat.2010.09.010
10.3390/cryst10090741
10.1016/j.neucom.2017.09.099
10.1016/j.compositesb.2019.106938
10.1016/j.conbuildmat.2005.08.009
10.1016/S0008-8846(00)00236-2
10.1016/j.conbuildmat.2005.01.054
10.1016/j.ultras.2008.05.001
10.1016/j.conbuildmat.2019.07.155
10.1016/j.jhazmat.2019.121322
10.1155/2019/5198583
10.1016/j.conbuildmat.2012.04.063
10.1016/j.jobe.2020.101326
10.1016/j.jclepro.2020.120665
10.1016/j.conbuildmat.2013.08.078
10.3390/cryst10090737
10.1016/j.eswa.2008.07.017
10.1016/j.conbuildmat.2012.06.002
10.1155/2020/8850535
10.1016/S1093-3263(01)00123-1
10.1016/j.cemconres.2005.01.001
10.1007/s10021-005-0054-1
10.3390/ma9050396
10.1061/(ASCE)MT.1943-5533.0000494
10.1016/j.conbuildmat.2016.03.041
10.1016/j.conbuildmat.2010.01.006
10.1007/s00521-018-3630-y
10.1016/j.jclepro.2020.123697
10.1016/j.jclepro.2018.08.065
10.1016/S0008-8846(01)00553-1
10.3390/ma13010230
10.1016/j.conbuildmat.2009.02.012
10.3390/ma13051072
10.1016/j.conbuildmat.2016.10.114
10.1023/A:1010933404324
10.1016/j.matdes.2013.05.022
10.1016/j.advengsoft.2015.05.007
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10207330
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Databases
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_95c21c7f48fe4e2d8e9d7d9dcd6346f9
A641751602
10_3390_app10207330
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-2f8b5dbbed1a9e263bfb4c11c623bacb16ccaecea986d9f694db1a778a0a338a3
IEDL.DBID DOA
ISICitedReferencesCount 211
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000585051900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:23:33 EST 2025
Mon Jun 30 07:30:34 EDT 2025
Tue Nov 04 17:46:44 EST 2025
Sat Nov 29 07:11:47 EST 2025
Tue Nov 18 20:56:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-2f8b5dbbed1a9e263bfb4c11c623bacb16ccaecea986d9f694db1a778a0a338a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5478-9324
0000-0001-7994-4642
0000-0002-3821-5491
0000-0001-6524-4389
0000-0003-2863-3283
OpenAccessLink https://doaj.org/article/95c21c7f48fe4e2d8e9d7d9dcd6346f9
PQID 2534000425
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_95c21c7f48fe4e2d8e9d7d9dcd6346f9
proquest_journals_2534000425
gale_infotracacademiconefile_A641751602
crossref_primary_10_3390_app10207330
crossref_citationtrail_10_3390_app10207330
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gandomi (ref_58) 2012; 24
Frank (ref_60) 1994; 14
Kim (ref_13) 2019; 208
Getahun (ref_55) 2018; 190
Kang (ref_21) 2019; 131
Xu (ref_24) 2019; 226
Iqbal (ref_33) 2020; 384
(ref_7) 2009; 36
Zhang (ref_28) 2020; 258
Info (ref_32) 2018; 2
ref_12
ref_56
Shahmansouri (ref_17) 2020; 31
Alavi (ref_61) 2011; 25
Singh (ref_64) 2019; 6
Zhang (ref_1) 2000; 30
ref_53
ref_51
Gandomi (ref_59) 2015; 88
Ling (ref_22) 2019; 206
ref_18
Pala (ref_45) 2007; 21
(ref_11) 2012; 36
Breiman (ref_48) 2001; 45
Prasad (ref_52) 2006; 9
Duan (ref_41) 2013; 40
Chou (ref_43) 2014; 73
Behnood (ref_54) 2018; 202
Han (ref_26) 2019; 226
Demir (ref_8) 2008; 22
Yan (ref_10) 2010; 24
Shahmansouri (ref_35) 2020; 279
Gholampour (ref_57) 2017; 130
ref_25
Chou (ref_42) 2013; 49
Hooton (ref_3) 2014; 67
ref_20
Azim (ref_44) 2020; 25
Trtnik (ref_34) 2009; 49
Patel (ref_50) 2015; 42
Golbraikh (ref_62) 2002; 20
Khaloo (ref_2) 2016; 113
Zhang (ref_38) 2019; 210
Svetnik (ref_49) 2003; 43
Gholampour (ref_16) 2020; 32
Sonebi (ref_19) 2009; 23
Vakhshouri (ref_31) 2018; 280
ref_36
ref_30
Pala (ref_63) 2006; 20
ref_39
Vakhshouri (ref_29) 2015; 61
ref_37
Samui (ref_15) 2013; 31
Tortum (ref_40) 2013; 52
Demir (ref_9) 2005; 35
Ababneh (ref_23) 2020; 13
ref_47
ref_46
Mbessa (ref_6) 2001; 31
Aslam (ref_14) 2020; 2020
ref_5
ref_4
Stephan (ref_27) 2020; 43
References_xml – volume: 25
  start-page: 212
  year: 2020
  ident: ref_44
  article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.02.028
– ident: ref_5
– volume: 13
  start-page: e00414
  year: 2020
  ident: ref_23
