Influence of ball milling parameters on the mechano-chemical conversion of polyolefins

Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC Mechanochemistry Jg. 2; H. 2; S. 263 - 272
Hauptverfasser: Hergesell, Adrian H, Seitzinger, Claire L, Burg, Justin, Baarslag, Renate J, Vollmer, Ina
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England RSC 04.03.2025
Schlagworte:
ISSN:2976-8683, 2976-8683
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes. Mechano-chemical plastic recycling suffers from low overall yields. We identified the role of key parameters to maximize mechanical impact to increase the productivity of small hydrocarbons, such as propene, from polypropylene.
AbstractList Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes. Mechano-chemical plastic recycling suffers from low overall yields. We identified the role of key parameters to maximize mechanical impact to increase the productivity of small hydrocarbons, such as propene, from polypropylene.
Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.
Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes. Mechano-chemical plastic recycling suffers from low overall yields. We identified the role of key parameters to maximize mechanical impact to increase the productivity of small hydrocarbons, such as propene, from polypropylene.
Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood. Herein, we systematically investigate the influence of sphere material, milling frequency, plastic filling degree, and milling temperature. Heavy spheres and high milling frequencies boost hydrocarbon yields by maximizing mechanical forces and frequency of collisions. While the dose of kinetic energy is commonly used to describe mechano-chemical processes, we found that it does not capture the mechano-chemical depolymerization of polyolefins. Instead, we rationalized the results based on the Zhurkov equation, a model developed for the thermo-mechanical scission of polymers under stress. In addition, low plastic filling degrees allow for high percentage yields, but cause significant wear on the grinding tools, prohibiting sustained milling. Milling below 40 °C is beneficial for brittle chain cleavage and depolymerization. This study provides a new approach to rationalize the influence of individual milling parameters and their interplay and serves as a starting point to derive design principles for larger-scale mechano-chemical depolymerization processes.
Author Baarslag, Renate J
Burg, Justin
Vollmer, Ina
Seitzinger, Claire L
Hergesell, Adrian H
AuthorAffiliation Inorganic Chemistry and Catalysis
Institute for Sustainable and Circular Chemistry
Utrecht University
AuthorAffiliation_xml – name: Institute for Sustainable and Circular Chemistry
– name: Inorganic Chemistry and Catalysis
– name: Utrecht University
Author_xml – sequence: 1
  givenname: Adrian H
  surname: Hergesell
  fullname: Hergesell, Adrian H
– sequence: 2
  givenname: Claire L
  surname: Seitzinger
  fullname: Seitzinger, Claire L
– sequence: 3
  givenname: Justin
  surname: Burg
  fullname: Burg, Justin
– sequence: 4
  givenname: Renate J
  surname: Baarslag
  fullname: Baarslag, Renate J
– sequence: 5
  givenname: Ina
  surname: Vollmer
  fullname: Vollmer, Ina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39760087$$D View this record in MEDLINE/PubMed
