Influence of ball milling parameters on the mechano-chemical conversion of polyolefins
Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability...
Gespeichert in:
| Veröffentlicht in: | RSC Mechanochemistry Jg. 2; H. 2; S. 263 - 272 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
RSC
04.03.2025
|
| Schlagworte: | |
| ISSN: | 2976-8683, 2976-8683 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.
Mechano-chemical plastic recycling suffers from low overall yields. We identified the role of key parameters to maximize mechanical impact to increase the productivity of small hydrocarbons, such as propene, from polypropylene. |
|---|---|
| AbstractList | Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.
Mechano-chemical plastic recycling suffers from low overall yields. We identified the role of key parameters to maximize mechanical impact to increase the productivity of small hydrocarbons, such as propene, from polypropylene. Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes. Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes. Mechano-chemical plastic recycling suffers from low overall yields. We identified the role of key parameters to maximize mechanical impact to increase the productivity of small hydrocarbons, such as propene, from polypropylene. Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes. |
| Author | Baarslag, Renate J Burg, Justin Vollmer, Ina Seitzinger, Claire L Hergesell, Adrian H |
| AuthorAffiliation | Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Utrecht University |
| AuthorAffiliation_xml | – name: Institute for Sustainable and Circular Chemistry – name: Inorganic Chemistry and Catalysis – name: Utrecht University |
| Author_xml | – sequence: 1 givenname: Adrian H surname: Hergesell fullname: Hergesell, Adrian H – sequence: 2 givenname: Claire L surname: Seitzinger fullname: Seitzinger, Claire L – sequence: 3 givenname: Justin surname: Burg fullname: Burg, Justin – sequence: 4 givenname: Renate J surname: Baarslag fullname: Baarslag, Renate J – sequence: 5 givenname: Ina surname: Vollmer fullname: Vollmer, Ina |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39760087$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkstLxDAQxoMovi_elR5FqCZNm01OIr5BEUS9hjSduJE0WZOu4H9vdHV94GkGvt_3TZjJGlr0wQNCWwTvE0zFQVf3EWMsuFlAq5UYsZIzThd_9CtoM6WnzFBKaMPxMlqhWcOYj1bRw6U3bgpeQxFM0Srnit46Z_1jMVFR9TBATEXwxTCGogc9Vj6Uegy91coVOviXrNusZ_ckuNfgwFifNtCSUS7B5mddR_dnp3fHF-XVzfnl8dFVqWtMh7KCpmsbQhk1rKEdqzARuq0UVA3jIFTFBNC64y0FAR01htWMCKM6Y3Bd4Zauo8NZ7mTa9tBp8ENUTk6i7VV8lUFZ-Vvxdiwfw4skhAnGGc4Ju58JMTxPIQ2yt0mDc8pDmCZJSUP4SPARz-jOz2HzKV_bzMDeDNAxpBTBzBGC5fu15El9fftxrbMM4z-wtoMa8i7zQ63737I9s8Sk59HfH4C-AZ1Molk |
| CitedBy_id | crossref_primary_10_1002_anie_202503061 crossref_primary_10_1016_j_conbuildmat_2025_143110 crossref_primary_10_1021_jacs_5c04043 crossref_primary_10_1021_acssuschemeng_5c02335 crossref_primary_10_1039_D5MR00076A crossref_primary_10_1039_D5SC03348A crossref_primary_10_1039_D5MR00059A crossref_primary_10_1002_ange_202503061 crossref_primary_10_1016_j_rineng_2025_107151 crossref_primary_10_1021_acs_macromol_5c01985 |