  article-title: Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks
  publication-title: Case Stud. Constr. Mater.
– volume: 31
  start-page: 249
  year: 2013
  ident: ref_15
  article-title: Multivariate adaptive regression spline (MARS) for prediction of elastic modulus of jointed rock mass
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-012-9584-4
– volume: 67
  start-page: 422
  year: 2014
  ident: ref_3
  article-title: Design for durability: The key to improving concrete sustainability
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.12.016
– volume: 2
  start-page: 62
  year: 2018
  ident: ref_32
  article-title: Application of ANN and ANFIS Models Determining Compressive Strength of Concrete
  publication-title: Soft Comput. Civ. Eng.
– volume: 6
  start-page: 583
  year: 2019
  ident: ref_64
  article-title: Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches
  publication-title: J. Mater. Eng. Struct. JMES
– volume: 190
  start-page: 517
  year: 2018
  ident: ref_55
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.097
– volume: 22
  start-page: 1428
  year: 2008
  ident: ref_8
  article-title: Prediction of elastic modulus of normal and high strength concrete by artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.04.004
– volume: 43
  start-page: 101030
  year: 2020
  ident: ref_27
  article-title: Ensemble data mining modeling in corrosion of concrete sewer: A comparative study of network-based (MLPNN & RBFNN) and tree-based (RF, CHAID, & CART) models
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.101030
– ident: ref_51
  doi: 10.1186/1471-2105-5-81
– volume: 210
  start-page: 713
  year: 2019
  ident: ref_38
  article-title: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.189
– volume: 61
  start-page: 53
  year: 2015
  ident: ref_29
  article-title: Predicition of compressive strength in light-weight self-compacting concrete by ANFIS analytical model
  publication-title: Arch. Civ. Eng.
  doi: 10.1515/ace-2015-0014
– volume: 226
  start-page: 734
  year: 2019
  ident: ref_26
  article-title: A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.315
– volume: 208
  start-page: 204
  year: 2019
  ident: ref_13
  article-title: Modeling the compressive strength of high-strength concrete: An extreme learning approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.02.165
– ident: ref_20
  doi: 10.12962/j23546026.y2017i6.3267
– volume: 206
  start-page: 355
  year: 2019
  ident: ref_22
  article-title: Combination of support vector machine and K-fold cross validation to predict compressive strength of concrete in marine environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.02.071
– volume: 42
  start-page: 2162
  year: 2015
  ident: ref_50
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.031
– ident: ref_56
– volume: 131
  start-page: 60
  year: 2019
  ident: ref_21
  article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2019.03.003
– volume: 73
  start-page: 771
  year: 2014
  ident: ref_43
  article-title: Machine learning in concrete strength simulations: Multi-nation data analytics
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.09.054
– volume: 43
  start-page: 1947
  year: 2003
  ident: ref_49
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– volume: 25
  start-page: 1338
  year: 2011
  ident: ref_61
  article-title: Formulation of flow number of asphalt mixes using a hybrid computational method
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.09.010
– ident: ref_18
  doi: 10.3390/cryst10090741
– volume: 280
  start-page: 13
  year: 2018
  ident: ref_31
  article-title: Prediction of compressive strength of self-compacting concrete by ANFIS models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.099
– volume: 14
  start-page: 1
  year: 1994
  ident: ref_60
  article-title: The data analysis handbook
  publication-title: Data Handl. Sci. Technol.