BookMark eNptkstLxDAQxoMovi_elR5FqCZNm01OIr5BEUS9hjSduJE0WZOu4H9vdHV94GkGvt_3TZjJGlr0wQNCWwTvE0zFQVf3EWMsuFlAq5UYsZIzThd_9CtoM6WnzFBKaMPxMlqhWcOYj1bRw6U3bgpeQxFM0Srnit46Z_1jMVFR9TBATEXwxTCGogc9Vj6Uegy91coVOviXrNusZ_ckuNfgwFifNtCSUS7B5mddR_dnp3fHF-XVzfnl8dFVqWtMh7KCpmsbQhk1rKEdqzARuq0UVA3jIFTFBNC64y0FAR01htWMCKM6Y3Bd4Zauo8NZ7mTa9tBp8ENUTk6i7VV8lUFZ-Vvxdiwfw4skhAnGGc4Ju58JMTxPIQ2yt0mDc8pDmCZJSUP4SPARz-jOz2HzKV_bzMDeDNAxpBTBzBGC5fu15El9fftxrbMM4z-wtoMa8i7zQ63737I9s8Sk59HfH4C-AZ1Molk
CitedBy_id crossref_primary_10_1002_anie_202503061
crossref_primary_10_1016_j_conbuildmat_2025_143110
crossref_primary_10_1021_jacs_5c04043
crossref_primary_10_1021_acssuschemeng_5c02335
crossref_primary_10_1039_D5MR00076A
crossref_primary_10_1039_D5SC03348A
crossref_primary_10_1039_D5MR00059A
crossref_primary_10_1002_ange_202503061
crossref_primary_10_1016_j_rineng_2025_107151
crossref_primary_10_1021_acs_macromol_5c01985
Cites_doi 10.1002/pol.1974.180120211
10.1039/D4MR00079J
10.1021/acs.macromol.0c01510
10.1126/science.adq7316
10.1039/C6CC08950J
10.1021/acssuschemeng.3c05296
10.1070/RC1971v040n11ABEH001982
10.1126/science.abc5441
10.1002/anie.202104110
10.1016/0079-6700(89)90004-X
10.1039/D4GC00659C
10.3389/fchem.2021.816553
10.1007/978-3-662-58709-6
10.1016/j.mechmachtheory.2012.02.010
10.1038/s41467-023-40915-5
10.1007/s11043-010-9118-5
10.1021/ma030322y
10.1002/pol.20220578
10.1016/S0141-3910(03)00160-5
10.1002/anie.201915651
10.1039/C7GC03797J
10.1007/s40544-013-0005-3
10.1016/j.scitotenv.2020.144719
10.1017/CBO9781139171731
10.1038/s41586-023-05845-8
10.1002/pol.1975.180130614
10.1016/j.polymdegradstab.2012.08.026
10.1038/s41893-022-01054-9
10.1126/sciadv.1700782
10.1038/s41428-023-00863-9
10.1039/D0NJ05984F
10.1021/acssuschemeng.3c06081
10.1021/jacs.4c07157
10.1021/jp8020003
10.1016/j.cej.2019.122954
10.1016/S0141-3910(00)00090-2
10.1016/j.chempr.2020.12.006
10.1002/app.24156
10.1126/science.add1088
10.1002/anie.202409731
10.1021/acs.macromol.3c02664
10.1016/j.polymer.2016.06.047
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2025 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2025 RSC
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1039/d4mr00098f
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2976-8683
EndPage 272
ExternalDocumentID PMC11696860
39760087
10_1039_D4MR00098F
d4mr00098f
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: CHEMIE.PGT.2023.002
– fundername: ;
  grantid: OCENW.XS22.1.093; VI.Veni.202.191
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ANUXI
GROUPED_DOAJ
H13
M~E
AAYXX
ABIQK
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c403t-2e5db51363f653d62019cb2ae2568e9a269e34d8b3e9ed3ff64619fadff0420b3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553000500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2976-8683
IngestDate Tue Sep 30 17:06:11 EDT 2025
Wed Oct 01 12:26:25 EDT 2025
Mon Jul 21 06:03:53 EDT 2025
Sat Nov 29 08:08:02 EST 2025
Tue Nov 18 22:11:16 EST 2025
Tue May 27 12:02:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-2e5db51363f653d62019cb2ae2568e9a269e34d8b3e9ed3ff64619fadff0420b3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4mr00098f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3071-930X
0009-0000-5583-2814
0000-0001-9917-1499
0000-0002-4700-9964
0009-0004-8959-899X
OpenAccessLink http://dx.doi.org/10.1039/d4mr00098f
PMID 39760087
PQID 3151879878
PQPubID 23479
PageCount 1
ParticipantIDs rsc_primary_d4mr00098f
crossref_primary_10_1039_D4MR00098F
proquest_miscellaneous_3151879878
pubmed_primary_39760087
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11696860
crossref_citationtrail_10_1039_D4MR00098F
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle RSC Mechanochemistry