| Cites_doi | 10.1002/pol.1974.180120211 10.1039/D4MR00079J 10.1021/acs.macromol.0c01510 10.1126/science.adq7316 10.1039/C6CC08950J 10.1021/acssuschemeng.3c05296 10.1070/RC1971v040n11ABEH001982 10.1126/science.abc5441 10.1002/anie.202104110 10.1016/0079-6700(89)90004-X 10.1039/D4GC00659C 10.3389/fchem.2021.816553 10.1007/978-3-662-58709-6 10.1016/j.mechmachtheory.2012.02.010 10.1038/s41467-023-40915-5 10.1007/s11043-010-9118-5 10.1021/ma030322y 10.1002/pol.20220578 10.1016/S0141-3910(03)00160-5 10.1002/anie.201915651 10.1039/C7GC03797J 10.1007/s40544-013-0005-3 10.1016/j.scitotenv.2020.144719 10.1017/CBO9781139171731 10.1038/s41586-023-05845-8 10.1002/pol.1975.180130614 10.1016/j.polymdegradstab.2012.08.026 10.1038/s41893-022-01054-9 10.1126/sciadv.1700782 10.1038/s41428-023-00863-9 10.1039/D0NJ05984F 10.1021/acssuschemeng.3c06081 10.1021/jacs.4c07157 10.1021/jp8020003 10.1016/j.cej.2019.122954 10.1016/S0141-3910(00)00090-2 10.1016/j.chempr.2020.12.006 10.1002/app.24156 10.1126/science.add1088 10.1002/anie.202409731 10.1021/acs.macromol.3c02664 10.1016/j.polymer.2016.06.047 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2025 RSC |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2025 RSC |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1039/d4mr00098f |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2976-8683 |
| EndPage | 272 |
| ExternalDocumentID | PMC11696860 39760087 10_1039_D4MR00098F d4mr00098f |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: CHEMIE.PGT.2023.002 – fundername: ; grantid: OCENW.XS22.1.093; VI.Veni.202.191 |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS ANUXI GROUPED_DOAJ H13 M~E AAYXX ABIQK CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c403t-2e5db51363f653d62019cb2ae2568e9a269e34d8b3e9ed3ff64619fadff0420b3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553000500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2976-8683 |
| IngestDate | Tue Sep 30 17:06:11 EDT 2025 Wed Oct 01 12:26:25 EDT 2025 Mon Jul 21 06:03:53 EDT 2025 Sat Nov 29 08:08:02 EST 2025 Tue Nov 18 22:11:16 EST 2025 Tue May 27 12:02:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c403t-2e5db51363f653d62019cb2ae2568e9a269e34d8b3e9ed3ff64619fadff0420b3 |
| Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4mr00098f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3071-930X 0009-0000-5583-2814 0000-0001-9917-1499 0000-0002-4700-9964 0009-0004-8959-899X |
| OpenAccessLink | http://dx.doi.org/10.1039/d4mr00098f |
| PMID | 39760087 |
| PQID | 3151879878 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | rsc_primary_d4mr00098f crossref_primary_10_1039_D4MR00098F proquest_miscellaneous_3151879878 pubmed_primary_39760087 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11696860 crossref_citationtrail_10_1039_D4MR00098F |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-04 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | RSC Mechanochemistry |
| PublicationTitleAlternate | RSC Mechanochem |
| PublicationYear | 2025 |
| Publisher | RSC |
| Publisher_xml | – name: RSC |