– ident: ref_37
  doi: 10.1016/j.compositesb.2019.106938
– volume: 21
  start-page: 384
  year: 2007
  ident: ref_45
  article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.08.009
– volume: 30
  start-page: 827
  year: 2000
  ident: ref_1
  article-title: The effect of ultra-fine admixture on the rheological property of cement paste
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(00)00236-2
– volume: 20
  start-page: 769
  year: 2006
  ident: ref_63
  article-title: Predicting the compressive strength and slump of high strength concrete using neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.01.054
– ident: ref_53
– volume: 49
  start-page: 53
  year: 2009
  ident: ref_34
  article-title: Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.05.001
– volume: 226
  start-page: 534
  year: 2019
  ident: ref_24
  article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.155
– ident: ref_30
– volume: 384
  start-page: 121322
  year: 2020
  ident: ref_33
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121322
– ident: ref_39
  doi: 10.1155/2019/5198583
– volume: 40
  start-page: 1200
  year: 2013
  ident: ref_41
  article-title: Prediction of compressive strength of recycled aggregate concrete using artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.063
– volume: 31
  start-page: 101326
  year: 2020
  ident: ref_17
  article-title: Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101326
– ident: ref_47
– volume: 258
  start-page: 120665
  year: 2020
  ident: ref_28
  article-title: Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120665
– volume: 49
  start-page: 554
  year: 2013
  ident: ref_42
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.078
– ident: ref_36
  doi: 10.3390/cryst10090737
– volume: 36
  start-page: 6145
  year: 2009
  ident: ref_7
  article-title: Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.017
– volume: 36
  start-page: 665
  year: 2012
  ident: ref_11
  article-title: Prediction of elastic modulus of normal and high strength concrete using ANFIS and optimal nonlinear regression models
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.06.002
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_14
  article-title: Applications of Gene Expression Programming for Estimating Compressive Strength of High-Strength Concrete
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2020/8850535
– volume: 20
  start-page: 269
  year: 2002
  ident: ref_62
  article-title: Beware of q2!
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/S1093-3263(01)00123-1
– volume: 35
  start-page: 1531
  year: 2005
  ident: ref_9
  article-title: A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2005.01.001
– volume: 9
  start-page: 181
  year: 2006
  ident: ref_52
  article-title: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– ident: ref_12
  doi: 10.3390/ma9050396
– volume: 24
  start-page: 1132
  year: 2012
  ident: ref_58
  article-title: Novel approach to strength modeling of concrete under triaxial compression