PublicationTitleAlternate RSC Mechanochem
PublicationYear 2025
Publisher RSC
Publisher_xml – name: RSC
References Andersen (D4MR00098F/cit31/1) 2018; 20
Chang (D4MR00098F/cit25/1) 2024; 1
Tricker (D4MR00098F/cit30/1) 2020; 382
Hertz (D4MR00098F/cit37/1) 1881; 92
McGivern (D4MR00098F/cit41/1) 2008; 112
Popov (D4MR00098F/cit36/1) 2013; 1
Drozdov (D4MR00098F/cit44/1) 2010; 14
Zhang (D4MR00098F/cit11/1) 2020; 370
Anglou (D4MR00098F/cit28/1) 2024; 12
Hergesell (D4MR00098F/cit24/1) 2024; 146
Li (D4MR00098F/cit23/1) 2023; 14
Martín (D4MR00098F/cit8/1) 2021; 7
Sohma (D4MR00098F/cit16/1) 1989; 14
Kruse (D4MR00098F/cit42/1) 2003; 36
Cuthbertson (D4MR00098F/cit26/1) 2024; 26
Conk (D4MR00098F/cit9/1) 2022; 377
Zhurkov (D4MR00098F/cit17/1) 1974; 12
Dondi (D4MR00098F/cit40/1) 2013; 98
Geyer (D4MR00098F/cit1/1) 2017; 3
Bachmann (D4MR00098F/cit3/1) 2023; 6
Sakaguchi (D4MR00098F/cit15/1) 1975; 13
Jansson (D4MR00098F/cit6/1) 2003; 82
Aydonat (D4MR00098F/cit14/1) 2024; 56
Balema (D4MR00098F/cit19/1) 2021; 45
Kulla (D4MR00098F/cit32/1) 2017; 53
Canevarolo (D4MR00098F/cit5/1) 2000; 70
Vollmer (D4MR00098F/cit13/1) 2021; 60
Kessler (D4MR00098F/cit29/1) 2022; 9
Dong (D4MR00098F/cit12/1) 2023; 616
Vollmer (D4MR00098F/cit7/1) 2020; 59
Peterson (D4MR00098F/cit22/1) 2020; 53
The Ellen MacArthur Foundation (D4MR00098F/cit4/1) 2017
Johnson (D4MR00098F/cit35/1) 1985
Ali (D4MR00098F/cit2/1) 2021; 771
Stern (D4MR00098F/cit43/1) 2007; 103
Jafter (D4MR00098F/cit27/1) 2024; 63
Butyagin (D4MR00098F/cit39/1) 1971; 40
Xie (D4MR00098F/cit33/1) 2016; 98
Conk (D4MR00098F/cit10/1) 2024; 385
Chang (D4MR00098F/cit18/1) 2024; 12
Popov (D4MR00098F/cit34/1) 2019
Machado (D4MR00098F/cit38/1) 2012; 53
Jung (D4MR00098F/cit20/1) 2023; 61
Jung (D4MR00098F/cit21/1) 2024; 57
References_xml – issn: 2017
  publication-title: The New Plastics Economy: Catalysing action
  doi: The Ellen MacArthur Foundation
– issn: 1985
  publication-title: Contact Mechanics
  doi: Johnson
– issn: 2019
  publication-title: Handbook of Contact Mechanics
  doi: Popov Heß Willert
– volume: 12
  start-page: 385
  year: 1974
  ident: D4MR00098F/cit17/1
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
  doi: 10.1002/pol.1974.180120211
– volume: 1
  start-page: 504
  year: 2024
  ident: D4MR00098F/cit25/1
  publication-title: RSC Mechanochem.
  doi: 10.1039/D4MR00079J
– volume: 53
  start-page: 7795
  year: 2020
  ident: D4MR00098F/cit22/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01510
– volume: 385
  start-page: 1322
  year: 2024
  ident: D4MR00098F/cit10/1
  publication-title: Science
  doi: 10.1126/science.adq7316
– volume: 53
  start-page: 1664
  year: 2017
  ident: D4MR00098F/cit32/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08950J
– volume: 12
  start-page: 178
  year: 2024
  ident: D4MR00098F/cit18/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c05296
– volume: 40
  start-page: 901
  year: 1971
  ident: D4MR00098F/cit39/1
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC1971v040n11ABEH001982
– volume: 370
  start-page: 437
  year: 2020
  ident: D4MR00098F/cit11/1
  publication-title: Science
  doi: 10.1126/science.abc5441
– volume: 60
  start-page: 16101
  year: 2021
  ident: D4MR00098F/cit13/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104110
– volume: 14
  start-page: 451
  year: 1989
  ident: D4MR00098F/cit16/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(89)90004-X
– volume: 26
  start-page: 7067
  year: 2024
  ident: D4MR00098F/cit26/1
  publication-title: Green Chem.