| References | Andersen (D4MR00098F/cit31/1) 2018; 20 Chang (D4MR00098F/cit25/1) 2024; 1 Tricker (D4MR00098F/cit30/1) 2020; 382 Hertz (D4MR00098F/cit37/1) 1881; 92 McGivern (D4MR00098F/cit41/1) 2008; 112 Popov (D4MR00098F/cit36/1) 2013; 1 Drozdov (D4MR00098F/cit44/1) 2010; 14 Zhang (D4MR00098F/cit11/1) 2020; 370 Anglou (D4MR00098F/cit28/1) 2024; 12 Hergesell (D4MR00098F/cit24/1) 2024; 146 Li (D4MR00098F/cit23/1) 2023; 14 Martín (D4MR00098F/cit8/1) 2021; 7 Sohma (D4MR00098F/cit16/1) 1989; 14 Kruse (D4MR00098F/cit42/1) 2003; 36 Cuthbertson (D4MR00098F/cit26/1) 2024; 26 Conk (D4MR00098F/cit9/1) 2022; 377 Zhurkov (D4MR00098F/cit17/1) 1974; 12 Dondi (D4MR00098F/cit40/1) 2013; 98 Geyer (D4MR00098F/cit1/1) 2017; 3 Bachmann (D4MR00098F/cit3/1) 2023; 6 Sakaguchi (D4MR00098F/cit15/1) 1975; 13 Jansson (D4MR00098F/cit6/1) 2003; 82 Aydonat (D4MR00098F/cit14/1) 2024; 56 Balema (D4MR00098F/cit19/1) 2021; 45 Kulla (D4MR00098F/cit32/1) 2017; 53 Canevarolo (D4MR00098F/cit5/1) 2000; 70 Vollmer (D4MR00098F/cit13/1) 2021; 60 Kessler (D4MR00098F/cit29/1) 2022; 9 Dong (D4MR00098F/cit12/1) 2023; 616 Vollmer (D4MR00098F/cit7/1) 2020; 59 Peterson (D4MR00098F/cit22/1) 2020; 53 The Ellen MacArthur Foundation (D4MR00098F/cit4/1) 2017 Johnson (D4MR00098F/cit35/1) 1985 Ali (D4MR00098F/cit2/1) 2021; 771 Stern (D4MR00098F/cit43/1) 2007; 103 Jafter (D4MR00098F/cit27/1) 2024; 63 Butyagin (D4MR00098F/cit39/1) 1971; 40 Xie (D4MR00098F/cit33/1) 2016; 98 Conk (D4MR00098F/cit10/1) 2024; 385 Chang (D4MR00098F/cit18/1) 2024; 12 Popov (D4MR00098F/cit34/1) 2019 Machado (D4MR00098F/cit38/1) 2012; 53 Jung (D4MR00098F/cit20/1) 2023; 61 Jung (D4MR00098F/cit21/1) 2024; 57 |
| References_xml | – issn: 2017 publication-title: The New Plastics Economy: Catalysing action doi: The Ellen MacArthur Foundation – issn: 1985 publication-title: Contact Mechanics doi: Johnson – issn: 2019 publication-title: Handbook of Contact Mechanics doi: Popov Heß Willert – volume: 12 start-page: 385 year: 1974 ident: D4MR00098F/cit17/1 publication-title: J. Polym. Sci., Polym. Phys. Ed. doi: 10.1002/pol.1974.180120211 – volume: 1 start-page: 504 year: 2024 ident: D4MR00098F/cit25/1 publication-title: RSC Mechanochem. doi: 10.1039/D4MR00079J – volume: 53 start-page: 7795 year: 2020 ident: D4MR00098F/cit22/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c01510 – volume: 385 start-page: 1322 year: 2024 ident: D4MR00098F/cit10/1 publication-title: Science doi: 10.1126/science.adq7316 – volume: 53 start-page: 1664 year: 2017 ident: D4MR00098F/cit32/1 publication-title: Chem. Commun. doi: 10.1039/C6CC08950J – volume: 12 start-page: 178 year: 2024 ident: D4MR00098F/cit18/1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c05296 – volume: 40 start-page: 901 year: 1971 ident: D4MR00098F/cit39/1 publication-title: Russ. Chem. Rev. doi: 10.1070/RC1971v040n11ABEH001982 – volume: 370 start-page: 437 year: 2020 ident: D4MR00098F/cit11/1 publication-title: Science doi: 10.1126/science.abc5441 – volume: 60 start-page: 16101 year: 2021 ident: D4MR00098F/cit13/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104110 – volume: 14 start-page: 451 year: 1989 ident: D4MR00098F/cit16/1 publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(89)90004-X – volume: 26 start-page: 7067 year: 2024 ident: D4MR00098F/cit26/1 publication-title: Green Chem. doi: 10.1039/D4GC00659C – volume: 9 start-page: 816553 year: 2022 ident: D4MR00098F/cit29/1 publication-title: Front. Chem. doi: 10.3389/fchem.2021.816553 – volume-title: Handbook of Contact Mechanics year: 2019 ident: D4MR00098F/cit34/1 doi: 10.1007/978-3-662-58709-6 – volume: 53 start-page: 99 year: 2012 ident: D4MR00098F/cit38/1 publication-title: Mech. Mach. Theory. doi: 10.1016/j.mechmachtheory.2012.02.010 – volume: 14 start-page: 5257 year: 2023 ident: D4MR00098F/cit23/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40915-5 – volume-title: The New Plastics Economy: Catalysing action year: 2017 ident: D4MR00098F/cit4/1 – volume: 14 start-page: 411 year: 2010 ident: D4MR00098F/cit44/1 publication-title: Mech. Time-Depend. Mater. doi: 10.1007/s11043-010-9118-5 – volume: 36 start-page: 9594 year: 2003 ident: D4MR00098F/cit42/1 publication-title: Macromolecules doi: 10.1021/ma030322y – volume: 61 start-page: 553 year: 2023 ident: D4MR00098F/cit20/1 publication-title: J. Polym. Sci. doi: 10.1002/pol.20220578 – volume: 92 start-page: 156 year: 1881 ident: D4MR00098F/cit37/1 publication-title: J. für die Reine und Angew. Math – volume: 82 start-page: 37 year: 2003 ident: D4MR00098F/cit6/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/S0141-3910(03)00160-5 – volume: 59 start-page: 15402 year: 2020 ident: D4MR00098F/cit7/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915651 – volume: 20 start-page: 1435 year: 2018 ident: D4MR00098F/cit31/1 publication-title: Green Chem. doi: 10.1039/C7GC03797J – volume: 1 start-page: 41 year: 2013 ident: D4MR00098F/cit36/1 publication-title: Friction doi: 10.1007/s40544-013-0005-3 – volume: 771 start-page: 144719 year: 2021 ident: D4MR00098F/cit2/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144719 – volume-title: Contact Mechanics year: 1985 ident: D4MR00098F/cit35/1 doi: 10.1017/CBO9781139171731 – volume: 616 start-page: 488 year: 2023 ident: D4MR00098F/cit12/1 publication-title: Nature doi: 10.1038/s41586-023-05845-8 – volume: 13 start-page: 1233 year: 1975 ident: D4MR00098F/cit15/1 publication-title: J. Polym. Sci., Polym. Phys. Ed. doi: 10.1002/pol.1975.180130614 – volume: 98 start-page: 392 year: 2013 ident: D4MR00098F/cit40/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2012.08.026 – volume: 6 start-page: 599 year: 2023 ident: D4MR00098F/cit3/1 publication-title: Nat. Sustain. doi: 10.1038/s41893-022-01054-9 – volume: 3 start-page: e1700782 year: 2017 ident: D4MR00098F/cit1/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 56 start-page: 249 year: 2024 ident: D4MR00098F/cit14/1 publication-title: Polym. J. doi: 10.1038/s41428-023-00863-9 – volume: 45 start-page: 2935 year: 2021 ident: D4MR00098F/cit19/1 publication-title: New J. Chem. doi: 10.1039/D0NJ05984F – volume: 12 start-page: 9003 year: 2024 ident: D4MR00098F/cit28/1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c06081 – volume: 146 start-page: 26139 year: 2024 ident: D4MR00098F/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c07157 – volume: 112 start-page: 6908 year: 2008 ident: D4MR00098F/cit41/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp8020003 – volume: 382 start-page: 122954 year: 2020 ident: D4MR00098F/cit30/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122954 – volume: 70 start-page: 71 year: 2000 ident: D4MR00098F/cit5/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/S0141-3910(00)00090-2 – volume: 7 start-page: 1487 year: 2021 ident: D4MR00098F/cit8/1 publication-title: Chem doi: 10.1016/j.chempr.2020.12.006 – volume: 103 start-page: 519 year: 2007 ident: D4MR00098F/cit43/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.24156 – volume: 377 start-page: 1561 year: 2022 ident: D4MR00098F/cit9/1 publication-title: Science doi: 10.1126/science.add1088 – volume: 63 start-page: e202409731 issue: 48 year: 2024 ident: D4MR00098F/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202409731 – volume: 57 start-page: 3131 year: 2024 ident: D4MR00098F/cit21/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.3c02664 – volume: 98 start-page: 294 year: 2016 ident: D4MR00098F/cit33/1 publication-title: Polymer doi: 10.1016/j.polymer.2016.06.047 |
| SSID | ssj0003313580 |
| Score | 2.3630679 |
| Snippet | Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers.... |
| SourceID | pubmedcentral proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 263 |
| SubjectTerms | Chemistry |
| Title | Influence of ball milling parameters on the mechano-chemical conversion of polyolefins |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39760087 https://www.proquest.com/docview/3151879878 https://pubmed.ncbi.nlm.nih.gov/PMC11696860 |
| Volume | 2 |
| WOSCitedRecordID | wos001553000500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2976-8683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313580 issn: 2976-8683 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2976-8683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313580 issn: 2976-8683 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELboQGgvCASDMKiC4AVVEUmc-MfjNphAohNiA_WtcmJnq5QmVdpOgwf-ds5O7LQUJHjgJYoSO5H8fT6f7853CL0KicyihCYwxXMeJCSNA57AdBeCYqaoTKUyB4U_0rMzNpnwT51Nd2nKCdCqYjc3fPFfoYZnALY-OvsPcLuPwgO4B9DhCrDD9a-A_2DLjmg9MNOeZ11ZyBw6FzoSS6fT7FwEo7nSB3_rILdpA0wQurGgmVDouvxWl6qYdSY9m8j7_GQ0bnvmtl5cb1NtLtWyc2YcyUbLD-eNOlez1XdjRzT22VKAvB056_Pxuo00MwXGHGePBWy9S3HZcqEC1bjzZHWmijg1sVqtuUAZkRaD8hMw0pausfI33qBZvClLW8m3I-NDrFOkymTeaAWRFZuNAIrF3ACr9Sydb69f51z0oX01QLdjmnIdCDj-0VvmMI60b9jmssX8Tf-vfXTX9t5WZHZ2J7tBtoPG1pQxusvFfXSv23T4Ry1ZHqBbqnqIvjqi-HXha6L4HVH8nih-XflAFP9Xovg9UXTvDaI8Ql9O312cvA-6KhtBnoR4FcQqlVkaYYILkmJJQCPkeRYLBcowU1zEhCucSJZhxZXERUES2HQXQhYFCPwwwwdor6or9QT5RMJyQSQsC6lKogx0YUqkxFwwEcqoyD302g7ZNO9S0OtKKOXUhEJgPn2bjD-bkT710EvXdtEmXvltqxd25KdAd-3sEpWq18spBlWWUc4o89DjFgn3HQuhh9gWRq6Bzrm-_aaaXZnc61Gks0mR0EMHAKfr0DPk6R__doj2-0nxDO2tmrV6ju7k16vZshmiAZ2woTEJDQ0ffwI0T6oD |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+ball+milling+parameters+on+the+mechano-chemical+conversion+of+polyolefins&rft.jtitle=RSC+Mechanochemistry&rft.au=Hergesell%2C+Adrian+H&rft.au=Seitzinger%2C+Claire+L&rft.au=Burg%2C+Justin&rft.au=Baarslag%2C+Renate+J&rft.date=2025-03-04&rft.eissn=2976-8683&rft.volume=2&rft.issue=2&rft.spage=263&rft_id=info:doi/10.1039%2Fd4mr00098f&rft_id=info%3Apmid%2F39760087&rft.externalDocID=39760087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-8683&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-8683&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-8683&client=summon |