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000494
– volume: 113
  start-page: 188
  year: 2016
  ident: ref_2
  article-title: Influence of different types of nano-SiO2 particles on properties of high-performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.041
– volume: 24
  start-page: 1479
  year: 2010
  ident: ref_10
  article-title: Prediction of elastic modulus of normal and high strength concrete by support vector machine
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.01.006
– volume: 32
  start-page: 295
  year: 2020
  ident: ref_16
  article-title: Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3630-y
– ident: ref_46
– volume: 279
  start-page: 123697
  year: 2020
  ident: ref_35
  article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123697
– volume: 202
  start-page: 54
  year: 2018
  ident: ref_54
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– volume: 31
  start-page: 1227
  year: 2001
  ident: ref_6
  article-title: Durability of high-strength concrete in ammonium sulfate solution
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(01)00553-1
– ident: ref_4
  doi: 10.3390/ma13010230
– volume: 23
  start-page: 2614
  year: 2009
  ident: ref_19
  article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.02.012
– ident: ref_25
  doi: 10.3390/ma13051072
– volume: 130
  start-page: 122
  year: 2017
  ident: ref_57
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_48
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 52
  start-page: 258
  year: 2013
  ident: ref_40
  article-title: Neural networks analysis of compressive strength of lightweight concrete after high temperatures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.05.022
– volume: 88
  start-page: 63
  year: 2015
  ident: ref_59
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
SSID ssj0000913810
Score 2.5876293
Snippet Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7330
SubjectTerms Algorithms
Civil engineering
Concrete
Construction industry
Datasets
Gene expression
Genetic engineering
genetic engineering programming
High strength concrete
Machine learning
Mechanical properties
prediction
Prediction theory
Research methodology
strength concrete
Structure
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMcgBYQCwX5UIkWKSJOHMc-oe2qVQ9otSoP9RY5frRINCmbgMTv4A8zk_U-kIALt8SxR478eTxjj78BOECr1niHE6nwUiYCDfxE5cIn3GehdMGLYkjn8-ldOZupiws9jxtuXQyrXOnEQVG71tIe-ZusyEU6QOztzdeEskbR6WpMoXEbdoipTIxg5_hkNj9f77IQ66Xi6fJiXo7-PZ0L45pKqQrT35aigbH_b3p5WGxOH_xvNx_C_WhmsskSF7twyzd7cG-LfHAPduO07thh5J4-egQ_J2y64QNnFGX4g7WBnZvGtdeMEnl2PcMXRm1QONuSyebLYK9rekZjmKFxiWV0FETDT3JI-BB5Owhf-Oayv6JyCjfZFEzbBo3Z3rPDs_fTo8fw8fTkw_QsiXkbEivSvE-yoOrC1bV33GifybwOtbCcWzS1amNrLhE23nqjlXQ6SC1czU1ZKpMa9JhN_gRGTdv4p8A8ejy2LpT0HBGEci3HhpwSpBe8VGEMr1dDWNlIak65Nb5U6NzQeFdb4z2Gg3XlmyWXx5-rHRMW1lWIgHsoaBeXVZzPlS5sxm0ZhEI8-8wpr13ptLNO5kIGPYZXhKSK1AR2yJp42wF_iwi3qokUaLhxmWZj2F8hqYr6o6s2MHr278_P4W5GOwBDeOE-jPrFN_8C7tjv_edu8TJOh19CoxaI
  priority: 102
  providerName: ProQuest
Title A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC)