  doi: 10.1039/D4GC00659C
– volume: 9
  start-page: 816553
  year: 2022
  ident: D4MR00098F/cit29/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.816553
– volume-title: Handbook of Contact Mechanics
  year: 2019
  ident: D4MR00098F/cit34/1
  doi: 10.1007/978-3-662-58709-6
– volume: 53
  start-page: 99
  year: 2012
  ident: D4MR00098F/cit38/1
  publication-title: Mech. Mach. Theory.
  doi: 10.1016/j.mechmachtheory.2012.02.010
– volume: 14
  start-page: 5257
  year: 2023
  ident: D4MR00098F/cit23/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40915-5
– volume-title: The New Plastics Economy: Catalysing action
  year: 2017
  ident: D4MR00098F/cit4/1
– volume: 14
  start-page: 411
  year: 2010
  ident: D4MR00098F/cit44/1
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1007/s11043-010-9118-5
– volume: 36
  start-page: 9594
  year: 2003
  ident: D4MR00098F/cit42/1
  publication-title: Macromolecules
  doi: 10.1021/ma030322y
– volume: 61
  start-page: 553
  year: 2023
  ident: D4MR00098F/cit20/1
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20220578
– volume: 92
  start-page: 156
  year: 1881
  ident: D4MR00098F/cit37/1
  publication-title: J. für die Reine und Angew. Math
– volume: 82
  start-page: 37
  year: 2003
  ident: D4MR00098F/cit6/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/S0141-3910(03)00160-5
– volume: 59
  start-page: 15402
  year: 2020
  ident: D4MR00098F/cit7/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915651
– volume: 20
  start-page: 1435
  year: 2018
  ident: D4MR00098F/cit31/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC03797J
– volume: 1
  start-page: 41
  year: 2013
  ident: D4MR00098F/cit36/1
  publication-title: Friction
  doi: 10.1007/s40544-013-0005-3
– volume: 771
  start-page: 144719
  year: 2021
  ident: D4MR00098F/cit2/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144719
– volume-title: Contact Mechanics
  year: 1985
  ident: D4MR00098F/cit35/1
  doi: 10.1017/CBO9781139171731
– volume: 616
  start-page: 488
  year: 2023
  ident: D4MR00098F/cit12/1
  publication-title: Nature
  doi: 10.1038/s41586-023-05845-8
– volume: 13
  start-page: 1233
  year: 1975
  ident: D4MR00098F/cit15/1
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
  doi: 10.1002/pol.1975.180130614
– volume: 98
  start-page: 392
  year: 2013
  ident: D4MR00098F/cit40/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2012.08.026
– volume: 6
  start-page: 599
  year: 2023
  ident: D4MR00098F/cit3/1
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-01054-9
– volume: 3
  start-page: e1700782
  year: 2017
  ident: D4MR00098F/cit1/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 56
  start-page: 249
  year: 2024
  ident: D4MR00098F/cit14/1
  publication-title: Polym. J.
  doi: 10.1038/s41428-023-00863-9
– volume: 45
  start-page: 2935
  year: 2021
  ident: D4MR00098F/cit19/1
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ05984F
– volume: 12
  start-page: 9003
  year: 2024
  ident: D4MR00098F/cit28/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c06081
– volume: 146
  start-page: 26139
  year: 2024
  ident: D4MR00098F/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c07157
– volume: 112
  start-page: 6908
  year: 2008
  ident: D4MR00098F/cit41/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8020003
– volume: 382
  start-page: 122954
  year: 2020
  ident: D4MR00098F/cit30/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122954
– volume: 70
  start-page: 71
  year: 2000
  ident: D4MR00098F/cit5/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/S0141-3910(00)00090-2
– volume: 7
  start-page: 1487
  year: 2021
  ident: D4MR00098F/cit8/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.006
– volume: 103
  start-page: 519
  year: 2007
  ident: D4MR00098F/cit43/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.24156
– volume: 377
  start-page: 1561
  year: 2022
  ident: D4MR00098F/cit9/1
  publication-title: Science
  doi: 10.1126/science.add1088
– volume: 63
  start-page: e202409731
  issue: 48
  year: 2024
  ident: D4MR00098F/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202409731
– volume: 57
  start-page: 3131
  year: 2024
  ident: D4MR00098F/cit21/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.3c02664
– volume: 98
  start-page: 294
  year: 2016
  ident: D4MR00098F/cit33/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.06.047
SSID ssj0003313580
Score 2.3630679
Snippet Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers....
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 263
SubjectTerms Chemistry
Title Influence of ball milling parameters on the mechano-chemical conversion of polyolefins
URI https://www.ncbi.nlm.nih.gov/pubmed/39760087
https://www.proquest.com/docview/3151879878
https://pubmed.ncbi.nlm.nih.gov/PMC11696860
Volume 2
WOSCitedRecordID wos001553000500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2976-8683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313580
  issn: 2976-8683
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2976-8683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003313580
  issn: 2976-8683
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELboQGgvCASDMKiC4AVVEUmc-MfjNphAohNiA_WtcmJnq5QmVdpOgwf-ds5O7LQUJHjgJYoSO5H8fT6f7853CL0KicyihCYwxXMeJCSNA57AdBeCYqaoTKUyB4U_0rMzNpnwT51Nd2nKCdCqYjc3fPFfoYZnALY-OvsPcLuPwgO4B9DhCrDD9a-A_2DLjmg9MNOeZ11ZyBw6FzoSS6fT7FwEo7nSB3_rILdpA0wQurGgmVDouvxWl6qYdSY9m8j7_GQ0bnvmtl5cb1NtLtWyc2YcyUbLD-eNOlez1XdjRzT22VKAvB056_Pxuo00MwXGHGePBWy9S3HZcqEC1bjzZHWmijg1sVqtuUAZkRaD8hMw0pausfI33qBZvClLW8m3I-NDrFOkymTeaAWRFZuNAIrF3ACr9Sydb69f51z0oX01QLdjmnIdCDj-0VvmMI60b9jmssX8Tf-vfXTX9t5WZHZ2J7tBtoPG1pQxusvFfXSv23T4Ry1ZHqBbqnqIvjqi-HXha6L4HVH8nih-XflAFP9Xovg9UXTvDaI8Ql9O312cvA-6KhtBnoR4FcQqlVkaYYILkmJJQCPkeRYLBcowU1zEhCucSJZhxZXERUES2HQXQhYFCPwwwwdor6or9QT5RMJyQSQsC6lKogx0YUqkxFwwEcqoyD302g7ZNO9S0OtKKOXUhEJgPn2bjD-bkT710EvXdtEmXvltqxd25KdAd-3sEpWq18spBlWWUc4o89DjFgn3HQuhh9gWRq6Bzrm-_aaaXZnc61Gks0mR0EMHAKfr0DPk6R__doj2-0nxDO2tmrV6ju7k16vZshmiAZ2woTEJDQ0ffwI0T6oD
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+ball+milling+parameters+on+the+mechano-chemical+conversion+of+polyolefins&rft.jtitle=RSC+Mechanochemistry&rft.au=Hergesell%2C+Adrian+H&rft.au=Seitzinger%2C+Claire+L&rft.au=Burg%2C+Justin&rft.au=Baarslag%2C+Renate+J&rft.date=2025-03-04&rft.eissn=2976-8683&rft.volume=2&rft.issue=2&rft.spage=263&rft_id=info:doi/10.1039%2Fd4mr00098f&rft_id=info%3Apmid%2F39760087&rft.externalDocID=39760087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-8683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-8683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-8683&client=summon