URI https://www.proquest.com/docview/2534000425
https://doaj.org/article/95c21c7f48fe4e2d8e9d7d9dcd6346f9
Volume 10
WOSCitedRecordID wos000585051900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hwgEOiBYQC6XyoRItUkScOI593K5aFQlWUXmonCI_AYlm0W5A4nfwh5lx0jZIIC7cEsseOZkZ-xt5_A3APqJaEzw6UhWkzAQC_EyVImQ8FLH2MYgqlfN5_6peLtX5uW4mpb4oJ2ygBx5-3AtduYK7OgqFA0PhVdC-9to7L0shY7q6h6hnEkylNVhzoq4aLuSVGNfTeTDupVSiMP9tC0pM_X9bj9Mmc3IP7o7okM2HWW3DjdDtwJ0JZ-AObI_euGEHI2X04X34OWeLaxpvRsmBP9gqsjPT-dUFo_qbm57hC6MxKJxNZLJmyNG6oGfEsAwxIbbRCQ5pjeSQ8JQwm4SvQ_ex_0TtlCVy3bBYdYhB-8AOTt8sDh_Au5Pjt4vTbCy3kDmRl31WRGUrb23w3OhQyNJGKxznDhGSNc5yidoOLhitpNdRauEtN3WtTG4w0DXlQ9jqVl14BCxgoOJspWTgqHiU6zgO5FTXvOK1ijN4fqmB1o1c5FQS40uLMQmpq52oawb7V52_DhQcf-52RKq86kK82akBrakdran9lzXN4BkZQkvejRNyZrykgJ9FPFntXArEW1zmxQx2L22lHd1-0xZVKfK0Dj7-H7N5ArcLCu9T7uAubPXrb-Ep3HLf-8-b9R7cPDpeNmd7yfLxrXn5uvnwCzluC70
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJwAFpALBTwoYgWKSJOHMc5ILQsVLvqdrWCUpVTSGynINGkbAKoz8F78IzM5Gd3kYBbD9wSxx7Zzufx2B7PB7CNVm1iDQ6kwErpCDTwHeUL63DrZaHJrAhqOp-jSTidquPjaLYGP7u7MORW2enEWlGbQtMe-TMv8IVbQ-zF2ReHWKPodLWj0GhgsW_Pv-OSrXw-foX_97Hn7b0-HI6cllXA0cL1K8fLVBqYNLWGJ5H1pJ9mqdCcazQE0kSnXGKjrLZJpKSJMhkJk_IkDFXiJrieS3yUewnWBdZE9WB9Nj6YvV_s6lCUTcXd5iKg70cunUPjHE7UiO5vU1_NEPC3eaCe3PZu_G_dchOut2Y0GzS434A1m2_CtZXgipuw0aqtku20sbV3b8GPARsu450z8qI8Z0XG3iS5KU4ZEZWWFcMXRmVQOFuRyWaNM9spPaOxz9B4xjQ66iJ4kxwSXnsW18LnNj-pPlI6udMsE4ZFjsZ6ZdnO6O1w9za8u5CuugO9vMjtXWAWV3Q6DZS0HEcIytUcC3IigA94qLI-PO0gE-s2aDtxh3yOcfFG-IpX8NWH7UXmsyZWyZ-zvSTsLbJQgPE6oZifxK2-iqNAe1yHmVA4Xq1nlI1MaCKjjfSFzKI-PCHkxqQGsUI6aW9zYLMooFg8kAINUy5drw9bHXLjVj-W8RK29_79-RFcGR0eTOLJeLp_H656tNtRu1JuQa-af7UP4LL-Vn0q5w_bocjgw0XD_BeOGHgl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE4AC0gFgr4UESLFDVOHMc5ILRsWXXVsop4VOUUEtspSDQpmwDq7-Df8OuYyWN3kYBbD9wSxxnl8c14xh7PB7CFXm1qDSpSYKV0BDr4jvKFdbj18tDkVgQNnc_RYTidquPjKF6Bn_1eGEqr7G1iY6hNqWmOfNcLfOE2ENvNu7SIeG_8_OyLQwxStNLa02m0EDmw598xfKueTfbwXz_2vPHLt6N9p2MYcLRw_drxcpUFJsus4WlkPelneSY05xqdgizVGZf4glbbNFLSRLmMhMl4GoYqdVOM7VIf5V6CNXTJBerYWjx5Fb-fz_BQxU3F3XZToO9HLq1J43hONInub8NgwxbwtzGhGejGN_7nT3QTrnfuNRu2-rAOK7bYgGtLRRc3YL0zZxXb7mpu79yCH0M2WtRBZ5Rdec7KnL1OC1OeMiIwrWqGJ4zuQeFsSSaL2yS3UzrGIIChU41ttARGsCc5JLzJOG6Ez2xxUn-kdkqzWTSMygKd-Nqy7f03o53b8O5CPtUdWC3Kwt4FZjHS01mgpOWoOShXc7yREzF8wEOVD-BpD59Ed8XciVPkc4JBHWEtWcLaALbmnc_aGiZ_7vaCcDjvQoXHm4ZydpJ0diyJAu1xHeZCoR5bzygbmdBERhvpC5lHA3hCKE7IPOID6bTb5YGvRYXGkqEU6LBy6XoD2OxRnHR2s0oWEL7378uP4ApiOzmcTA_uw1WPJkGaDMtNWK1nX-0DuKy_1Z-q2cNOKxl8uGiU_wLBO4Dl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Random+Forest+and+Genetic+Engineering+Programming+for+the+Prediction+of+Compressive+Strength+of+High+Strength+Concrete+%28HSC%29&rft.jtitle=Applied+sciences&rft.au=Furqan+Farooq&rft.au=Muhammad+Nasir+Amin&rft.au=Kaffayatullah+Khan&rft.au=Muhammad+Rehan+Sadiq&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft.spage=7330&rft_id=info:doi/10.3390%2Fapp10207330&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_95c21c7f48fe4e2d8e9d7d9dcd6346f9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon